研究室を志望する方へ(学生向け)
研究内容紹介(研究者向け)

Takahiro Hasebe

Associate professor, Department of Mathematics, Hokkaido University
In Bedlewo, Poland (Photo taken by Jiun-Chau Wang)
photo

Research interest


Muraki's preprint

   Naofumi Muraki allowed me to put his preprint on my webpage:

          N. Muraki, Monotonic convolution and monotonic Lévy-Hinčin formula, preprint, 2000, 40pp.

Preprints

  1. T. Hasebe and Y. Ueda, Unimodality for free multiplicative convolution with free normal distributions on the unit circle. arXiv:1903.05327
  2. U. Franz, T. Hasebe and S. Schleissinger, Monotone increment processes, classical Markov processes and Loewner chains. arXiv:1811.02873
  3. T. Hasebe and F. Lehner, Cumulants, Spreadability and the Campbell-Baker-Hausdorff Series. arXiv:1711.00219

List of Publication

  1. T. Hasebe, T. Simon and M. Wang, Some properties of the free stable distributions, Ann. Inst. Henri Poincaré Probab. Stat., to appear. arXiv:1805.01133
  2. Y. Gu, T. Hasebe and P. Skoufranis, Bi-monotonic independence for pairs of algebras, J. Theoret. Probab., to appear. arXiv:1708.05334
  3. T. Hasebe and K. Szpojankowski, On free Generalized Inverse Gaussian distributions, Complex Analysis and Operator Theory, to appear. arXiv:1710.04572
  4. T. Hasebe, N. Sakuma and S. Thorbjørnsen, The normal distribution is freely selfdecomposable, Int. Math. Res. Not. IMRN, vol. 2019, Issue 6, 1758–1787. arXiv:1701.00409
  5. T. Hasebe, H.-W. Huang and J.-C. Wang, Limit theorems in bi-free probability theory, Probab. Theory Related Fields 172 (2018), Issue 3–4, 1081-1119. arXiv:1705.05523
  6. O. Arizmendi and T. Hasebe, Limit theorems for free Lévy processes, Electron. J. Probab. 23, no. 101 (2018), 36 pp. article is here.
  7. B. Collins, T. Hasebe and N. Sakuma, Free probability for purely discrete eigenvalues of random matrices, J. Math. Soc. Japan 70, No. 3 (2018), 1111-1150. arXiv:1512.08975
  8. T. Hasebe and Y. Ueda, Large time unimodality for classical and free Brownian motions with initial distributions, ALEA Lat. Am. J. Probab. Math. Stat. 15 (2018), 353-374. arXiv:1710.08240
  9. T. Hasebe, T. Miyatani and M. Yoshinaga, Euler characteristic reciprocity for chromatic, flow and order polynomials, Journal of Singularities 16 (2017), 212-227. arXiv:1601.00254
  10. T. Hasebe and S. Tsujie, Order quasisymmetric functions distinguish rooted trees, J. Algebraic Combin. 46 (2017), 499-515. arxiv:1610.03908
  11. T. Hasebe and N. Sakuma, Unimodality for free Lévy processes, Ann. Inst. Henri Poincaré Probab. Stat. 53, No. 2 (2017), 916-936. arXiv:1508.01285
  12. M. Bożejko, W. Ejsmont and T. Hasebe, Noncommutative probability of type D, Internat. J. Math. 28, No. 2 (2017), 1750010 (30 pages). arXiv:1609.01049
  13. T. Hasebe and S. Thorbjørnsen, Unimodality of the freely selfdecomposable probability laws, J. Theoret. Probab. 29 (2016), Issue 3, 922-940. arXiv:1309.6776
  14. T. Hasebe, Free infinite divisibility for powers of random variables, ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016), no. 1, 309-336. arXiv:1509.08614
  15. O. Arizmendi and T. Hasebe, Free subordination and Belinschi-Nica semigroup, Complex Anal. Oper. Theory 10, No. 3 (2016), 581-603. arXiv:1408.5983
  16. O. Arizmendi and T. Hasebe, Classical scale mixtures of Boolean stable laws, Trans. Amer. Math. Soc. 368 (2016), 4873-4905. arXiv:1405.2162
  17. N. Asai, M. Bożejko and T. Hasebe, Radial Bargmann representation for the Fock space of type B, J. Math. Phys. 57 (2016), 021702. arXiv:1512.08862
  18. T. Hasebe and N. Sakuma, Unimodality of Boolean and monotone stable distributions, Demonstr. Math. 48, No. 3 (2015), 424-439. arXiv:1403.2487 published ver.
  19. M. Bożejko, W. Ejsmont and T. Hasebe, Fock space associated to Coxeter groups of type B, J. Funct. Anal. 269, No. 6 (2015), 1769-1795. arXiv:1411.7997
