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Abstract

We prove one-to-one correspondences between certain decreasing Loewner chains in the upper
half-plane, a special class of real-valued Markov processes, and quantum stochastic processes
with monotonically independent additive increments. This leads us to a detailed investigation
of probability measures on R with univalent Cauchy transform. We discuss several subclasses of
such measures and obtain characterizations in terms of analytic and geometric properties of the
corresponding Cauchy transforms.

Furthermore, we obtain analogous results for the setting of decreasing Loewner chains in the
unit disk, which correspond to quantum stochastic processes of unitary operators with mono-
tonically independent multiplicative increments.
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Preface

In non-commutative probability there exist several notions of independence of (non-
commutative) random variables. For each notion of independence we also have a no-
tion of (non-commutative) stochastic processes with independent increments. Here we
focus on monotone independence, introduced by Muraki, and therefore on processes with
monotonically independent increments, simply called monotone increment processes.

The marginal distributions of a monotone increment process, via the reciprocal Cauchy
transform, give rise to a decreasing Loewner chain, which is a family of univalent self-
mappings of the upper half-plane with decreasing range and with some normalization at
infinity.

Extending the work of Biane, Letac–Malouche, and Franz–Muraki, we show how we
can associate to each such Loewner chain a classical Markov process. The Markov pro-
cesses that arise in this way are characterized by a special form of space-homogeneity.

Finally, given such a Markov process we can reconstruct the monotone increment pro-
cess from it, as a non-commutative stochastic process consisting of (possibly unbounded)
self-adjoint operators.

The above constructions give one-to-one correspondences between the three classes of
objects: monotone increment processes, certain decreasing Loewner chains, and certain
Markov processes. The Loewner chains we encounter have Denjoy–Wolff fixed points at
infinity, and the classical theory of Loewner chains is not sufficient to treat them. For-
tunately, the recent work of Bracci, Contreras, Díaz-Madrigal, and Gumenyuk extended
the theory of Loewner chains to the case where the Denjoy–Wolff fixed points of the
mappings lie on the boundary, and this theory is quite well suited to our purpose.

We prove that the set of marginal distributions of monotone increment processes
is exactly the set of probability measures with univalent Cauchy transform. Thus our
bijection leads to a probabilistic interpretation of geometric function theory.

In geometric function theory, one important class of holomorphic functions is the
set of starlike functions, i.e., univalent functions whose ranges are starlike domains with
respect to some point. We identify the set of starlike Cauchy transforms (with respect
to the origin) as the set of monotonically self-decomposable distributions. Furthermore,
these distributions can be also characterized as the limit distributions in a limit theorem
for the monotone convolution, in analogy to a classical limit theorem due to Paul Lévy.

Similar results hold for unitary processes with monotonically independent multiplica-
tive increments. The corresponding Loewner chains are radial and technically easier to
treat. We can associate to unitary monotone increment processes classical Markov pro-
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cesses taking values in the unit circle, and obtain again one-to-one correspondences, this
time between unitary monotone increment processes, a class of radial Loewner chains,
and a class of Markov processes with values in the unit circle. We also discuss geometric
properties and limit theorems for distributions on the unit circle and the multiplicative
monotone convolution.

Uwe Franz, Takahiro Hasebe, Sebastian Schleißinger



1. Introduction

1.1. Quantum probability. In quantum probability or non-commutative probability
theory, random variables are regarded abstractly as elements of a unital *-algebra A
over C together with a state Φ, i.e. a linear functional Φ : A → C with Φ(X∗X) ≥ 0 and
Φ(1) = 1, which corresponds to the classical expectation. The pair (A,Φ) is called an
abstract quantum probability space. An element X ∈ A is called a random variable.

Example 1.1. Classical probability spaces fit into this setting as follows. Let (Ω,F ,P)

be a classical probability space. Then A =
⋂

1≤p<∞ Lp(Ω,C) is a unital *-algebra with *
defined by X∗(ω) := X(ω), and Φ(X) =

∫
Ω
X(ω) dP(ω) defines a state on A.

Example 1.2. For n ∈ N, let A = Mn(C) be the *-algebra of complex n × n matrices,
with * being the conjugate transpose, and let Φ(X) = 1

nTr(X). Then (A,Φ) is an abstract
quantum probability space.

It is now of interest to translate common notions from classical probability theory into
this non-commutative setting. For instance, the distribution of a random variable X ∈ A
can be defined abstractly as the set {Φ((Xε1)k1 · · · (Xεn)kn) : εi ∈ {1, ∗}, ki ∈ N, n ∈ N},
called the ∗-moments of X. In particular, Φ(Xn) is called the nth moment of X ∈ A. If
A is a C∗-algebra and X is self-adjoint (i.e., X = X∗), then its moments (Φ(Xn))n∈N
define a unique probability measure µ on R by

Φ(Xn) =

∫
R
xn µ(dx), n ∈ N. (1.1)

The measure µ is called the distribution of X. As X is an element of a C∗-algebra, the
distribution µ of X has compact support.

For our purposes, it will be mostly sufficient (the exception is Section 4.9) to work
with the following concrete and most prominent example of a quantum probability space.

Definition 1.3. A (concrete) quantum probability space (H, ξ) consists of a Hilbert
space H and a unit vector ξ ∈ H, which defines the vector state Φξ : B(H)→ C by

Φξ(X) = 〈ξ,Xξ〉.

Here, B(H) denotes the space of all bounded linear operators on H and we use inner
products which are linear in the second argument.

Under some mild condition, e.g., if for each X ∈ A there exists a constant CX > 0

such that
∀Y ∈ A, Φ(Y ∗X∗XY ) ≤ CXΦ(Y ∗Y ),

[8]
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we can realize an abstract quantum probability space (A,Φ) as a subalgebra of B(H),
acting on a concrete quantum probability space (H, ξ). This is an immediate consequence
of the GNS representation theorem. Even without any such a condition we can realize any
abstract quantum probability space as an algebra of possibly unbounded linear operators
acting on a pre-Hilbert space.

One advantage of using concrete quantum probability spaces is that we can include
some unbounded operators as random variables.

Definition 1.4. Let (H, ξ) be a concrete quantum probability space.

(1) A normal random variable is a densely defined closed operator X such that XX∗ =

X∗X, i.e.,

D(XX∗) := {v ∈ D(X∗) : X∗v ∈ D(X)}
= {v ∈ D(X) : Xv ∈ D(X∗)} =: D(X∗X),

and XX∗ and X∗X agree on their domain.
(2) In particular, ifX is self-adjoint/unitary, then we call it a self-adjoint/unitary random

variable.
(3) If X is an essentially self-adjoint operator, then we call it an essentially self-adjoint

random variable.

Example 1.5. Let (Ω,F ,P) be a classical probability space. Then (L2(Ω,F ,P),1Ω) is
a concrete quantum probability space, where 1Ω is the constant function on Ω taking
the value 1. If f : Ω → C is an F-measurable function, then the multiplication operator
X : h 7→ fh defined for h in the dense domain

{h ∈ L2(Ω,F ,P) : fh ∈ L2(Ω,F ,P)}

is a normal random variable. If f takes only real values, then the random variable X is
self-adjoint.

Our random variables X will be possibly unbounded operators, and so the domain
ofXn may not contain ξ for some n. Thus we cannot define the distribution ofX by (1.1) in
this case. We can generalize the definition by using resolvents and the Cauchy transform.

Definition 1.6. Let X be an essentially self-adjoint random variable on a concrete
quantum probability space (H, ξ) and consider its closure X. The distribution of X is
the unique probability measure µ on R such that

Φξ((z −X)−1) =

∫
R

1

z − x
µ(dx) =: Gµ(z), z ∈ C+ := {w ∈ C : Im(w) > 0}. (1.2)

The function Gµ(z), which will also be denoted by GX , is called the Cauchy transform
of µ or of X. The F -transform (or reciprocal Cauchy transform) of µ or of X (denoted
by Fµ or FX) is defined to be the inverse of the Cauchy transform, i.e. as the mapping

Fµ : C+ → C+, Fµ(z) =
1

Gµ(z)
.

Remark 1.7. If X is self-adjoint and bounded, then the distribution µ of X, as defined
above, is indeed the unique probability measure on R with moments Φξ(X

n) as previously
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defined in (1.1), because

Φξ((z −X)−1) =
1

z
Φξ((I −X/z)−1) =

∞∑
k=0

Φξ(X
k)

zk+1

and

Gµ(z) =

∞∑
k=0

∫
R x

k µ(dx)

zk+1

for all z ∈ C with |z| large enough (in fact |z| > ‖X‖).

Example 1.8. In the setting of Example 1.5, if f is real-valued, then the distribution
of the multiplication operator X is exactly the distribution of f in the usual sense of
probability theory.

For the basics of quantum probability we refer the reader to introductions such as
[Att, Mey93].

1.2. Monotone independence. Muraki has shown in [Mur03] that the tensor, Boolean,
free, monotone, and anti-monotone independences are the only five possible universal no-
tions of independence in non-commutative probability theory. We study monotone inde-
pendence in this paper. This independence was introduced by Muraki [Mur00, Mur01a,
Mur01b] based on earlier work on monotone Fock spaces [Mur96, Mur97, dGL97, Lu97].

In what follows we denote by Cb(S) the set of all continuous and bounded functions
f : S → C, where S is a topological space. For a normal random variableX and f ∈ Cb(C),
f(X) is defined via functional calculus. If X is self-adjoint, we can define f(X) in the
same way for f ∈ Cb(R).

Definition 1.9. Let (H, ξ) be a concrete quantum probability space.

(1) A family of ∗-subalgebras (Aι)ι∈I of B(H) indexed by a linearly ordered set I is
called monotonically independent if the following conditions are satisfied:

(i) For any r, s ∈ N ∪ {0}, i1, . . . , ir, j, k1, . . . , ks ∈ I with

i1 > · · · > ir > j < ks < · · · < k1 (1)

and for any X1 ∈ Ai1 , . . . , Xr ∈ Air , Y ∈ Aj , Z1 ∈ Ak1 , . . . , Zs ∈ Aks , we have

Φξ(X1 · · ·XrY Zs · · ·Z1) = Φξ(X1) · · ·Φξ(Xr)Φξ(Y )Φξ(Zs) · · ·Φξ(Z1).

(ii) For any i, j, k ∈ I with i < j > k and any X ∈ Ai, Y ∈ Aj , Z ∈ Ak we have

XY Z = Φξ(Y )XZ.

(2) A family (Xι)ι∈I of normal random variables indexed by a linearly ordered set I is
called monotonically independent if the family (Aι)ι∈I of ∗-algebras is monotonically
independent, where

Aι = {f(Xι) : f ∈ Cb(C), f(0) = 0}.

(1) If r = 0, then we just assume j < ks < · · · < k1, and similarly for the case s = 0.
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Remark 1.10. The following definition of monotone independence is also commonly used
in the literature:

(iii) For any n ∈ N, i1, . . . , in ∈ I and any X1 ∈ Ai1 , . . . , Xn ∈ Ain , we have

Φξ(X1 · · ·Xn) = Φξ(Xp)Φξ(X1 · · ·Xp−1Xp+1 · · ·Xn)

whenever p is such that ip−1 < ip > ip+1, where the first or the last inequality is
eliminated if p = 1 or p = n respectively.

It can be checked that (i) and (ii) imply (iii). We prefer (i) and (ii) since our operator
model satisfies these stronger conditions (see Theorem 4.21). As noted in [Fra09a, Remark
3.2(c)], condition (iii) is equivalent to (i) and (ii) if the vacuum vector ξ is cyclic regarding
the algebra generated by Ai, i ∈ I.

Remark 1.11. Monotone (and anti-monotone) independence of two random variables
is defined for ordered pairs (X,Y ), while tensor, free and Boolean independences do
not need an order. Indeed, it is easy to see that (X, I) is monotonically independent
for all random variables X, where I ∈ B(H) denotes the identity. However, if (I,X) is
monotonically independent for X ∈ B(H), then we have X = IXI = Φξ(X)I, i.e. X is
a multiple of the identity. This also explains why we take functions f ∈ Cb(C) such that
f(0) = 0 in (2). If we remove the condition f(0) = 0, then we can take f ≡ 1 and so Xι

must be multiples of the identity for all but the maximal index.

Once a notion of independence of random variables is defined, one can introduce
many concepts similar to those in probability theory: convolution of probability measures,
central limit theorems, quantum stochastic processes with independent increments, and
quantum stochastic differential equations. For quantum independent increment processes,
see the books [ABKL05, BNF+06]. We also refer to [Oba17], where the author shows how
independences in quantum probability theory can be applied to the analysis of graphs.
The different notions of independence appear in connection with certain products for
graphs.

Assume that (X,Y ) is a pair of monotonically independent self-adjoint random vari-
ables on a concrete quantum probability space (H, ξ) such that X + Y is essentially
self-adjoint. If µ and ν denote the distributions of X and Y respectively, then it can be
shown that the distribution λ of X + Y can be computed by

Fλ = Fµ ◦ Fν ; (1.3)

see Lemma 4.5 below. Conversely, given two probability measures µ and ν on R, one
can always find monotonically independent self-adjoint operators X and Y with the
distributions µ and µ, respectively (e.g. use the operators in [Fra09a, Prop. 3.9]).

Thus the formula (1.3) defines the binary operation µB ν := λ, called the (additive)
monotone convolution of probability measures µ and ν on R.

Remark 1.12. Monotone convolution was originally defined by Muraki [Mur00]. He first
derived formula (1.3) for compactly supported probability measures by computing the
moments of (X+Y )n when X and Y are monotonically independent bounded self-adjoint
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random variables [Mur00, Thm. 3.1]. Then he extended the definition of monotone con-
volution to arbitrary probability measures via complex analysis [Mur00, Thm. 3.5]. Franz
[Fra09a] constructed an unbounded self-adjoint operator model for monotone convolution
of arbitrary probability measures as mentioned above.

