研究室を志望する方へ(学生向け)
研究内容紹介(研究者向け)

Takahiro Hasebe

Associate professor, Department of Mathematics, Hokkaido University
photo

Research interest


Muraki's preprint

   Naofumi Muraki allowed me to put his preprint on my webpage:

          N. Muraki, Monotonic convolution and monotonic Lévy-Hinčin formula, preprint, 2000, 40pp.

Preprints

  1. M. Gerhold, T. Hasebe and M. Ulrich, Towards a Classification of Multi-Faced Independence: A Representation-Theoretic Approach. arXiv:2111.07649
  2. T. Hasebe and H.-W. Huang, Limit theorems and wrapping transforms in bi-free probability theory. arXiv:2007.02775
  3. T. Hasebe and F. Lehner, Cumulants, Spreadability and the Campbell-Baker-Hausdorff Series. arXiv:1711.00219

List of Publication

  1. T. Hasebe, Y. Ueda and J.-C. Wang, Log-unimodality for free positive multiplicative Brownian motion, Colloq. Math., to appear. arXiv:2009.13848
  2. T. Hasebe and I. Hotta, Additive processes on the unit circle and Loewner chains, IMRN, to appear. arXiv:2010.15194
  3. M. Fukuda, T. Hasebe and S. Sato, Additivity violation of quantum channels via strong convergence to semi-circular and circular elements, Random Matrices: Theory and Applications, to appear. arXiv:2101.00424
  4. K. Fujie and T. Hasebe, The spectra of principal submatrices in rotationally invariant hermitian random matrices and the Markov-Krein correspondence, ALEA Lat. Am. J. Probab. Math. Stat. 19 (2022), 109-123. arXiv:2103.09025
  5. T. Hasebe and Y. Ueda, Homomorphisms relative to additive convolutions and max-convolutions: free, boolean and classical cases, Proc. Amer. Math. Soc. 149 (2021), no. 11, 4799-4814. arXiv:2011.10399
  6. T. Hasebe and Y. Ueda, Unimodality for free multiplicative convolution with free normal distributions on the unit circle, J. Operator Theory 85 (2021), no. 1, 21-43. arXiv:1903.05327
  7. T. Yamada et al, Construction of normal vector field using the partial differential equations (in Japanese), the Japan Journal of Industrial and Applied Mathematics, Vol. 30, No. 3 (2020), 249-258. published version
  8. U. Franz, T. Hasebe and S. Schleissinger, Monotone increment processes, classical Markov processes and Loewner chains, Dissertationes Mathematicae 552 (2020), 1-119. online first version
  9. Y. Gu, T. Hasebe and P. Skoufranis, Bi-monotonic independence for pairs of algebras, J. Theoret. Probab. 33 (2020), no. 1, 533-566. arXiv:1708.05334
  10. T. Hasebe, T. Simon and M. Wang, Some properties of the free stable distributions, Ann. Inst. Henri Poincaré Probab. Stat. 2020, Vol. 56, No. 1, 296-325. published ver.journal webpage
  11. T. Yamada et al., Topology optimization with geometrical feature constraints based on the partial differential equation system for geometrical features (Overhang constraints considering geometrical singularities in additive manufacturing), Transactions of the JSME (in Japanese), Vol.85, No.877, 2019. published ver.
  12. T. Hasebe and K. Szpojankowski, On free Generalized Inverse Gaussian distributions, Complex Analysis and Operator Theory 13 (2019), Issue 7, 3091-3116. arXiv:1710.04572
  13. T. Hasebe, N. Sakuma and S. Thorbjørnsen, The normal distribution is freely selfdecomposable, Int. Math. Res. Not. IMRN, vol. 2019, Issue 6, 1758–1787. arXiv:1701.00409
  14. T. Hasebe, H.-W. Huang and J.-C. Wang, Limit theorems in bi-free probability theory, Probab. Theory Related Fields 172 (2018), Issue 3–4, 1081-1119. arXiv:1705.05523
  15. O. Arizmendi and T. Hasebe, Limit theorems for free Lévy processes, Electron. J. Probab. 23, no. 101 (2018), 36 pp. article is here.
  16. B. Collins, T. Hasebe and N. Sakuma, Free probability for purely discrete eigenvalues of random matrices, J. Math. Soc. Japan 70, No. 3 (2018), 1111-1150. arXiv:1512.08975
  17. T. Hasebe and Y. Ueda, Large time unimodality for classical and free Brownian motions with initial distributions, ALEA Lat. Am. J. Probab. Math. Stat. 15 (2018), 353-374. arXiv:1710.08240
  18. T. Hasebe, T. Miyatani and M. Yoshinaga, Euler characteristic reciprocity for chromatic, flow and order polynomials, Journal of Singularities 16 (2017), 212-227. arXiv:1601.00254
  19. T. Hasebe and S. Tsujie, Order quasisymmetric functions distinguish rooted trees, J. Algebraic Combin. 46 (2017), 499-515. arxiv:1610.03908
  20. T. Hasebe and N. Sakuma, Unimodality for free Lévy processes, Ann. Inst. Henri Poincaré Probab. Stat. 53, No. 2 (2017), 916-936. arXiv:1508.01285
  21. M. Bożejko, W. Ejsmont and T. Hasebe, Noncommutative probability of type D, Internat. J. Math. 28, No. 2 (2017), 1750010 (30 pages). arXiv:1609.01049
  22. T. Hasebe and S. Thorbjørnsen, Unimodality of the freely selfdecomposable probability laws, J. Theoret. Probab. 29 (2016), Issue 3, 922-940. arXiv:1309.6776