  20. O. Arizmendi, T. Hasebe, F. Lehner and C. Vargas, Relations between cumulants in noncommutative probability, Adv. Math. 282 (2015), 56-92. arXiv:1408.2977
  21. T. Hasebe, Free infinite divisibility for beta distributions and related ones, Electron. J. Probab. 19 (2014), No. 81, 1-33. arXiv:1305.0924 published ver.
  22. T. Hasebe and A. Kuznetsov, On free stable distributions, Electron. Commun. Probab. 19 (2014), No. 56, 1-12. arXiv:1404.2981 published ver.
  23. T. Hasebe and H. Saigo, On operator-valued monotone independence, Nagoya Math. J. 215 (2014), 151-167. arXiv:1306.0137
  24. O. Arizmendi and T. Hasebe, Classical and free infinite divisibility for Boolean stable laws, Proc. Amer. Math. Soc. 142 (2014), 1621-1632. arXiv:1205.1575
  25. M. Bożejko and T. Hasebe, On free infinite divisibility for classical Meixner distributions, Probab. Math. Stat. 33, Fasc. 2 (2013), 363-375. arXiv:1302.4885
  26. O. Arizmendi and T. Hasebe, Semigroups related to additive and multiplicative, free and Boolean convolutions, Studia Math. 215 (2013), 157-185. arXiv:1105.3344
  27. O. Arizmendi and T. Hasebe, On a class of explicit Cauchy-Stieltjes transforms related to monotone stable and free Poisson laws, Bernoulli 19(5B) (2013), 2750-2767. arXiv:1108.3438
  28. T. Hasebe, Conditionally monotone independence II, Multiplicative convolutions and infinite divisibility, Compl. Anal. Oper. Theory 7 (2013), 115-134. arXiv:0910.1319
  29. O. Arizmendi, T. Hasebe and N. Sakuma, On the law of free subordinators, ALEA, Lat. Amer. J. Probab. Math. Stat. 10, No. 2 (2013), 271-291. arXiv:1201.0311 published ver.
  30. T. Hasebe, Fourier and Cauchy-Stieltjes transforms of power laws including stable distributions, Internat. J. Math. 23, No. 3 (2012), 1250041 (21 pages). arXiv:1107.3874
  31. T. Hasebe, Analytic continuations of Fourier and Stieltjes transforms and generalized moments of probability measures, J. Theoret. Probab. 25, No. 3 (2012), 756-770. arXiv:1009.1510
  32. T. Hasebe and H. Saigo, Joint cumulants for natural independence, Electron. Commun. Probab. 16 (2011), 491-506. published ver.
  33. T. Hasebe and H. Saigo, The monotone cumulants, Ann. Inst. Henri Poincaré Probab. Stat. 47, No. 4 (2011), 1160-1170. arXiv:0907.4896
  34. T. Hasebe, Differential independence via an associative product of infinitely many linear functionals, Colloq. Math. 124 (2011), 79-94. preprint ver.
  35. T. Hasebe, Conditionally monotone independence I, Independence, additive convolutions and related convolutions, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14, No. 3 (2011), 465-516. arXiv:0907.5473
  36. T. Hasebe, White noise analysis on manifolds and the energy representation of a gauge group, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, No. 4 (2010), 619-627. arXiv:0805.1329
  37. T. Hasebe, Monotone convolution semigroups, Studia Math. 200 (2010), 175-199. preprint ver.
  38. T. Hasebe, Monotone convolution and monotone infinite divisibility from complex analytic viewpoints, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, No. 1 (2010), 111-131.
  39. T. Hasebe, I. Ojima and H. Saigo, No zero divisor for Wick product in (S)*, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11, No. 2 (2008), 307-311. arXiv:0712.3915

Old preprints

  1. T. Hasebe, New associative product of three states generalizing free, monotone, anti-monotone, Boolean, conditionally free and conditionally monotone products, arXiv:1009.1505, to be revised thoroughly.
  2. T. Hasebe, Free infinite divisibility of measures with rational function densities, preprint, not to be published.

Link



My email address is t + my family name + at + math.sci.hokudai.ac.jp