A non-commutative stochastic process or a quantum process is simply a family (Xt)t≥0

of random variables. In this work we study the following monotone increment processes.

Definition 1.13. Let (H, ξ) be a concrete quantum probability space and (Xt)t≥0 a
family of essentially self-adjoint operators on H with X0 = 0. We call (Xt) a self-adjoint
additive monotone increment process (SAIP) if the following conditions are satisfied:

(a) The increment Xt − Xs with domain D(Xt) ∩ D(Xs) is essentially self-adjoint for
every 0 ≤ s ≤ t.

(b) D(Xs) ∩D(Xt) ∩D(Xu) is dense in H and is a core for the increment Xu −Xs for
every 0 ≤ s ≤ t ≤ u.

(c) The mapping (s, t) 7→ µst is continuous with respect to weak convergence, where µst
denotes the distribution of the increment Xt −Xs.

(d) The tuple
(Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1)

is monotonically independent for all n∈N and all t1, . . . , tn∈R with 0 ≤ t1 ≤ · · · ≤ tn.

Furthermore if Xt−Xs has the same distribution as Xt−s for all 0 ≤ s ≤ t (the condition
of stationary increments), then (Xt)t≥0 is called a monotone Lévy process.

1.3. Summary of results. The first goal is to establish one-to-one correspondences be-
tween SAIPs, some class of classical (in general time-inhomogeneous) Markov processes,
and Loewner chains, motivated by or extending the past works [Bia98, FM05, Fra09a,
LM00, Sch17]. We say that a probability kernel k(x, ·), x ∈ R, is monotonically homoge-
neous (B-homogeneous, for short) if δx B k(y, ·) = k(x + y, ·) for all x, y ∈ R, and that
a Markov process (Mt)t≥0 on R with transition kernels {kst}0≤s≤t is B-homogeneous if
each kst is B-homogeneous and the mapping (s, t) 7→ kst(x, ·) is continuous with respect
to weak convergence for every x ∈ R. From the complex analysis side, we call a decreasing
Loewner chain (Ft : C+ → C+)t≥0 in the upper half-plane C+ an additive Loewner chain
if F ′t (∞) = 1 in the sense of a non-tangential limit, see Definition 3.1.

The first main result of this paper can be summarized as follows.

Theorem 1.14. We establish one-to-one correspondences between the following objects:

(1) SAIPs (Xt)t≥0 up to equivalence,
(2) additive Loewner chains (Ft)t≥0 in C+,
(3) real-valued B-homogeneous Markov processes (Mt)t≥0 with M0 = 0 up to equivalence.

The details of the correspondences in Theorem 1.14 are as follows. If (Xt)t≥0 is a
SAIP, then the reciprocal Cauchy transforms (FXt)t≥0 form an additive Loewner chain
in C+. Given an additive Loewner chain (Ft)t≥0 in C+, the Markov transition kernels
(kst)0≤s≤t defined by the identity
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y∈R

1

z − y
kst(x, dy) =

1

F−1
s ◦ Ft(z)− x

, z ∈ C+, x ∈ R,

determine a unique real-valued B-homogeneous Markov process (Mt)t≥0.
Finally, if (Mt)t≥0 is a real-valued B-homogeneous Markov process on (Ω,F ,P) with

filtration (Ft)t≥0, then the non-commutative stochastic process (Xt)t≥0 defined by

Xth = E[Mth|Ft]

for h ∈ L2(Ω,F ,P) satisfying the condition Mth ∈ L2(Ω,F ,P) is a SAIP. Note that
the conditional expectation Pt = E[ · |Ft] is viewed as the orthogonal projection from
L2(Ω,F ,P) onto the subspace L2(Ω,Ft,P). Thus, with a slight abuse of notation, we may
write Xt = PtMt by viewing the function Mt as a multiplication operator on L2(Ω,F ,P)

in the sense of Example 1.5.

Remark 1.15. In the literature, constructions of SAIPs have been limited to the case of
bounded operators. In [Mur97], Muraki constructed a monotone Brownian motion, i.e. a
SAIP (Xt)t≥0 where the distribution of Xt −Xs is the arcsine distribution with mean 0
and variance t− s. More generally, monotone Lévy processes consisting of bounded self-
adjoint operators have been constructed in [FM05, Thm. 4.1]. Jekel [Jek20, Thm. 6.25]
constructed (operator-valued) bounded monotone increment processes on a monotone
Fock space. Our construction based on classical Markov processes is different from all of
them and has the advantage that we can include any unbounded processes. Yet other con-
structions of monotone Lévy processes with finite moments are discussed in Section 4.9.

The class of (in particular, stationary) B-homogeneous Markov processes may be of
independent interest in terms of probability theory, so we study their further properties.
We will prove that they have

• the Feller property,
• an explicit formula for the infinitesimal generator,
• a martingale property.

It is another remarkable fact that a probability measure µ can occur as marginal
distribution of an SAIP iff its Cauchy transform Gµ = 1/Fµ is univalent.

Theorem 1.16. Let µ be a probability measure on R. The following statements are equiv-
alent:

(1) Fµ is univalent.
(2) There exists a SAIP (Xt)t≥0 such that the distribution of X1 is µ.
(3) There exists an additive Loewner chain (Ft)t≥0 in C+ such that F1 = Fµ.

The idea of the proof of Theorem 1.16 is as follows. The equivalence between (2)
and (3) is a part of Theorem 1.14. Under suitable Cayley transforms and a suitable
time change, the Loewner chain (Ft) can be transformed into a Loewner chain on the
unit disk that is differentiable regarding t almost everywhere and satisfies Loewner’s
partial differential equation (Section 3.1). Then we can use recent work on Loewner
chains [CDG14] to prove the equivalence between (1) and (3).
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Remark 1.17. The equivalence between (1) and (2) of Theorem 1.16 is to be compared
with classical probability (see [Sat13, Thms. 7.10 and 9.1]): given a stochastic process
(Yt)t≥0 with independent (not necessarily stationary) increments, Y0 = 0 and suitable
continuity properties, the distribution of Y1 is infinitely divisible; conversely, any infinitely
divisible distribution can be realized as such. The same statement is true if we consider
Lévy processes (namely, if we assume stationary increments). However, as we will see in
Example 6.12, there exists a probability measure µ which is not monotonically infinitely
divisible but Fµ is univalent. Therefore there exists a gap between the laws of SAIPs and
those of monotone Lévy processes.

Remark 1.18. R. Bauer studied univalent Cauchy transforms in [Bau05] and he also
regarded Loewner’s differential equation from a quantum probabilistic point of view,
see [Bau03] and [Bau04]. The relation to monotone independence was also discussed
in [Sch17].

The study of univalent functions is a classical subject of geometric function theory,
which investigates analytic functions in terms of their geometric properties. From this
point of view, it is interesting to classify univalent functions via the geometry of their
image domains. The fact that every probability measure µ on R is uniquely determined by
its F -transform (due to the Stieltjes–Perron inversion formula) motivates the investigation
of relations between properties of the measure µ and analytic/geometric properties of Fµ
(or of other transforms such as the Voiculescu transform).

Theorem 1.16 shows that univalence of F -transforms can indeed be interpreted in a
probabilistic way, which leads us to the question whether the many well-known subclasses
of univalent functions (2) have reasonable interpretations in the context of monotone
independence. In Sections 6 and 7, we investigate some subclasses from this point of view:
limits of infinitesimal arrays, infinitely divisible distributions, unimodal distributions, and
self-decomposable distributions. We compare such classes to the analogues obtained by
switching to classical and free independence, and we give various illustrating examples.

Definition 1.19. A family {µn,j}1≤j≤kn, n≥1 of probability measures on R is called an
infinitesimal array if kn →∞ as n→∞, and for any δ > 0,

lim
n→∞

sup
1≤j≤kn

µn,j([−δ, δ]c) = 0.

The reason for requiring kn → ∞ is that if {kn}n≥1 were bounded, then the limit
distributions in Theorem 1.20(1) below would be trivially δ0.

We first establish the following limit theorem with respect to monotone convolution.

Theorem 1.20 (Theorem 6.9). For a probability measure ν on R, denote by σ2(ν) its
variance.

(1) If µ is a probability measure such that Fµ is univalent, then there exists an infinites-
imal array {µn,j}1≤j≤kn, n≥1 such that

µn,1 B µn,2 B · · ·B µn,kn
converges weakly to µ as n→∞.

(2) Such as convex, starlike, and spirallike functions, slit mappings, mappings with quasicon-
formal extensions, etc.



Monotone increment processes, Markov processes, and Loewner chains 15

(2) If an infinitesimal array {µn,j}1≤j≤kn, n≥1 satisfies the variance condition

sup
1≤j≤kn

σ2(µn,j)→ 0 as n→∞

and if µn,1 B µn,2 B · · ·B µn,kn converges weakly to a probability measure µ, then Fµ
is univalent.

The proof of (1) is just an application of Theorem 1.16. Furthermore, an analogous
and more complete limit theorem for multiplicative monotone convolution on the unit
circle is proved in Theorem 7.5.

The most interesting and complete result is the following analytic-geometric char-
acterization of self-decomposable distributions. A probability measure µ on R is called
monotonically self-decomposable if for every c ∈ (0, 1) there exists a probability measure
µc on R such that

µ = (Dcµ)B µc,

where (Dcµ)(A) = µ(A/c) for Borel sets A ⊂ R. We obtain the following characterization.

Theorem 1.21 (Theorems 6.49 and 6.50). Let µ be a probability measure on R. The
following statements are equivalent:

(a) µ is monotonically self-decomposable.
(b) Fµ is univalent and starlike with respect to ∞ in the sense that c ·Fµ(C+) ⊂ Fµ(C+)

for all c ∈ (1,∞).

(c) Im
(F ′µ(z)

Fµ(z)

)
≤ 0 for all z ∈ C+.

(d) There exists a probability measure ν on R satisfying the integrability condition∫
R

log(1 + |x|) ν(dx) <∞

such that

Fµ(z) = exp

(∫
R

log(z − x) ν(dx)

)
, z ∈ C+.

The mapping ν 7→ µ defined by (d) is called the Markov transform (see Section 6.3.3
for further details). The above result says that the set of Markov transforms of probability
measures (with the above integrability condition) is exactly the set of monotonically self-
decomposable distributions.

Furthermore, the analogue of Lévy’s limit theorem (see [Lev54, Thm. 56] or [GK54,
§29, Thm. 1]) holds for monotone convolution.

Theorem 1.22 (Theorem 6.43). If µ is a weak limit of probability measures

Dbn(µ1 B · · ·B µn), n→∞,

where bn are positive real numbers and µn are probability measures on R such that
{Dbn(µk)}1≤k≤n, n≥1 forms an infinitesimal array, then µ is monotonically self-decompos-
able. Conversely, any monotonically self-decomposable distribution can be obtained as
such a limit.

Another subclass of probability measures having univalent F -transforms is given by
unimodal distributions. A (Borel) measure µ on R is said to be unimodal with mode
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c ∈ R if there exist a non-decreasing function f : (−∞, c)→ [0,∞) and a non-increasing
function g : (c,∞)→ [0,∞) and λ ∈ [0,∞] such that

µ(dx) = f(x)1(−∞,c)(x) dx+ λδc + g(x)1(c,∞)(x) dx.

We give a characterization of unimodal distributions as follows. The result is in fact
a combination of the past works of Khinchin [Khi38], Kaplan [Kap52], and Hengartner
and Schober [HS70].

Theorem 1.23 (Theorem 6.23). Let µ be a probability measure on R. The following are
equivalent:

(1) µ is unimodal with mode c.
(2) Im((z − c)G′µ(z)) ≥ 0 for all z ∈ C+.

(3) There exists an R-valued random variable X, independent of a uniform random vari-
able U on (0, 1), such that µ is the law of UX + c.

(4) The following three assertions hold:

• Gµ is univalent in C+.
• Gµ(C+) is horizontally convex, namely if z1, z2 ∈ Gµ(C+) with the same imaginary
part, then (1− t)z1 + tz2 ∈ Gµ(C+) for any t ∈ (0, 1).

• There exist points zn ∈ C+ such that zn → c and

lim
n→∞

Im(Gµ(zn)) = inf
z∈C+

Im(Gµ(z)).

By considering unitary operators, one can translate most of the notions we discussed
into a multiplicative setting, which leads to a multiplicative convolution for probability
measures on the unit circle, Loewner chains in the unit disk, and unitary multiplicative
monotone increment processes. We obtain analogous results for this setting and thus both
cases will be treated simultaneously throughout this work.

1.4. Organization of the paper. The remaining sections are structured in the follow-
ing way.

In Section 2, we give the necessary definitions and notations, and we recall several
properties of F -transforms and η-transforms.

In Section 3, we review the theory of Loewner chains and their relation to the Loewner
differential equation (Section 3.1) and we prove the equivalence between (1) and (3) in
Theorem 1.16 (Sections 3.3, 3.4).

In Section 4, we prove Theorem 1.14. The construction is based on a one-to-one
correspondence between additive Loewner chains and B-homogeneous Markov processes
(Sections 4.2–4.6). Furthermore, we explain how these Markov processes arise from free in-
crement processes (Section 4.7) and we clarify the Feller property, give explicit formula of
the generator, and construct martingales that are naturally associated to B-homogeneous
Markov processes (Section 4.8). In Section 4.9, we look at alternative constructions of
SAIPs via quantum stochastic differential equations.

Section 5 is the multiplicative analogue of Section 4. We establish one-to-one corre-
spondences between the unitary version of SAIPs, the Loewner chains on the unit disk
fixing the origin, and certain Markov processes on the unit circle (Sections 5.1–5.4). We
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also obtain such Markov processes from multiplicative free increment processes (Sec-
tion 5.5) and we analyze their properties (Section 5.6).

In Section 6, we study several subclasses of probability measures on R in the context
of monotone, free, Boolean, and the classical convolution. These classes are: limits of
infinitesimal arrays (Section 6.1.2), infinitely divisible distributions (Sections 6.2.1, 6.2.2),
unimodal distributions (Section 6.2.3), and self-decomposable distributions (Sections 6.2.4,
6.2.5, 6.2.6, 6.3).