  23. T. Hasebe, Free infinite divisibility for powers of random variables, ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016), no. 1, 309-336. arXiv:1509.08614
  24. O. Arizmendi and T. Hasebe, Free subordination and Belinschi-Nica semigroup, Complex Anal. Oper. Theory 10, No. 3 (2016), 581-603. arXiv:1408.5983
  25. O. Arizmendi and T. Hasebe, Classical scale mixtures of Boolean stable laws, Trans. Amer. Math. Soc. 368 (2016), 4873-4905. arXiv:1405.2162
  26. N. Asai, M. Bożejko and T. Hasebe, Radial Bargmann representation for the Fock space of type B, J. Math. Phys. 57 (2016), 021702. arXiv:1512.08862
  27. T. Hasebe and N. Sakuma, Unimodality of Boolean and monotone stable distributions, Demonstr. Math. 48, No. 3 (2015), 424-439. arXiv:1403.2487 published ver.
  28. M. Bożejko, W. Ejsmont and T. Hasebe, Fock space associated to Coxeter groups of type B, J. Funct. Anal. 269, No. 6 (2015), 1769-1795. arXiv:1411.7997
  29. O. Arizmendi, T. Hasebe, F. Lehner and C. Vargas, Relations between cumulants in noncommutative probability, Adv. Math. 282 (2015), 56-92. arXiv:1408.2977
  30. T. Hasebe, Free infinite divisibility for beta distributions and related ones, Electron. J. Probab. 19 (2014), No. 81, 1-33. arXiv:1305.0924 published ver.
  31. T. Hasebe and A. Kuznetsov, On free stable distributions, Electron. Commun. Probab. 19 (2014), No. 56, 1-12. arXiv:1404.2981 published ver.
  32. T. Hasebe and H. Saigo, On operator-valued monotone independence, Nagoya Math. J. 215 (2014), 151-167. arXiv:1306.0137
  33. O. Arizmendi and T. Hasebe, Classical and free infinite divisibility for Boolean stable laws, Proc. Amer. Math. Soc. 142 (2014), 1621-1632. arXiv:1205.1575
  34. M. Bożejko and T. Hasebe, On free infinite divisibility for classical Meixner distributions, Probab. Math. Stat. 33, Fasc. 2 (2013), 363-375. arXiv:1302.4885
  35. O. Arizmendi and T. Hasebe, Semigroups related to additive and multiplicative, free and Boolean convolutions, Studia Math. 215 (2013), 157-185. arXiv:1105.3344
  36. O. Arizmendi and T. Hasebe, On a class of explicit Cauchy-Stieltjes transforms related to monotone stable and free Poisson laws, Bernoulli 19(5B) (2013), 2750-2767. arXiv:1108.3438
  37. T. Hasebe, Conditionally monotone independence II, Multiplicative convolutions and infinite divisibility, Compl. Anal. Oper. Theory 7 (2013), 115-134. arXiv:0910.1319
  38. O. Arizmendi, T. Hasebe and N. Sakuma, On the law of free subordinators, ALEA, Lat. Amer. J. Probab. Math. Stat. 10, No. 2 (2013), 271-291. arXiv:1201.0311 published ver.
  39. T. Hasebe, Fourier and Cauchy-Stieltjes transforms of power laws including stable distributions, Internat. J. Math. 23, No. 3 (2012), 1250041 (21 pages). arXiv:1107.3874
  40. T. Hasebe, Analytic continuations of Fourier and Stieltjes transforms and generalized moments of probability measures, J. Theoret. Probab. 25, No. 3 (2012), 756-770. arXiv:1009.1510
  41. T. Hasebe and H. Saigo, Joint cumulants for natural independence, Electron. Commun. Probab. 16 (2011), 491-506. published ver.
  42. T. Hasebe and H. Saigo, The monotone cumulants, Ann. Inst. Henri Poincaré Probab. Stat. 47, No. 4 (2011), 1160-1170. arXiv:0907.4896
  43. T. Hasebe, Differential independence via an associative product of infinitely many linear functionals, Colloq. Math. 124 (2011), 79-94. preprint ver.
  44. T. Hasebe, Conditionally monotone independence I, Independence, additive convolutions and related convolutions, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14, No. 3 (2011), 465-516. arXiv:0907.5473
  45. T. Hasebe, White noise analysis on manifolds and the energy representation of a gauge group, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, No. 4 (2010), 619-627. arXiv:0805.1329
  46. T. Hasebe, Monotone convolution semigroups, Studia Math. 200 (2010), 175-199. preprint ver.
  47. T. Hasebe, Monotone convolution and monotone infinite divisibility from complex analytic viewpoints, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, No. 1 (2010), 111-131.
  48. T. Hasebe, I. Ojima and H. Saigo, No zero divisor for Wick product in (S)*, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11, No. 2 (2008), 307-311. arXiv:0712.3915

Old preprints

  1. T. Hasebe, New associative product of three states generalizing free, monotone, anti-monotone, Boolean, conditionally free and conditionally monotone products, arXiv:1009.1505, to be revised thoroughly.
  2. T. Hasebe, Free infinite divisibility of measures with rational function densities, preprint, not to be published.

Link



My email address is t + my family name + at + math.sci.hokudai.ac.jp