Section 7 is the multiplicative analogue of Section 6 and deals with probability mea-
sures on the unit circle. In Section 7.2, we characterize the class of limits of monotone
infinitesimal arrays. Furthermore, we investigate infinitely divisible distributions (Sec-
tions 7.3.1, 7.3.2) and unimodal distributions (Section 7.3.3).



2. Preliminaries

2.1. The four other additive convolutions. We denote by P(R) the family of all
Borel probability measures on R.

As mentioned in Section 1.2, monotone convolution is a binary operation on P(R)

defined by

FµBν(z) = (Fµ ◦ Fν)(z), z ∈ C+. (2.1)

As already mentioned, there are only five notions of independence in a certain sense:
monotone, anti-monotone, Boolean, free, and tensor independence (see [Mur03]). All of
these notions lead to additive convolutions of probability measures on R by regarding
the sum of independent self-adjoint random variables. In particular, anti-monotone in-
dependence is simply defined by reversing the order in Definition 1.9 and leads to the
anti-monotone convolution µC ν given by

FµCν = Fν ◦ Fµ.

We will also encounter the additive Boolean convolution µ ] ν, which was introduced in
[SW97]. Let Bµ = z − Fµ(z). Then µ ] ν is characterized by

Bµ]ν(z) = Bµ(z) +Bν(z), z ∈ C+. (2.2)

Next we look at free convolution. For λ,M > 0, the truncated cone is the domain

Γλ,M = {z ∈ C+ : Im(z) > M, |Re(z)| < λ Im(z)}.

Bercovici and Voiculescu [BV93] showed that for any λ > 0, there exist λ′,M ′,M > 0

such that Fµ is univalent in the truncated cone Γλ′,M ′ and Fµ(Γλ′,M ′) ⊃ Γλ,M . Hence the
right compositional inverse map F−1

µ may be defined in Γλ,M . The Voiculescu transform
of µ is then defined by

ϕµ(z) = F−1
µ (z)− z, z ∈ Γλ,M . (2.3)

For µ, ν ∈ P(R), the additive free convolution � is characterized by

ϕµ�ν(z) = ϕµ(z) + ϕν(z)

on the intersection of the domains.
Finally, tensor convolution is the classical convolution µ ∗ ν characterized by∫

R
eixz (µ ∗ ν)(dx) =

∫
R
eixz µ(dx) ·

∫
R
eixz ν(dx), z ∈ R.

[18]
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2.2. The five multiplicative convolutions. Denote by P(T) the family of all Borel
probability measures on T := ∂D, where D = {z ∈ C : |z| < 1} is the unit disk. We
denote the moments of probability measures on T by

mn(µ) =

∫
T
xn µ(dx).

Let P×(T) be the set of probability measures on T with non-zero mean.
If U is a unitary random variable on a concrete quantum probability space (H, ξ),

then there exists a unique probability measure µ ∈ P(T) such that

Φξ(U
n) =

∫
T
xn µ(dx), n ∈ N, (2.4)

which is referred to as the distribution of U . In this case rather than the Cauchy transform,
the moment generating function ψµ and the η-transform

ψµ(z) =

∫
T

xz

1− xz
µ(dx) and ηµ(z) =

ψµ(z)

1 + ψµ(z)
, z ∈ D, (2.5)

are more useful. It can be seen that ηµ maps D into D with

ηµ(0) = 0 and η′µ(0) =

∫
T
xµ(dx).

Then the distribution µ of a unitary random variable U is equivalently characterized by

Φξ

(
zU

1− zU

)
= ψµ(z), z ∈ D. (2.6)

Now let U, V be two unitary random variables, independent in some sense. A natural
convolution arises as the distribution of UV , called a multiplicative convolution. However,
for the monotone, anti-monotone, and Boolean cases, we do not simply assume (U, V ) is
independent, since if we do so, then the distribution of UV is given by a rather trivial
expression; see [Ber05, p. 930] for the monotone case. In [Ber05], Bercovici considers
another situation, which leads to a more interesting convolution of probability measures
on the unit circle: the multiplicative monotone convolution µ � ν of probability measures
µ, ν ∈ P(T) is defined by

ηµ�ν := ηµ ◦ ην . (2.7)

Now assume that (U − I, V ) is monotonically independent (this is not equivalent to
assuming (U, V ) is monotonically independent since in Definition 1.9(2) we are not allowed
to take f(x) = x±1), and let µ and ν be the distributions of U and V respectively. Then
the distribution of UV is given by µ � ν (see [Ber05, Cor. 2.3], [Fra06, Cor. 4.2]), and
the distribution of V U is also equal to µ � ν (see [Fra06, Cor. 4.2]).

Anti-monotone convolution on T is simply defined by reversing the order in (2.7).
For Boolean convolution, let hµ(z) = ηµ(z)/z, which can be analytically defined in D

since ηµ(0) = 0. Then the multiplicative Boolean convolution µ ∪× ν is defined by

hµ∪×ν(z) = hµ(z) · hν(z), z ∈ D. (2.8)

The Boolean convolution µ ∪× ν is the distribution of UV where U and V are unitary
random variables with distributions µ and ν respectively, such that U − I and V − I are
Boolean independent (see [Ber06, Fra09b]). Similarly to the monotone case, if we simply
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assume (U, V ) is Boolean independent, then the distribution of UV is rather trivial (see
[Fra09b, p. 6]).

Remark 2.1. Why we assume the independence of (U − I, V ) or (U − I, V − I) can be
somehow explained from the viewpoint of so-called conditionally monotone independence
or conditionally free independence (see [Has13, Prop. 2.1]).

Remark 2.2. The monotone independence of (U − I, V ) is equivalent to the monotone
independence of (U − I, V − I).

The remaining cases are free and tensor independences. In these cases we define mul-
tiplicative convolutions by simply assuming that U and V are tensor/freely independent.
Note that for any a, b ∈ C, tensor or free independence of U and V is equivalent to tensor,
respectively free independence of U + aI and V + bI.

For µ ∈ P×(T) the series expansion of ηµ(z) is m1(µ)z+O(z2), and hence the inverse
series η−1

µ exists and is convergent in an open neighborhood of 0. Then we define Σµ by

Σµ(z) =
1

z
η−1
µ (z)

in the neighborhood of 0 where η−1
µ is defined. For µ, ν ∈ P×(T) Voiculescu [Voi87]

characterized multiplicative free convolution � by

Σµ�ν(z) = Σµ(z)Σν(z) (2.9)

in a neighborhood of 0.
Finally, classical multiplicative convolution ~ on T is defined by

(µ~ ν)(A) =

∫
T2

1A(ξζ)µ(dξ) ν(dζ)

for Borel sets A ⊂ T. This convolution can be characterized in a simple way using the
moments:

mn(µ~ ν) = mn(µ)mn(ν), n ∈ N.

The free convolution µ� ν and the classical convolution µ~ ν are the distributions of
the product UV of two unitary random variables U, V distributed according to µ and ν,
when these random variables are free, respectively, tensor independent.

The arc-length measure h = dθ
2π , which is the normalized Haar measure on T, is a

singular object in the context of convolutions on T. It has the property that

h � µ = µ � h = h ∪× µ = h � µ = h~ µ = h (2.10)

for any µ ∈ P(T). All moments of h are zero, and hence ψh = ηh = 0. Actually the
η-transform ηµ is constant if and only if µ = h.

2.3. Properties of F -transforms. As we saw in Sections 1.2 and 2.1, the F -transform
characterizes the convolutions of probability measures except the classical case. This
section summarizes useful facts about the F -transform.

A holomorphic function F : C+ → C+ ∪ R is called a Pick function. Note that either
F (C+) ⊆ C+ or F is constant. Any Pick function can be written as

F (z) = az + b+

∫
R

1 + xz

x− z
ρ(dx) (Pick–Nevanlinna representation), (2.11)
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where a ≥ 0, b ∈ R and ρ is a finite non-negative (Borel) measure on R (see [Sch12,
Thm. F.1]). With the one-point compactification R̂ := R ∪ {∞}, the above formula may
be written in the form

F (z) = b+

∫
R̂

1 + xz

x− z
ρ̂(dx), (2.12)

where ρ̂|R = ρ and ρ̂({∞}) = a. The triplet (a, b, ρ) is uniquely determined by the
formulas

a = lim
y→∞

F (iy)

iy
, F (i) = b+ i(a+ ρ(R)),

and the Stieltjes inversion formula

1

2
τ({α}) +

1

2
τ({β}) + τ((α, β)) =

1

π
lim
ε↓0

∫ β

α

Im[F (x+ iε)] dx, (2.13)

τ({α}) = − lim
ε↓0

iεF (α+ iε), (2.14)

where −∞ < α < β < ∞ and τ(dx) = (1 + x2)ρ(dx). The number a is also called the
angular derivative of F at∞ and it is also denoted by F ′(∞). If F is not an automorphism
of C+, then the iterates F ◦n converge locally uniformly in C+ to a point τ ∈ C+ ∪ R̂, the
Denjoy–Wolff point of F ; see [Sha93, The Grand Iteration Theorem].

F -transforms of probability measures can be characterized as follows.

Lemma 2.3 ([Maa92, Props. 2.1 and 2.2]). Let F : C+ → C+ ∪ R be holomorphic. Then
the following are equivalent:

(1) There exists a probability measure µ on R such that F = Fµ.
(2) limy→∞

F (iy)
iy = 1.

(3) F has the Pick–Nevanlinna representation

F (z) = z + b+

∫
R

1 + xz

x− z
ρ(dx), (2.15)

where b ∈ R and ρ is a finite, non-negative measure on R.

Note that if these equivalent conditions hold, then Im(F (z)) ≥ Im(z) for all z ∈ C+.
Furthermore, µ has mean zero and finite variance σ2 if and only if there exists a finite
non-negative measure τ on R with τ(R) = σ2 such that

Fµ(z) = z +

∫
R

1

x− z
τ(dx). (2.16)

Remark 2.4. Condition (2.16) is furthermore equivalent to the normalization

Fµ(z) = z − σ2/z + O(1/|z|)

as z →∞ non-tangentially in C+ (see [GB92, Lemma 1]).

Lemma 2.5. If the first moment of µ exists, then∫
R
xµ(dx) = lim

y→∞
(iy − Fµ(iy)).
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Proof. The proof is essentially given in the proof of [Maa92, Thm. 2.2]:

iy

Fµ(iy)
(iy − Fµ(iy)) = − y2

Fµ(iy)
− iy = y2

∫
R

(
1

x− iy
+

1

iy

)
µ(dx)

= y2

∫
R

y2(x+ iy)− iy(x2 + y2)

(x2 + y2)y2
µ(dx) =

∫
R

xy2 − iyx2

x2 + y2
µ(dx).

The dominated convergence theorem, with the simple inequality |xy| ≤ (x2 + y2)/2,
implies that

lim
y→∞

∫
R

xy2 − iyx2

x2 + y2
µ(dx) =

∫
R
xµ(dx).

Then Lemma 2.3(2) finishes the proof.

The next lemma deals with the convergence of a sequence of F -transforms.

Lemma 2.6. Let F, Fn be analytic mappings from C+ to C+ ∪ R. They have the Pick–
Nevanlinna representations

F (z) = b+

∫
R̂

1 + xz

x− z
ρ̂(dx) = az + b+

∫
R

1 + xz

x− z
ρ(dx),

Fn(z) = bn +

∫
R̂

1 + xz

x− z
ρ̂n(dx) = anz + bn +

∫
R

1 + xz

x− z
ρn(dx),

where b ∈ R, ρ̂ is a finite, non-negative measure on R̂, a = ρ̂({∞}) ≥ 0 and similarly for
bn, ρ̂n, an. Then the following are equivalent:

(1) Fn converges to F locally uniformly on C+.
(2) There is a sequence {zn}n≥1 of distinct points converging to a point of C+ such that

Fn(zk) converges to F (zk) as n→∞ for any k ≥ 1.
(3) bn converges to b and ρ̂n converges weakly to ρ̂ on R̂.

In particular, if F = Fµ and Fn = Fµn for probability measures µ, µn on R, or equiv-
alently if a = an = 1, the above conditions are also equivalent to the weak convergence
µn

w→ µ.

Proof. (2)⇒(1), (3). By using a dilation z 7→ λz and a translation z 7→ z + a, we can
always assume that z1 = i. Since Fn(i) = bn + iρ̂n(R̂), the sequence bn converges to b,
and ρ̂n(R̂) converges to ρ̂(R̂). In particular, they are bounded. We can then prove that
Fn is uniformly bounded on any compact subset of C+. For a subsequence of Fn, Mon-
tel’s theorem and Helly’s theorem show the existence of a further subsequence, denoted
as Fm(k), such that Fm(k) and ρ̂m(k) converge to limits F̃ and ˜̂ρ, respectively. Then F̃

coincides with F on {zp}p≥1, so that F = F̃ by the identity theorem and ρ̂ = ˜̂ρ by the
uniqueness of the Pick–Nevanlinna representation. Therefore, (1) and (3) follow.

The implication (1)⇒(2) is immediate and (3)⇒(2) follows by the definition of weak
convergence.

By [Maa92, Thm. 2.5], locally uniform convergence of Fµn is equivalent to the weak
convergence of µn.
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2.4. Cauchy transform. While the F -transform is central in our considerations, the
Cauchy transform (1.2) is also useful in some cases. Let µ be a probability measure on R.
The Cauchy transform Gµ can be expressed as −F (z), where F is a Pick function of
the form (2.11) with a = 0, (1 + x2)ρ(dx) = µ(dx) and a suitable b. Then the Stieltjes
inversion formula (2.13)–(2.14) implies

1

2
µ({α}) +

1

2
µ({β}) + µ((α, β)) = − 1

π
lim
ε↓0

∫ β

α

Im[Gµ(x+ iε)] dx, (2.17)

µ({α}) = lim
ε↓0

iεGµ(α+ iε), α ∈ R, (2.18)

which are useful for computing µ. This in particular implies that for two probability
measures µ and ν, µ = ν if and only if Gµ = Gν .

A characterization of the Cauchy transform can be derived from that of the F -
transform in Lemma 2.3.

Proposition 2.7. Let G : C+ → (−C+) ∪ R be holomorphic. Then the following are
equivalent:

(1) There exists a probability measure µ on R such that G = Gµ.
(2) limy→∞ iyG(iy) = 1.

2.5. Properties of η-transforms and moment generating functions. The η-trans-
form (2.5) is used to characterize multiplicative convolutions (see Section 2.2). We collect
several facts about it. Hereafter H denotes the right half-plane of C. We quote the fol-
lowing result from [Akh65, p. 91], which can be obtained from (2.12) and (2.13) with a
suitable Moebius transformation.

Lemma 2.8. Let f : D → H ∪ iR be an analytic function (called a Herglotz function).
Then f can be represented as

f(z) = ib+

∫
T

ξ + z

ξ − z
ρ(dξ),

where b ∈ R and ρ is a finite (Borel) non-negative measure. Then b = Im(f(0)), ρ(T) =

Re(f(0)) and

1

2
ρ(∂A) + ρ(A) = lim

r↑1

∫
A

Re(f(rξ))h(dξ),

ρ({α}) =
1

2
lim
r↑1

(1− r)f(rα), α ∈ T,

for every open arc A ⊂ T, where ∂A consists of the two endpoints of A. Here, h denotes
the normalized Haar measure on T.

Since the moment generating function (2.5) of a probability measure µ on T can be
expressed as

ψµ(z) = −1

2
+

1

2

∫
T

ξ−1 + z

ξ−1 − z
µ(dξ), (2.19)
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the inversion formula of Lemma 2.8 gives
1

2
µ(∂A) + µ(A) = lim

r↑1

∫
A

Re(2ψµ(rξ−1) + 1)h(dξ), (2.20)

µ({α}) = lim
r↑1

(1− r)ψµ(rα), α ∈ T, (2.21)

where A is an open arc of T and ∂A consists of two endpoints of A.
Lemma 2.8 yields the following analytic characterization of ψµ.

Lemma 2.9. Let ψ : D→ C be an analytic function. The following conditions are equiv-
alent:

(1) There exists a probability measure µ on T such that ψ = ψµ.
(2) ψ(0) = 0 and Re[ψ(z)] ≥ − 1

2 for all z ∈ D.

A more useful characterization in terms of ηµ follows from Lemma 2.9 (see [BB05,
Prop. 3.2]).

Lemma 2.10. Let η : D→ C be an analytic function. The following conditions are equiv-
alent:

(1) There exists a probability measure µ on T such that η = ηµ.
(2) η(0) = 0 and η maps D into D.
(3) |η(z)| ≤ |z| for all z ∈ D.

The following result can be obtained from Lemma 2.6 and a Moebius transformation
sending C+ onto D. Notice that the equivalence of the last condition (6) has no analogue
in Lemma 2.6, but the proof simply follows by dominated convergence theorem.

Lemma 2.11. Let f, fn be analytic maps from D to H∪iR with the Herglotz representations

f(z) = ib+

∫ π

−π

ξ + z

ξ − z
ρ(dξ),

fn(z) = ibn +

∫
T

ξ + z

ξ − z
ρn(dξ),

where b, bn ∈ R and ρ, ρn are finite, non-negative measures on T. Then the following are
equivalent:

(1) fn converges to f locally uniformly on D.
(2) There is a sequence of distinct points {zn}n≥1 ⊂ T converging to a point of D such

that
lim
n→∞

fn(zk) = f(zk) for any k ∈ N.

(3) limn→∞ bn = b and ρn
w→ ρ.

In particular, if f = ψµ + 1/2 and fn = ψµn + 1/2 for probability measures µ, µn on T,
then the above conditions are also equivalent to any one of the following conditions:

(4) ηµn converges to ηµ locally uniformly on D.
(5) The weak convergence µn

w→ µ holds.
(6) Moments of any degree converge, i.e. limn→∞mk(µn) = mk(µ) for any k ∈ N.
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Corollary 2.12. The convolutions ~,�,∪×,� : P(T)×P(T)→ P(T) are weakly contin-
uous.

Proof. For ? being any one of the three convolutions, the moments mn(µ ? ν) can be
represented by polynomials on mk(µ), mk(ν), k = 1, . . . , n. Then Lemma 2.11(6) implies
the conclusion.



3. Loewner chains

In what follows, D stands either for the upper half-plane C+ or the unit disk D.
The distributions of processes with monotonically independent increments will lead

us to certain families of holomorphic mappings. These families turn out to be decreasing
Loewner chains.

Definition 3.1.

(1) Let (fst)0≤s≤t be a family of holomorphic self-mappings fst : D → D such that

(a) fss(z) = z for all z ∈ D and s ≥ 0,
(b) fsu = fst ◦ ftu for all 0 ≤ s ≤ t ≤ u,
(c) (s, t) 7→ fst is continuous with respect to locally uniform convergence.

The family (ft)t≥0 := (f0t)t≥0 is called a (decreasing) Loewner chain on D. We will
call the mappings fst the transition mappings of the Loewner chain.

(2) We say that a Loewner chain (ft)t≥0 is additive if D = C+ and limy→∞ fst(iy)/(iy)

= 1, or equivalently
fst = Fµst

for all 0 ≤ s ≤ t, where each µst is a probability measure on R.
(3) We say that a Loewner chain (ft)t≥0 is multiplicative if D = D and fst(0) = 0, or

equivalently,
fst = ηµst

for all 0 ≤ s ≤ t, where each µst is a probability measure on T.

Some remarks concerning this definition are in order.

Remark 3.2. Due to property (b), the domains ft(D) are decreasing, i.e. ft(D) ⊆ fs(D)

for all s ≤ t. In Loewner theory, the term Loewner chain usually refers to increasing
domains described by a family (ft) of univalent functions. In Section 3.3 we will see that
Loewner chains always consist of univalent functions.

Remark 3.3. In Loewner theory, we say that a family (φst)0≤s≤t of holomorphic map-
pings φst : D → D is an evolution family on D if

(a) φss(z) = z for all z ∈ D and all s ≥ 0,
(b) φsu = φtu ◦ φst whenever 0 ≤ s ≤ t ≤ u,
(c) (s, t) 7→ φst is continuous with respect to locally uniform convergence.

[26]



Monotone increment processes, Markov processes, and Loewner chains 27

If (b) is replaced by φsu = φst ◦ φtu, then the family is usually called a reverse evolu-
tion family. Thus the transition mappings of a decreasing Loewner chain form a reverse
evolution family.

Remark 3.4. In case of an additive or a multiplicative Loewner chain, condition (c) is
equivalent to

(s, t) 7→ µst is continuous with respect to weak convergence

due to Lemmas 2.6 and 2.11.

Lemma 3.5. All transition mappings fst of a Loewner chain are non-constant.

Proof. Assume that some fst is constant. Let T > s be the smallest time such that fsT
is constant. Then

fsT = fs,T−ε ◦ fT−ε,T
for all ε∈(0, T−s] and we see that fT−ε,T must be constant for every ε∈(0, T−s], because
fs,T−ε is non-constant. But fT−ε,T (z)→ z locally uniformly as ε→ 0, a contradiction.

Example 3.6. Assume that the Loewner chain (ft) is a semigroup, i.e. it satisfies

ft+s = ft ◦ fs
for all s, t ≥ 0. In this case, the following limit exists for every z ∈ D:

G(z) := lim
t↘0

ft(z)− z
t

.

The function G is also holomorphic and it is called the infinitesimal generator of the
semigroup (ft)t≥0 (1). The function ft can be recovered from G by solving the initial
value problem

d

dt
ft = G(ft), f0(z) = z ∈ D. (3.1)

The family of all infinitesimal generators on D can be represented quite explicitly by the
Berkson–Porta formula [BP78]:

G(z) = (τ − z)(1− τz)p(z), (3.2)

where τ ∈ D and p : D→ C is holomorphic with Re(p(z)) ≥ 0 for all z ∈ D.
By using the Cayley mapping C : C+ → D, C(z) = z−i

z+i , we obtain semigroups and
infinitesimal generators H on C+ with the general form

H(z) = − i
2

(i+ z)2(τ − C(z))(1− τC(z))p(C(z)).

In particular, for τ = 1 we obtain H(z) = 2ip(C(z)), which shows that every holomorphic
mapping H : C+ → C+ ∪ R is an infinitesimal generator on C+.

In this section, we explain the relation of Loewner chains to the Loewner differen-
tial equation, and we prove two important facts: Each element ft of an additive or a
multiplicative Loewner chain is a univalent function, and conversely, every univalent F -
transform/η-transform can be embedded into an additive/a multiplicative Loewner chain.

(1) Note that sometimes −G(z) is called the infinitesimal generator of the semigroup.
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3.1. The Loewner differential equation. In 1923, C. Loewner introduced a differ-
ential equation for univalent functions to attack the so-called Bieberbach conjecture.
Afterwards, his ideas have been extended to more general settings, with recent applica-
tions in stochastic geometry (Schramm–Loewner evolution). We refer to [ABCD10] for a
historical overview of Loewner theory.

First we look at Loewner chains with a certain regularity property, which lead to a
one-to-one correspondence with so-called Herglotz vector fields via Loewner’s differential
equation. Most of the following definitions and statements can be found in [BCD12].

Definition 3.7. Let d ∈ [1,∞]. A family (ft)t≥0 of non-constant holomorphic mappings
ft : D → D is called a Loewner chain of order d if it satisfies the conditions of Defini-
tion 3.1 with (c) replaced by the condition

(c′) for any z ∈ D and any S > 0 there exists a non-negative function kz,S ∈ Ld([0, S],R)

such that
|fst(z)− fsu(z)| ≤

∫ u

t

kz,S(ξ) dξ

for all 0 ≤ s ≤ t ≤ u ≤ S.

Example 3.8. Let D = C+ and fst(z) = z + C(t) − C(s), where C : [0,∞) → R is
continuous but not absolutely continuous. Then (f0t) is an additive Loewner chain with
µt = δC(0)−C(t), and we have

|fst(z)− fsu(z)| = |C(t)− C(u)|.

Hence (ft) is not a Loewner chain of any order d.

Property (c′) ensures that t 7→ fst is differentiable almost everywhere. For a precise
statement, we also need the following notion.

Definition 3.9. A function M : D× [0,∞)→ C is called a Herglotz vector field of order
d ∈ [1,∞] on D if it has the following properties:

(i) The function t 7→M(z, t) is measurable for every z ∈ D.
(ii) The function z 7→M(z, t) is holomorphic for every t ∈ [0,∞).

(iii) For any compact set K ⊂ D and for all S > 0 there exists a non-negative function
kK,S ∈ Ld([0, S],R) such that |M(z, t)| ≤ kK,S(t) for all z ∈ K and for almost every
t ∈ [0, S].

(iv) M(·, t) is an infinitesimal generator on D for a.e. t ≥ 0.

We call M an additive Herglotz vector field if D = C+ and, for a.e. t ≥ 0, M(·, t) has the
form

M(z, t) = γt +

∫
R

1 + xz

x− z
ρt(dx), (3.3)

where γt ∈ R and ρt is a finite non-negative Borel measure on R.
We call M a multiplicative Herglotz vector field if D = D and, for a.e. t ≥ 0, M(·, t)

has the form
M(z, t) = −zpt(z),

where pt : D→ C is holomorphic with Re(pt(z)) ≥ 0 for all z ∈ D.
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Now we have the following one-to-one correspondence.

Theorem 3.10. A Loewner chain (ft)t≥0 of order d satisfies the Loewner partial differ-
ential equation

∂

∂t
ft(z) =

∂

∂z
ft(z) ·M(z, t) for a.e. t ≥ 0, f0(z) = z ∈ D, (3.4)

for a Herglotz vector field M of order d. Conversely, the unique solution to (3.4) for a
given Herglotz vector field of order d is always a Loewner chain of order d.

Moreover, each element ft : D → D of a Loewner chain of order d is a univalent
function.

Proof. In [CDG14], Loewner chains consist of univalent functions by definition. However,
the proof of [CDG14, Thm. 3.2] does not use this property and proves equation (3.4).
This can also be seen by looking at the family (fT−t,T−s)0≤s≤t≤T for some fixed T > 0.
It can be verified that it forms an evolution family (see Remark 3.3) and we obtain (3.4)
from [BCD12, Thm. 1.1].

Conversely, by [CDG14, Thm. 1.11], the unique solution to (3.4) yields a Loewner
chain of order d consisting of univalent functions.

Remark 3.11. From the relation ft = fs ◦ fst we obtain
∂

∂t
fst(z) =

∂

∂z
fst(z) ·M(z, t) for a.e. t ≥ s, fss(z) = z ∈ D.

Furthermore, we can also differentiate fst with respect to s and obtain
∂

∂s
fst(z) = −M(fst(z), s) for a.e. s ≤ t, ftt(z) = z ∈ D. (3.5)

Conversely, this equation has a unique solution, which gives the transition mappings of
a decreasing Loewner chain of order d (see again [CDG14, Thms. 1.11 and 3.2]).

Our special Loewner chains now satisfy the following relationship.

Proposition 3.12. Let (ft) be an additive Loewner chain of order d. Then (ft) satisfies
(3.4) for an additive Herglotz vector field M of order d.

Conversely, let M be an additive Herglotz vector field of order d. Then the solution ft
to (3.4) is an additive Loewner chain of order d.

Proof. “⇒”. From (2.15) we obtain

Im(fsu(z)) = Im(fst(ftu(z))) ≥ Im(ftu(z))

for all 0 ≤ s ≤ t ≤ u. So s 7→ Im(fst(z)) is non-increasing for every z ∈ C+. From (3.5)
we see that Im(M(z, t)) ≥ 0 for almost every t ≥ 0 and every z ∈ C+. Hence, M(·, t) has
the form (2.11) for a.e. t ≥ 0. (See also [BCD12, Thm. 8.1].)

Assume thatM ′(∞, t) > 0 for a set I ⊂ [0, T ] of positive Lebesgue measure. Then, by
[BC+15, Thm. 1.1], we obtain f ′T (∞) > 1, a contradiction. This proves thatM ′(∞, t) = 0

for a.e. t ≥ 0, i.e. M is an additive Herglotz vector field.
“⇐”. We have to show that every ft can be written as ft = Fµt for a probability

measure µt. By (2.11), we can write ft as

ft(z) = At +Btz +

∫
R

1 + xz

x− z
σt(dx).
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Furthermore, as M(·, t) has the form (3.3) for a.e. t ≥ 0, M(·, t) has a “boundary regular
null point” at ∞ with dilation 0 for a.e. t ≥ 0 (see [BC+15, Def. 2.6], which handles the
unit disk case).

By [BC+15, Thm. 1.1], the “spectral function” of ft at∞ is equal to 0, which translates
in our setting to

Bt = 1

for every t ≥ 0 (note that Bt = f ′t(∞), which corresponds to f ′t(σ) in [BC+15], must be
a non-negative real number by [BC+15, Thm. 2.2(vi)]). Hence, (2.15) implies ft = Fµt
for a probability measure µt for every t ≥ 0.

Proposition 3.13. Let (ft) be a multiplicative Loewner chain of order d. Then (ft)

satisfies (3.4) for a multiplicative Herglotz vector field M of order d.
Conversely, let M be a multiplicative Herglotz vector field of order d. Then the solu-

tion (ft) to (3.4) is a multiplicative Loewner chain of order d.

Proof. By using the Berkson–Porta formula (3.2), it is easy to see that the property
ft(0) = 0 for all t ≥ 0 is equivalent to τ = 0 for a.e. generator M(·, t).

3.2. Normalized Loewner chains. As we saw in Example 3.8, not every Loewner chain
satisfies Loewner’s differential equation. However, certain normalizations guarantee the
differentiability of additive and multiplicative Loewner chains.

Proposition 3.14. Let (ft) be an additive Loewner chain such that the first and second
moments of all µt exist with∫

R
xµt(dx) = 0 and

∫
R
x2µt(dx) = t for all t ≥ 0.

Then (ft) satisfies (3.4) for an additive Herglotz vector field M of the form

M(z, t) =

∫
R

1

u− z
τt(du),

where τt is a probability measure for a.e. t ≥ 0.

Conversely, let M be a Herglotz vector field of the above form. Then the solution (ft)

to (3.4) is an additive Loewner chain having the above normalization.

Proof. (See [Sch17, Prop. 3.6].) We note that the normalization implies that

|fs(z)− ft(z)| ≤
t− s
Im(z)

,

for all 0 ≤ s ≤ t and z ∈ C+ (see [GB92, p. 1214]). Hence, (ft) is an additive Loewner
chain of order ∞.

Proposition 3.15. Let (ft) be a multiplicative Loewner chain such that

f ′t(0) =

∫
T
xµt(dx) = e−t for all t ≥ 0.

Then (ft) satisfies (3.4) for a multiplicative Herglotz vector field M(z, t) = −zpt(z) with
pt(0) = 1 for a.e. t ≥ 0.

Conversely, let M be a Herglotz vector field of the above form. Then the solution (ft)

to (3.4) is a multiplicative Loewner chain having the above normalization.
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Proof. Let 0 ≤ s ≤ t ≤ u. The normalization implies that

|ftu(z)− z| ≤ 2|z|1 + |z|
1− |z|

(1− eu−t)

(see [Pom75, proof of Lemma 6.1]). Let K = rD ⊂ D for some r ∈ [0, 1). As (fst)0≤s≤t is
a normal family, we find a Lipschitz constant L for this family with respect to the set K.
Let z ∈ K. Then also ftu(z) ∈ K because of the Schwarz lemma and we obtain

|fsu(z)− fst(z)| = |fst(ftu)− fst(z)| ≤ L|ftu(z)− z| ≤ 2L|z|1 + |z|
1− |z|

(1− eu−t).

So (ft) is a Loewner chain of any order d. The statement is now an easy consequence
of Proposition 3.13. By looking at the first coefficient of the power series expansion of
ft(z) in (3.4), we find that

∂

∂t
f ′t(0) = −f ′t(0) · pt(0) for a.e. t ≥ 0, i.e. f ′t(0) = e−

∫ t
0
pτ (0) dτ . (3.6)

The converse statement follows from (3.6) and Proposition 3.13.

3.3. Univalent functions. Each element of a Loewner chain of order d is a univalent
function. A general Loewner chain does not satisfy (3.4), but a suitable reparametrization
yields univalence also for this case.

Theorem 3.16. Let (ft) be a Loewner chain. Then every transition mapping fst, in
particular every ft = f0t, is a univalent function.

Proof. Because of ft = fs ◦ fst, it is sufficient to prove that ft is univalent for all t ≥ 0.

(a) Assume that (ft) is a multiplicative Loewner chain. Let at := f ′t(0). Due to the
Schwarz lemma, we have |at| ≤ 1 and, as ft = fs ◦ fst, t 7→ |at| is non-increasing.
Furthermore, as t 7→ ft is continuous, also t 7→ at is continuous and we conclude that
at 6= 0 for all t ∈ [0, ε] and some ε > 0.

First, assume that at 6= 0 for all t ≥ 0. Then we have 0 < |at| ≤ 1 for all t ≥ 0 and
there exists a uniquely determined continuous function C : [0,∞)→ {z ∈ C : Re(z) ≤ 0}
with C(0) = 0 such that at = eC(t). It is easy to see that

gt(z) := ft(e
−i Im(C(t))z)

is also a multiplicative Loewner chain with

g′t(0) = eRe(C(t)).

The function t 7→ Re(C(t)) is non-increasing and continuous. Note that Re(C(t)) =

Re(C(s)), s ≤ t, implies that gt = gs, for gt = gs ◦ gst with gst : D → D, gst(0) = 0,
g′st(0) = 1, i.e. gst is the identity by the Schwarz lemma.

We can reparametrize gt to hs := gτ(s) such that h′s(0) = e−s for all s ∈ [0, S) for
some 0 < S ≤ ∞, where τ(s) is defined by

τ(s) = inf{t ≥ 0 : Re[C(t)] = −s},

which is a strictly increasing, possibly discontinuous function. The reparametrization
(hs)s∈[0,S) is (part of) a multiplicative Loewner chain with the normalization from Proposi-
tion 3.15. Hence, each hs is univalent, which implies that each ft is univalent.
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Now assume that aτ = 0 for some τ > 0 and at 6= 0 for t < τ. The previous case
implies that ft is univalent for all t < τ. Hence, fτ = limt↑τ ft is the limit of univalent self-
mappings of D fixing 0. It follows that fτ (z) ≡ 0. This is a contradiction as all elements
of a Loewner chain are non-constant by Lemma 3.5.

(b) Now we consider the general case. IfD = C+, then we can use the Cayley transform
I : C+ → D, I(z) = z−i

z+i , to transfer the problem to the unit disk, i.e. we define Fst :=

I ◦ fst ◦ I−1, which gives transition mappings of a Loewner chain on D. Hence, we may
assume that (Ft) is a Loewner chain on D with transition mappings Fst. Next we use an
idea from [CDG10a, Prop. 2.9]. Fix some T > 0. We define

a(t) := FtT (0), ht(z) :=
z + a(t)

1 + a(t)z
,

for t ≥ 0, z ∈ D. Note that ht is an automorphism of D mapping 0 onto a(t).
Let (Gst)0≤s≤t≤T := (h−1

s ◦ Fst ◦ ht)0≤s≤t≤T and Gt = G0t. Then (Gt) is (a part of)
a Loewner chain on D with

Gt(0) = (h−1
0 ◦ Ft ◦ ht)(0) = (h−1

0 ◦ Ft)(FtT (0)) = h−1
0 (FT (0)) = 0.

Hence, (Gt) is a multiplicative Loewner chain and (a) implies that every Gt, t ∈ [0, T ],
is univalent. As T > 0 can be chosen arbitrarily large, we conclude that every Ft is
univalent.

Every univalent f : D → D maps D conformally onto a simply connected subdomain
of D. Conversely, if D ⊆ D is a simply connected subdomain with 0 ∈ D, we find a unique
conformal mapping f : D→ D with f(0) = 0 and f ′(0) > 0 due to the Riemann mapping
theorem. This mapping is always a univalent η-transform (see Lemma 2.10).

The situation for F -transforms is more complicated since we need a normalization at
infinity. In order that a simply connected domain Ω ⊂ C is the range of some univalent F -
transform, at least Ω must contain truncated cones Γλ,Mλ

for all λ > 0, where Mλ > 0 is
a function of λ (see Section 2.1). We do not know whether these conditions are necessary
and sufficient.

We provide some sufficient conditions. We call a closed Jordan curve in the Riemann
sphere Dini-smooth if it has a parametrization with non-zero and Dini-continuous deriva-
tive (see [Pom92, pp. 46, 48]).

Theorem 3.17.

(a) Let Ω ⊆ C+ be a simply connected domain and assume that there is a Dini-smooth
closed Jordan curve C in the Riemann sphere such that∞∈C and one component Ω0

of Ĉ \ C is contained in Ω. Then there exists a probability measure µ on R with
Fµ(C+) = Ω.

(b) Let Ω ⊆ C+ be a simply connected domain such that C+ \ Ω is a bounded set. Then
there exists a unique probability measure µ on R with mean 0 and compact support
such that Fµ(C+) = Ω.

Proof. (a) This statement is basically shown in the proof of [CDG10b, Thm. 6.1]. For
the sake of completeness, we extract the necessary steps.
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We transfer the problem to the unit disk, i.e. we set D = I(Ω) and D0 = I(Ω0), where
I(z) = z−i

z+i is the Cayley map. The boundary point ∞ now corresponds to the point 1.
First, we find a conformal mapping f0 : D → D. Next, let γ : [0, 1) → D be a

continuous curve with γ(t)→ 1 as t→ 1. By [Pom92, Prop. 2.14], the curve f−1
0 ◦ γ is a

curve in D with f−1
0 (γ(t)) → p ∈ ∂D as t → 1. By precomposing f0 with a rotation, we

can assume that p = 1.

The Schwarz–Pick lemma implies (1−|z|2)|f ′0(z)| ≤ 1−|f0(z)|2 for all z ∈ D. Hence, f0

is a normal function and the Lehto–Virtanen theorem [Pom92, Section 4.1, p. 71] implies
that f0(z) → 1 as z → 1 non-tangentially. The Julia–Wolff lemma [Pom92, Prop. 4.13]
implies that f0 has an angular derivative f ′0(1) = c ∈ (0,∞], i.e. (f0(z)− 1)/(z − 1)→ c

as z → 1 non-tangentially.
Actually, c is finite: Let f1 : D → D0. By the same arguments, we can assume that

f1(z) → 1 as z → 1 non-tangentially and the angular derivativef ′1(1) ∈ (0,∞] exists.
Now we use the Dini-smoothness of the curve C. By [Pom92, Thm. 3.5], f ′1(1) <∞ and
[Pom92, Thm. 4.14] implies that f ′0(1) < ∞. By going back to the upper half-plane, we
find that f2 := I−1f ◦ I maps C+ conformally onto Ω and has the form (2.11) with
a = 1

f ′0(1) 6= 0 and b ∈ R. Hence, the map f(z) := f2(z/a) maps C+ conformally onto Ω

and has the form (2.15). We conclude that f = Fµ for some µ ∈ P(R).

(b) By [Law05, Prop. 3.36], there exists a unique conformal mapping f : C+→Ω with

f(z) = z − c/z +O(z−2)

as z →∞, c ≥ 0. By (2.15), we have f = Fµ for some µ ∈ P(R).
Consider the complement B = C+ \ Ω. As B ∪ {0} is bounded, we find a disk R · D

such that B ∪ {0} ⊂ R · D. Now consider the domain H = f−1(C+ \ RD). The set
f−1(∂(RD)∩C+) is clearly a simple curve in C+. Due to [Pom92, Prop. 2.14], its closure
intersects R at exactly two points a, b, a < b. Hence, ∂H = f−1(∂(RD))∪(−∞, a]∪[b,∞).

We can now apply [Pom92, Thm. 2.6] to see that f extends continuously to H with
f((−∞, a] ∪ [b,∞)) ⊂ R \ {0}. (In [Pom92, Thm. 2.6], the simply connected domains
are assumed to be bounded, but we can simply regard H ∩ R2 · D for any R2 large
enough.) Hence, 1/f , which is the Cauchy transform of µ, maps (−∞, a] ∪ [b,∞) into R
and the Stieltjes–Perron inversion formula implies that µ has compact support. Due to
Lemma 2.5, the first moment of µ is 0.

Remark 3.18. In (b), µ has finite variance σ2 = c. This value is also called the half-plane
capacity of the “hull” C+ \ Ω (see [Law05, Section 3.4]). It has a more or less geometric
interpretation (see [LLN09]).

More generally, a set A ⊂ C+ such that C+\A is a simply connected domain is said to
have finite half-plane capacity c ≥ 0 if there exists a conformal mapping G : C+ → C+ \A
with

G(z) = z − c/z + O(1/|z|)

as z → ∞ non-tangentially in C+. Let A = C+ \ Fµ(C+) for a probability measure µ
on R. Then µ has finite variance σ2 if and only if A has finite half-plane capacity σ2. This
can be shown by regarding the mapping G(z) = Fµ(z−m), where m is the first moment
of µ, together with Lemma 2.3.
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Problem 3.19. Characterize the domains Ω ⊆ C+ appearing as image domains of uni-
valent F -transforms.

3.4. Embeddings. Finally we prove the following statements, which are converse to
Theorem 3.16.

Theorem 3.20.

(a) Let µ be a probability measure on R such that Fµ is univalent. Then there exists an
additive Loewner chain ft such that f1 = Fµ.

(b) Let µ be a probability measure on R such that Fµ is univalent and∫
R
xµ(dx) = 0,

∫
R
x2 µ(dx) =: T <∞.

Then there exists an additive Loewner chain ft satisfying the normalization from
Proposition 3.14 such that fT = Fµ.

Proof. (a) Theorem 1.2 in [BC+15], with Λ(t) ≡ 0, implies that we can write Fµ = f0,1

where (fst)0≤s≤t≤1 is a part of an evolution family in the sense of Remark 3.3 and

(i) fst has a boundary regular fixed point at ∞ for all 0 ≤ s ≤ t,
(ii) f ′st(∞) = 1 for all 0 ≤ s ≤ t.

(Note that [BC+15, Thm. 1.2] only gives |f ′st(∞)| = 1. However, f ′st(∞) must be non-
negative as∞ is a fixed point of fst; see again [BC+15, Thm. 2.2(vi)].) We conclude that
every fst has the form (2.15). Finally, the family (ft)t≥0 with ft = f1−t,1 for t ∈ [0, 1]

and ft = f0,1 for t > 1 is an additive Loewner chain with f1 = f0,1 = Fµ.

(b) This statement follows in a similar way by using [GB92, Thm. 5].

Theorem 3.21.

(a) Let µ be a probability measure on T such that ηµ is univalent. Then there exists a
multiplicative Loewner chain ft such that f1 = ηµ.

(b) Let µ be a probability measure on T such that ηµ is univalent and

η′µ(0) =

∫
T
xµ(dx) = e−T , T > 0.

Then there exists a multiplicative Loewner chain ft satisfying the normalization from
Proposition 3.15 and fT = ηµ.

Proof. We start with (b).
(b) The function G := eT ηµ is univalent and satisfies G(0) = 0, G′(0) = 1, i.e. it

belongs to the class S (see [Pom75, p. 11]). By [Pom75, Section 6.1, Problem 3], there
exists a a family (gt)t≥0 of univalent functions gt : D → C with gt(0) = 0, g′t(0) = et

and gs(D) ⊆ gt(D) whenever s ≤ t (an increasing Loewner chain) such that g0 = G and
gt(z) = etz for all t ≥ T. We define ft = e−T · gT−t for t ∈ [0, T ] and ft = fT (eT−tz) for
all t > T . Then (ft) is a normalized multiplicative Loewner chain with fT = e−T g0 =

e−TG = e−T eT ηµ = ηµ.

For completeness, we include the solution of [Pom75, Section 6.1, Problem 3], which
is similar to the proof of [Pom75, Thm. 6.1]. First, define ηn := eT+1/nηµ(e−1/nz). Then
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ηn belongs to the class S and ηn(D) is bounded by an analytic Jordan curve contained
in the disk eT+1/nD. Denote by Rn the ring domain whose boundary is given by ∂ηn(D)

and ∂(eT+1/nD). Then we find a conformal mapping gn : Rn → {z ∈ C : 1 < |z| < rn} for
some rn > 1. For 0 ≤ t < log rn, denote by Dt,n the simply connected domain bounded
by the analytic curve g−1

n (et∂D). Denote by ft,n : D→ Dt,n the conformal mapping with
ft,n(0) = 0, f ′t,n(0) > 0. After a reparametrization, f ′t,n(0) = et for all 0 ≤ t < T + 1/n.
For t ≥ T + 1/n, we define ft,n(z) = etz.

Now it is easy to see that (ft,n)t≥0 is an increasing Loewner chain with f0,n = ηn.

By [Pom75, Lemma 6.2], the sequence of Loewner chains contains a subsequence that
converges locally uniformly in D, pointwise with respect to t, to a Loewner chain (ft)t≥0.

We have f0(z) = limn→∞ f0,n(z) = limn→∞ eT+1/nηµ(e−1/nz) = eT ηµ(z) and ft(z) = etz

for all t ≥ T.
(a) If ηµ is the identity, we can simply take the constant Loewner chain ft(z) = z.

If ηµ is not the identity, we find α ∈ R and T > 0 such that eiαη′µ(0) = e−T . By (b),
ηµ(eiαz) = gT (z) for a multiplicative Loewner chain gt with g′t(0) = e−t. Let

ft(z) = gt·T (e−iαtz).

It is easy to see that ft is a multiplicative Loewner chain and f1(z) = gT (e−iαz) = ηµ(z).



4. Additive monotone increment processes, classical Markov
processes, and Loewner chains

In this section we establish a bijection between SAIPs, some class of classical Markov
processes and additive Loewner chains. We will encounter many unbounded operators.
For linear operators X,Y on a Hilbert space with domains D(X) and D(Y ) respectively,
we always assume that the domain of X + Y is the intersection D(X) ∩ D(Y ) and the
domain of XY consists of all vectors u ∈ D(Y ) such that Y u ∈ D(X) unless specified
otherwise. By X ⊂ Y we mean that D(X) ⊂ D(Y ) and X = Y on D(X).

4.1. Quantum stochastic processes. A non-commutative or quantum stochastic pro-
cess is a mapping

[0,∞) 3 t 7→ Xt,

where the values are linear operators on a Hilbert space with some domains. In this paper
we focus on densely defined normal operators or essentially self-adjoint operators and call
them normal processes and essentially self-adjoint processes, respectively. For a classical
C-valued stochastic process (Yt) on a underlying probability space (Ω,F ,P) we can define
for each t ≥ 0 the multiplication operator Xt : f 7→ Ytf with D(Xt) = {f ∈ L2(Ω,F ,P) :

Ytf ∈ L2(Ω,F ,P)}, which is a densely defined normal operator. The family (Xt) is a
standard construction of a non-commutative stochastic process from a classical one.

We introduce an equivalence relation for normal processes.

Definition 4.1. Let (H, ξ) and (H ′, ξ′) be concrete quantum probability spaces and let
(Xt) and (X ′t) be two normal processes on (H, ξ) and (H ′, ξ′) respectively. Then (Xt)

and (X ′t) are equivalent if the finite dimensional distributions are equal, namely

〈ξ, f1(Xt1) · · · fn(Xtn)ξ〉H = 〈ξ′, f1(X ′t1) · · · fn(X ′tn)ξ′〉H′ (4.1)

for all n ∈ N, t1, . . . , tn ≥ 0, f1, . . . , fn ∈ Cb(C). For essentially self-adjoint processes the
same definition is adopted by taking the closure.

Remark 4.2. For self-adjoint processes, it is enough to take fi from Cb(R) to define
the finite-dimensional distributions. Moreover, it is enough to take fi to be continuous
functions on R with compact support, or even smooth functions with compact support. To
see this, for a self-adjoint operator X a general function f ∈ Cb(R) can be approximated
by continuous functions gn with compact support such that gn(X) → f(X) strongly
as n → ∞. Indeed, we take hn to be a continuous function such that 0 ≤ hn ≤ 1,
hn = 1 on [−n, n] and hn = 0 on R \ (−2n, 2n). The functions gn = fhn then converge
to f pointwise. Denoting by E(x) the spectral projection of X over (−∞, x], by the

[36]
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dominated convergence theorem one has

‖gn(X)u− f(X)u‖2 =

∫
R
|gn(x)− f(x)|2 d〈u,E(x)u〉 → 0

for all u ∈ H. Finally, since continuous functions with compact support are bounded and
uniformly continuous, we can approximate them uniformly by smooth functions with
compact support using mollifiers.

4.2. From additive monotone increment processes to additive Loewner chains.
We recall and extend Definition 1.13.

Definition 4.3. Let (H, ξ) be a concrete quantum probability space and (Xt)t≥0 an
essentially self-adjoint process onH withX0 = 0. We call (Xt) an (essentially) self-adjoint
additive monotone increment process (SAIP) if the following conditions are satisfied:

(a) The increment Xt − Xs with domain D(Xt) ∩ D(Xs) is essentially self-adjoint for
every 0 ≤ s ≤ t.

(b) D(Xs) ∩D(Xt) ∩D(Xu) is dense in H and is a core for the increment Xu −Xs for
every 0 ≤ s ≤ t ≤ u.

(c) The mapping (s, t) 7→ µst is continuous with respect to weak convergence, where µst
denotes the distribution of the increment Xt −Xs.

(d) The tuple
(Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

)

is monotonically independent for all n ∈ N and all t1, . . . , tn ∈ R such that 0 ≤ t1 ≤
t2 ≤ · · · ≤ tn.

Furthermore if Xt−Xs has the same distribution as Xt−s for all 0 ≤ s ≤ t (the condition
of stationary increments), then (Xt)t≥0 is called a monotone Lévy process. We call (Xt)

normalized if ξ ∈ D(Xt), 〈ξ,Xtξ〉 = 0 and ‖Xtξ‖2 = t for all t ≥ 0.

Remark 4.4. Assumption (b) is needed in the proofs of Theorems 4.6 and 4.7. The
reason for this requirement is that we want to use certain self-adjointness regarding the
decomposition Xu −Xs ⊃ (Xu −Xt) + (Xt −Xs), i.e., we have equality on the common
domain D(Xs) ∩D(Xt) ∩D(Xu).

We establish the following result. Note that the essential self-adjointness of X + Y is
a consequence if ξ is assumed to be cyclic regarding X and Y [Fra09a].

Lemma 4.5. Suppose that (X,Y ) is a pair of monotonically independent essentially self-
adjoint operators on a concrete quantum probability space (H, ξ) such that X + Y is
essentially self-adjoint. Then FX+Y = FX ◦ FY .

Proof. Let {fn} be a sequence of bounded continuous R-valued functions such that
fn(0) = 0, |fn(x)| ≤ |x| and fn(x)→ x for all x ∈ R. The pair of bounded self-adjoint op-
erators (fn(X), fn(Y )) is monotonically independent, and hence Ffn(X)+fn(Y ) = Ffn(X) ◦
Ffn(Y ) by Muraki’s formula [Mur00, Thm. 3.1]. The corresponding arguments in Re-
mark 4.2 show that limn→∞ fn(X)u = Xu for all u ∈ D(X), and hence by [Ara18,
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Thm. 1.41] the resolvents of fn(X) converge strongly to that of X. This implies that
Ffn(X)(z)→ FX(z) as n→∞ for every z ∈ C \ R. Similarly, Ffn(Y )(z)→ FY (z).

A similar argument works for X + Y . Namely, for u ∈ D(X) ∩D(Y ) it follows that

‖(fn(X) + fn(Y )− (X + Y ))u‖ ≤ ‖(fn(X)−X)u‖+ ‖(fn(Y )− Y )u‖ → 0

as n→∞. Therefore, the resolvents of fn(X)+fn(Y ) converge strongly to that of X + Y ,
and hence

Ffn(X)+fn(Y )(z)→ FX+Y (z).

Theorem 4.6. Let (Xt)t≥0 be a SAIP in a concrete quantum probability space (H, ξ).
For 0 ≤ s ≤ t, let Fst be the F -transform of the increment Xt −Xs, i.e.

1

Fst(z)
=
〈
ξ,
{
z − (Xt −Xs)

}−1
ξ
〉
, z ∈ C+,

and let Ft = F0t. Then (Ft)t≥0 is an additive Loewner chain with transition mappings
(Fst)0≤s≤t.

Proof. Let 0 ≤ s ≤ t ≤ u and let Xst = Xt−Xs. Let D = D(Xs)∩D(Xt)∩D(Xu). The
increments satisfy Xsu|D = Xst + Xtu and, by definition, Xsu|D = Xsu is self-adjoint.
Lemma 4.5 shows that Fsu(z) = Fst(Ftu(z)). As Xss = 0, we have Fss(z) ≡ z and the
weak continuity of (s, t) 7→ µst implies the continuity of (s, t) 7→ Fst by Lemma 2.6(3).

For SAIPs (Xt) and (X ′t) consisting of bounded operators, it is easy to show that they
are equivalent if and only if their distributions of increments coincide. This is because we
can take polynomials fi in (4.1). For example, for t ≥ s ≥ 0 we can proceed as

〈ξ,XsXtXsξ〉 = 〈ξ,Xs(Xt −Xs +Xs)Xsξ〉 = 〈ξ, (Xt −Xs)ξ〉〈ξ,X2
s ξ〉+ 〈ξ,X3

s ξ〉,

and the RHS can be computed via the distributions of increments only. For general
unbounded operators, the above arguments are not valid and so we need a trick.

Theorem 4.7. Two SAIPs are equivalent if and only if the distributions of increments
coincide.

Proof. We take SAIPs (Xt) on (H, ξ) and (X ′t) on (H ′, ξ′).
For the “only if” part, let Fst and Hst be the reciprocal Cauchy transforms of Xt−Xs

and X ′t−X ′s respectively. We take n = 1 and f1(x) = 1/(z−x) in (4.1) to get F0t = H0t.
By Theorem 4.6 we obtain Fst = F−1

0s ◦F0t = H−1
0s ◦H0t = Hst, and hence the distributions

of Xt −Xs and X ′t −X ′s are equal.
For the “if” part, we use Trotter’s product formula (see [Tro59] or [Che68] for proofs,

and [RS80, Thm. VIII.31] for further information)

eizXt = eizXt−Xs+Xs = s-lim
N→∞

(eiz(Xt−Xs)/NeizXs/N )N , z ∈ R, 0 ≤ s ≤ t.

The identity Xt = Xt −Xs +Xs is used above, and it can be proved as follows. Since
Xt|D(Xt)∩D(Xs) is essentially self-adjoint by assumption, Xt −Xs +Xs is also essentially
self-adjoint because the range of Xt −Xs + Xs ± i contains that of Xt|D(Xt)∩D(Xs) ± i
and the latter is dense in H; see [RS80, Cor. to Thm. VIII.3]. By the uniqueness of
the self-adjoint extension of Xt|D(Xt)∩D(Xs), we conclude that Xt = Xt −Xs +Xs =

Xt|D(Xt)∩D(Xs).
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For example, if t1 ≤ t3 ≤ t2, then we have〈
ξ, eiz1Xt1 eiz2Xt2 eiz3Xt3 ξ

〉
= lim
N→∞

〈
ξ, eiz1Xt1

(
eiz2(Xt2−Xt1 )/Neiz2Xt1/N

)N(
eiz3(Xt3−Xt2 )/Neiz3Xt2/N

)N
ξ
〉
.

The product of operators on the RHS can be written as a polynomial of the three bounded
operators eiz3(Xt3−Xt2 )/N −I, eiz2(Xt2−Xt1 )/N −I, eiz1Xt1 −I. Then we can use the mono-
tone independence (since the function eizx − 1 vanishes at 0) to factorize the inner
product, and then compute the value in terms of the distributions of the increments
Xti −Xti−1

, i = 2, 3, and of Xt1 . A similar idea can be used for the general case and thus
for SAIPs (Xt) and (X ′t) with the same distributions of increments (4.1) holds for all
functions fi of the form fi(x) = eizix, zi ∈ R. By Remark 4.2 it suffices to show (4.1) for
rapidly decreasing functions, namely C∞ functions which and whose derivatives decay at
infinity faster than any polynomial. A rapidly decreasing function f can be written as the
inverse Fourier transform of a rapidly decreasing function, and so by Fubini’s theorem

〈u, f(Xt)v〉 =

∫
R
f(x) d〈u,Et(x)v〉 =

∫
R

(∫
R
eizxf̂(z) dz

)
d〈u,Et(x)v〉

=

∫
R
〈u, eizXtv〉f̂(z) dz,

for all t ≥ 0 and u, v ∈ H, where f̂ is the Fourier transform of f and Et(x) is the spectral
projection of Xt over (−∞, x]. Iterating this we obtain

〈ξ, f1(Xt1) · · · fn(Xtn)ξ〉 =

∫
Rn
〈ξ, eiz1Xt1 · · · eiznXtn ξ〉f̂(z1) · · · f̂n(zn) dz1 · · · dzn

for all rapidly decreasing functions fi on R. Thus (4.1) holds for all functions fi ∈ Cb(R).

4.3. Markov processes. First we give some basic concepts on Markov processes. This
section is based on [RY99] and [Kal02]. In this section S denotes a locally compact space
with countable basis, and S denotes the Borel σ-field.

A probability kernel k on (S,S) is a map k : S × S → [0, 1] such that

(i) k(x, · ) : S 3 B 7→ k(x,B) is a probability measure for each x ∈ S,
(ii) k( · , B) : S 3 x 7→ k(x,B) is a measurable function for each B ∈ S.

For two probability kernels k and l we can define its composition

(k ? l)(x,B) =

∫
S

k(x,dy)l(y,B) for x ∈ S, B ∈ S.

A family (kst)0≤s≤t of probability kernels is called transition kernels if it satisfies

ksu = kst ? ktu and kss(x, · ) = δx(·) (4.2)

for all 0 ≤ s ≤ t ≤ u and x ∈ S. The former relation is called the Chapman–Kolmogorov
relation. It is similar to the compositional relation satisfied by the transition mappings
of a Loewner chain (see Definition 3.1). Indeed, the Chapman–Kolmogorov relation is a
crucial ingredient for establishing a connection to Loewner chains (see Theorem 4.12).
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Definition 4.8. Let (kst)0≤s≤t be a family of transition kernels. A stochastic process
(Mt)t≥0 on (S,S) adapted to a filtration (Ft) is called a Markov process with transition
kernels (kst)0≤s≤t if for each 0 ≤ s ≤ t and B ∈ S we have

P[Mt ∈ B|Fs] = kst(Ms, B) a.s. (4.3)

The distribution P ◦ M−1
0 on (S,S) is called the initial distribution. We simply say a

Markov process for a Markov process with some transition kernels and some filtration.
A Markov process is said to be stationary if its transition kernels satisfy kst = k0,t−s.
Then we simply denote k0t by kt and call (kt)t≥0 the transition kernels as well. In this
case the Chapman–Kolmogorov relation reads ks ? kt = ks+t for s, t ≥ 0.

The equality (4.3) is called the Markov property. It is equivalent to

E[f(Mt)|Fs] =

∫
S

f(x) kst(Ms,dx) a.s. (4.4)

for all bounded measurable functions f : S → C.
It is known that for a distribution µ on (S,S) and a family of transition kernels

(kst)0≤s≤t on (S,S) satisfying (4.2), there exists a Markov process (Mt)t≥0 with ini-
tial distribution µ and (kst)0≤s≤t as transition kernels. Moreover, the Markov process
is unique up to finite dimensional distributions, namely, with respect to the following
equivalence.

Definition 4.9. Two stochastic processes (Mt)t≥0 and (Nt)t≥0 are equivalent if

P[(Mt1 , . . . ,Mtn) ∈ B] = P[(Nt1 , . . . , Ntn) ∈ B] (4.5)

for all times t1, . . . , tn ≥ 0, all n ∈ N and all B ∈ Sn.

Suppose that two Markov processes (Mt)t≥0 and (Nt)t≥0 have the same transition
kernels (kst)0≤s≤t and initial distribution µ. Then they are equivalent, and actually the
above common value (4.5) is given by∫

Sn+1

1B(x1, . . . , xn)µ(dx0) k0t1(x0,dx1) · · · ktn−1tn(xn−1,dxn).

In this paper, we fix the initial distribution to be a delta measure. Then an equivalence
class of Markov processes is determined by (kst), on which we mainly focus.

4.4. From additive Loewner chains to B-homogeneous Markov processes. In
this subsection we will construct a classical real-valued Markov process from a given
additive Loewner chain. The Markov processes obtained in this way have a special space-
homogeneity property. Our construction is the continuous-time version of the Markov
chains constructed in [LM00].

Definition 4.10. A probability kernel k on R is called B-homogeneous if it satisfies

δx B k(y, · ) = k(x+ y, · )

for all x, y ∈ R. A real-valued Markov process (Mt)t≥0 is called a B-homogeneous Markov
process if its transition kernels (kst)0≤s≤t satisfy the following two conditions:
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(a) The mapping (s, t) 7→ kst(x, ·) is continuous with respect to weak convergence for all
x ∈ R.

(b) The kernel kst is B-homogeneous for all 0 ≤ s ≤ t.

Later in Section 4.8.2 we prove that any stationary B-homogeneous Markov process has
the Feller property, so that it has a cadlag (right continuous with left limits) modification.

Remark 4.11. The standard notion of homogeneity is

δx ∗ k(y, · ) = k(x+ y, · ), x, y ∈ R,

where ∗ is the classical convolution of probability measures. If the transition kernels of a
Markov process satisfy the homogeneity, then the process has independent increments (see
[Kal02, Prop. 8.5]). Our B-homogeneity is a variant of homogeneity, which corresponds to
monotonically independent increments of the corresponding non-commutative stochastic
process (see Section 4.5).

Theorem 4.12. Let (Ft)t≥0 be an additive Loewner chain with transition mappings
(Fst)0≤s≤t. Then there exists a B-homogeneous Markov process (Mt)t≥0 whose transi-
tion kernels (kst)0≤s≤t are given by∫

R

1

z − y
kst(x, dy) =

1

Fst(z)− x
(4.6)

for 0 ≤ s ≤ t, x ∈ R and z ∈ C+.

Proof. First, since z 7→ 1/(Fst(z) − x) maps C+ into −C+ and iy/(Fst(iy) − x) → 1 as
y →∞, by Lemma 2.3 there exists a probability measure kst(x, · ) such that (4.6) holds
for each (s, t, x). Since Fss(z) = z, we have kss(x, ·) = δx(·).

Concerning the measurability of x 7→ kst(x,B), by the inversion formulas (2.17) and
(2.18), we have

kst(x, {α}) = lim
ε↓0

iε

Fst(α+ iε)− x
,

1

2
kst(x, {α}) +

1

2
kst(x, {β}) + kst(x, (α, β)) = − 1

π
lim
ε↓0

∫ β

α

1

Fst(y + iε)− x
dy,

which imply the measurability of x 7→ kst(x,B) for open intervals B. The remaining
arguments are standard in probability theory: the set B of all Borel subsets B ⊂ R such
that x 7→ kst(x,B) is measurable forms a Dynkin system by monotone convergence, and
the set of open intervals is closed under the intersection and is contained in B, and hence
by Dynkin’s π-λ theorem B coincides with the set of all Borel subsets of R.

For the existence of a Markov process it suffices to prove that (kst) satisfies the
Chapman–Kolmogorov relation. For 0 ≤ s ≤ t ≤ u, by using (4.6) we get∫

Rw

1

z − w

∫
Ry
kst(x,dy) ktu(y,dw) =

∫
R

1

Ftu(z)− y
kst(x, dy)

=
1

Fst(Ftu(z))− x
=

1

Fsu(z)− x
=

∫
R

1

z − w
ksu(x, dw),

where the subscripts in Ry and Rw indicate the variable to be integrated. By the Stieltjes–
Perron inversion (2.13)–(2.14) we obtain the Chapman–Kolmogorov relation.



42 U. Franz, T. Hasebe and S. Schleißinger

The B-homogeneity of the transition kernels follows from the straightforward calcu-
lation

FδxBkst(y,·)(z) = Fkst(y,·)(z)− x = Fst(z)− (x+ y) = Fkst(x+y,·)(z).

Finally, Lemma 2.6 implies the weak continuity of (s, t) 7→ kst(x, ·) for all x ∈ R.

Remark 4.13. In the stationary case (Fs ◦Ft = Fs+t) the defining formula (4.6) becomes∫
R

1

z − y
kt(x, dy) =

1

Ft(z)− x
, z ∈ C+, x ∈ R.

This formula is similar to the one for continuous-time branching processes in one dimen-
sion. In the latter processes, the transition kernels (lt)t≥0 are characterized by∫ ∞

0

e−λy lt(x, dy) = e−xvt(λ), λ, x ≥ 0,

where (vt)t≥0 is a compositional semigroup of mappings on [0,∞) generated by a certain
vector field (see [Li11, Section 3]).

Let (Mt) be the B-homogeneous Markov process constructed in Theorem 4.12. Then
(4.6) and the Markov property (4.4) imply that for each 0 ≤ s ≤ t and z ∈ C+ we have

E
[

1

z −Mt

∣∣∣∣Fs] =
1

Fst(z)−Ms
a.s., (4.7)

which will be intensively used in the next section.

4.5. From B-homogeneous Markov processes to additive monotone increment
processes. We will now come to the main result of this section, namely the construction
of a SAIP from a B-homogeneous Markov process. Let (Mt)t≥0 be a B-homogeneous
Markov process such thatM0 = 0 and adapted to a filtration (Ft)t≥0. Denote by (Ω,F ,P)

the underlying probability space and by Pt the conditional expectation

Pt = E[ · |Ft], t ≥ 0.

We will now show that the family of symmetric operators (Xt)t≥0 defined by

Xt = PtMt, t ≥ 0, (4.8)

D(Xt) = {ψ ∈ L2 : Mtψ ∈ L2} = D(Mt), (4.9)

is a SAIP on (L2(Ω,F ,P),1Ω), where Mt acts by multiplication on L2(Ω,F ,P) and 1Ω

is the constant function with value 1 on Ω. In this section we always regard Mt as the
multiplication operator. Notice that PtMt ⊂MtPt as unbounded operators.

We denote by Gst the Cauchy transform of kst(0, · ) and by Fst its reciprocal; namely

Gst(z) =

∫
R

1

z − y
kst(0,dy), Fst(z) =

1

Gst(z)
.

Then the B-homogeneity implies that Fkst(x,·)(z) = Fδx(Fst(z)) = Fst(z) − x, which is
exactly (4.6). Therefore (4.7) holds true, which can also be stated as

Ps
1

z −Mt
Ps =

1

Fst(z)−Ms
Ps. (4.10)

First we check that the domains appearing in this section are dense in L2.
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Lemma 4.14. For every n ∈ N and reals 0 ≤ t1 < · · · < tn, the subspace
⋂n
i=1D(Xti) is

dense in L2.

Proof. For any ψ ∈ L2 we can take functions fk = 1[−k,k]n(Mt1 , . . . ,Mtn)ψ, k ∈ N, which
are contained in ∩ni=1D(Xti) and converge to ψ in L2.

It is not obvious that the increment Xt −Xs with the dense domain D(Xt) ∩D(Xs)

is essentially self-adjoint. We prove this by finding and using an explicit form of the
resolvent operator of increments.

Proposition 4.15. For t ≥ c ≥ s ≥ 0 and z ∈ C \ R, the operator

Rst(z)ψ :=
ψ

z
+

Mt

z(z −Mt)
Ptψ −

Ms

(
Fst(z)−Ms

)
Fst(z)(z −Mt)

Ps
1

z −Mt
ψ

is a bounded linear operator on L2, preserves Dsct = D(Xs)∩D(Xc)∩D(Xt), and satisfies

{z − (Xt −Xs)}Rst(z)|Dsct = Rst(z){z − (Xt −Xs)}|Dsct = IDsct .

Remark 4.16. The above formula for resolvents looks miraculous, but for bounded
Markov processes it can be naturally derived from a series expansion method which
is similar to the proof of Proposition 5.6 for the unitary case.

Proof of Proposition 4.15. First we prove that Rst(z) is a bounded linear operator. It
suffices to prove that the operator

Tψ :=
Ms(Fst(z)−Ms)

z −Mt
Ps

1

z −Mt
ψ

is bounded. By the conditional Schwarz inequality, we obtain∣∣∣∣Ps 1

z −Mt
ψ

∣∣∣∣2 ≤ (Ps 1

|z −Mt|2
1Ω

)
Ps|ψ|2.

We can further compute the first factor as

Ps
1

|z −Mt|2
1Ω =

1

z − z
Ps

(
1

z −Mt
− 1

z −Mt

)
1Ω

=
1

z − z

(
1

Fst(z)−Ms
− 1

Fst(z)−Ms

)
1Ω

=
Im(Fst(z))

Im(z)|Fst(z)−Ms|2
1Ω, (4.11)

and hence

|Tψ|2 ≤ Im(Fst(z))

Im(z)

|Ms|2

|z −Mt|2
Ps|ψ|2. (4.12)

Taking the expectation shows that

E|Tψ|2 = E[Ps|Tψ|2] ≤ Im(Fst(z))

Im(z)
E
[
(M2

sPs|ψ|2) ·
(
Ps

1

|z −Mt|2
1Ω

)]
=

∣∣∣∣ Im(Fst(z))

Im(z)

∣∣∣∣2E[(Ps|ψ|2) ·
(

M2
s

|Fst(z)−Ms|2
1Ω

)]
. (4.13)

SinceMs/(Fst(z)−Ms) is a bounded random variable and E[Ps|ψ|2] = ‖ψ‖L2 , we conclude
that T is a bounded operator.
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We show that Rst(z) preserves the space D(Xs) ∩D(Xc) for every c ∈ [s, t]. For this
it suffices to show that T does. For ψ ∈ D(Xs) ∩D(Xc), we imitate the estimate (4.13)
and insert the conditional expectation Pc:

E|McTψ|2 = E[Pc|McTψ|2] ≤ Im(Fst(z))

Im(z)
E
[
(M2

sPs|ψ|2) ·
(
|Mc|2Pc

1

|z −Mt|2
1Ω

)]
=

Im(Fst(z)) Im(Fct(z))

Im(z)2
E
[
(Ps|Msψ|2) ·

(
|Mc|2

|Fct(z)−Mc|2
1Ω

)]
.

Again by the boundedness of Mc/(Fct(z)−Mc) this shows that McTψ ∈ L2, and hence
Tψ ∈ D(Xc). Since we can also take c = s we conclude that Tψ ∈ D(Xs) ∩D(Xc). This
also shows that T and hence Rst preserves Dsct.

For ψ ∈ D(Xt) ∩D(Xs) expand the quantity

{z − (PtMt − PsMs)}
(
ψ

z
+

Mt

z(z −Mt)
Ptψ −

Ms(Fst(z)−Ms)

Fst(z)(z −Mt)
Ps

1

z −Mt
ψ

)
= ψ +

Mt

z −MtPt
ψ︸ ︷︷ ︸

I1

−zMs(Fst(z)−Ms)

Fst(z)(z −Mt)
Ps

1

z −Mt
ψ︸ ︷︷ ︸

I2

+
Ms

z
Psψ︸ ︷︷ ︸

I3

+
Ms

z
Ps

Mt

z −Mt
ψ︸ ︷︷ ︸

I4

−M
2
s (Fst(z)−Ms)

Fst(z)
Ps

1

z −Mt
Ps

1

z −Mt
ψ︸ ︷︷ ︸

I5

−Mt

z
Ptψ︸ ︷︷ ︸

I6

− M2
t

z(z −Mt)
Ptψ︸ ︷︷ ︸

I7

+
MsMt(Fst(z)−Ms)

Fst(z)(z −Mt)
Ps

1

z −Mt
ψ︸ ︷︷ ︸

I8

.

We can easily show that I1 + I6 + I7 = 0. For I5, the Markov property (4.10) shows that

Ps
1

z −Mt
Ps

1

z −Mt
ψ =

1

Fst(z)−Ms
Ps

1

z −Mt
ψ,

and then we can prove that

I2 + I5 + I8 = −MsPs
1

z −Mt
ψ.

Then it is straightforward to show that I2 + I3 + I4 + I5 + I8 = 0. Thus we conclude that
{z − (Xt −Xs)}Rst(z) = ID(Xs)∩D(Xt).

A similar computation shows that Rst(z){z − (Xt −Xs)} = ID(Xs)∩D(Xt). Since we
know that Rst(z) preserves Dsct, the desired formula holds on Dsct as well.

Proposition 4.17. The increment Xt−Xs is essentially self-adjoint for all 0≤s≤ t<∞,
and the resolvent of Xt −Xs is given by the bounded operator Rst(z). Furthermore,
(Xt −Xs)|D(Xs)∩D(Xc)∩D(Xt) is essentially self-adjoint for all 0 ≤ s ≤ c ≤ t.

Proof. Proposition 4.15 implies that the range of z− (Xt−Xs) contains D(Xt)∩D(Xs),
which is dense in L2. By [RS80, Cor. to Thm. VIII.3], Xt −Xs is essentially self-adjoint.
The second statement readily follows from Proposition 4.15. The last statement follows
from the same arguments as for D(Xt) ∩D(Xs).
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Next we compute the distributions of the increments and show that the increments
are monotonically independent.

Proposition 4.18. We have

Ps{z − (Xt −Xs)}−1Ps = Gst(z)Ps (4.14)

for t ≥ s ≥ 0 and z ∈ C \R. In particular, the distribution of Xt−Xs with respect to the
state 〈1Ω, ·1Ω〉L2(Ω) is equal to kst(0, ·).
Proof. Using the properties of the conditional expectation and the Markov property (4.10),
for ψ ∈ L2 we obtain

Ps
(
z − (PtMt − PsMs)

)−1
Psψ

=
1

z
Psψ + Ps

Mt

z(z −Mt)
Psψ − Ps

Ms(Fst(z)−Ms)

Fst(z)(z −Mt)
Ps

1

z −Mt
Psψ

=
1

z
Psψ +

1

z
(Psψ) ·

(
Ps

Mt

z −Mt
1Ω

)
−
(
Ms(Fst(z)−Ms)

Fst(z)
Psψ

)
·
(
Ps

1

z −Mt
1Ω

)2

=
1

z
Psψ +

1

z
(Psψ) ·

(
−1Ω +

z

Fst(z)−Ms
1Ω

)
−
(
Ms(Fst(z)−Ms)

Fst(z)
Psψ

)
·
(

1

Fst(z)−Ms
1Ω

)2

= Gst(z)Psψ,

which gives (4.14). The last statement follows by applying (4.14) to the constant func-
tion 1Ω and taking the expectation.

We want to replace the function 1/(z − x) in Proposition 4.18 with a more general
bounded continuous function f (to obtain Lemma 4.20(2)). For this the following lemma
suffices.

Lemma 4.19. The set of functions

D = spanC{(z − ·)−1 : z ∈ C \ R}
is dense in

C0(R) =
{
f ∈ C(R) : lim

x→∞
f(x) = lim

x→−∞
f(x) = 0

}
with respect to uniform convergence.

Proof. A proof is given in [Ans13, Lemma 6]. We give another proof based on the Stone–
Weierstrass theorem. Since D itself is not a ∗-algebra, we need a trick.

Step 1. Let gz(x) = (z − x)−1. For z 6= w we have

gzgw =
1

w − z
gz −

1

w − z
gw,

and hence gzgw ∈ D.

Step 2. For z ∈ C \ R we can approximate g2
z uniformly by gzgw as w → z with w 6= z,

because
‖g2
z − gzgw‖C0(R) ≤

|w − z|
Im(z)2| Im(w)|

.

By Step 1, we conclude that g2
z ∈ D.



46 U. Franz, T. Hasebe and S. Schleißinger

Step 3. The above steps show that D is a ∗-algebra. It also separates points and vanishes
nowhere, and hence equals C0(R) by the Stone–Weierstrass theorem.

Let us collect key relations between increments and conditional expectations to prove
(Xt) is a SAIP.

Lemma 4.20.

(1) For 0 ≤ s ≤ t ≤ u and f ∈ Cb(R) with f(0) = 0, we have

f(Xt −Xs)Pu = Puf(Xt −Xs) = f(Xt −Xs).

(2) For 0 ≤ s ≤ t ≤ u and f ∈ Cb(R), we have

Psf(Xu −Xt)Ps =
〈
1Ω, f(Xu −Xt)1Ω

〉
L2(Ω)

Ps.

Proof. (1) In this proof for a closed subspace K of L2 and a linear operator X with
domain D(X) we denote by X|K the operator with domain D(X)∩K. Let X = Xt−Xs,
P = Pu and K be the range of the orthogonal projection P . We can check that, by a
property of conditional expectations, P preserves D(X) and we have X = PX ⊂ XP . We
can also check, by the definition of closure, that P preserves D(X) and X = PX ⊂ XP ,
and thus X is reduced by K and by K⊥. By [Ara18, Thms. 1.38 and 1.40], we have
X|K = X|K and it is self-adjoint inK, and for any f ∈ Cb(R) we have f(X|K) = f(X)|K .
This implies f(X) preserves K, and similar arguments show that f(X) preserves K⊥.
Therefore, Pf(X) = f(X)P .

Similarly, we have 0|D(X) = (1−P )X ⊂ X(1−P ), and hence X|K⊥ = X|K⊥ = 0 and
f(X)|K⊥ = f(X|K⊥) = 0 if f(0) = 0. This implies that f(X) = f(X)P .

(2) For f ∈ C0(R) the statement follows from Proposition 4.18 and Lemma 4.19. For
general f ∈ Cb(R), we can adapt the corresponding arguments in Remark 4.2 to find a
sequence fn ∈ C0(R) such that fn(Xu −Xt)→ f(Xu −Xt) strongly.

Theorem 4.21. The family (Xt)t≥0 of essentially self-adjoint operators is a SAIP on the
quantum probability space (L2(Ω,F ,P),1Ω).

Proof. As M0 = 0, we have X0 = 0. By Proposition 4.17, D(Xs) ∩ D(Xc) ∩ D(Xt) is
a core for Xt − Xs for every 0 ≤ s ≤ c ≤ t. By Proposition 4.18, the distribution of
Xt −Xs is equal to kst(0, ·). The mapping (s, t) 7→ kst(0, ·) is continuous by assumption.
It remains to show that (Xt) has monotonically independent increments.

Step 1. Let t1, . . . , tp, s1, . . . , sp, t
′
1, . . . , t

′
q, s
′
1, . . . , s

′
q, t, s ≥ 0 be such that

t1 ≥ s1 ≥ t2 ≥ · · · ≥ tp ≥ sp ≥ t ≥ s ≤ t ≤ t′q ≤ · · · ≤ t′2 ≤ s′1 ≤ t′1,

f1, . . . , fp, g, h1, . . . , hq ∈ Cb(R) vanishing at 0, and set

W1 = f1(Xt1 −Xs1), . . . , Wp = fp(Xtp −Xsp), Y = g(Xt −Xs),

Z1 = h1(Xt′1
−Xs′1

), . . . , Zq = hq(Xt′q −Xs′q ).
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Then from Lemma 4.20 we have

〈1Ω,W1 · · ·WpY Zq · · ·Z11Ω〉
= 〈1Ω, Pt2W1Pt2W2W3 · · ·WpY Zq · · ·Z2Pt′2Z1Pt′21Ω〉
= 〈1Ω,W11Ω〉〈1Ω,W2W3 · · ·WpY Zq · · ·Z21Ω〉〈1Ω, Z11Ω〉
= · · ·
= 〈1Ω,W11Ω〉 · · · 〈1Ω,Wp1Ω〉〈1Ω, Y 1Ω〉〈1ΩZq1Ω〉 · · · 〈1Ω, Z11Ω〉.

It is clear that this implies condition (i) of Definition 1.9.

Step 2. Let t, s, t′, s′, t′′, s′′ ∈ R such that 0 ≤ s′ ≤ t′ ≤ s ≤ t and 0 ≤ s′′ ≤ t′′ ≤
s ≤ t, f, g, h ∈ Cb(R) vanishing at 0 and set X = f(Xt′ −Xs′), Y = g(Xt −Xs),
Z = h(Xt′′ −Xs′′). From Lemma 4.20 we get

XY Z = XPt′Y Pt′′Z = 〈1Ω, Y 1Ω〉L2(Ω)XZ.

This shows that condition (ii) of Definition 1.9 is also satisfied and concludes the proof.

4.6. Summary of the one-to-one correspondences. All in all, Theorems 4.6, 4.12,
and 4.21 yield one-to-one correspondences between

(A) additive Loewner chains (Ft)t≥0 in C+ (Def. 3.1),
(B) real-valued B-homogeneous Markov processes (Mt)t≥0 such that M0 = 0 up to

equivalence (Def. 4.10 and Def. 4.9),
(C) self-adjoint additive monotone increment processes (Xt)t≥0 up to equivalence

(Def. 4.3 and Def. 4.1).

Moreover, the above objects also correspond to

(D) families (µst)0≤s≤t of probability measures on R such that

(i) µtt = δ0 for all t ≥ 0,

(ii) µsu = µst B µtu for all 0 ≤ s ≤ t ≤ u,
(iii) (s, t) 7→ µst is weakly continuous.

(C)⇒(D). Given a SAIP (Xt) we define µst to be the law of Xt −Xs. This is inde-
pendent of a choice of a SAIP in the same equivalence class by Theorem 4.7.

(D)⇒(A). Given (µst) we define the transition mappings Fst = Fµst . Then (F0t)

forms an additive Loewner chain.
Thus our constructions yield bijections between the objects (A)–(D). Note that prop-

erty (ii) in (D) corresponds to the Chapman–Kolmogorov relation for transition kernels
of Markov processes.

We call a family of probability measures satisfying the three conditions in (D) a weakly
continuous B-convolution hemigroup.

Remark 4.22. For the object (B) we identify the equivalent Markov processes in the
sense of Definition 4.9, and so we are actually looking at the B-homogeneous transition
kernels (kst) with weak continuity on t ≥ s.
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Remark 4.23. A SAIP is associated to an additive Loewner chain, which is a part of
a reverse evolution family (a family of transition mappings). If we adopt anti-monotone
independence instead of monotone independence, we can obtain an evolution family in
the sense of Remark 3.3, but then the corresponding probability kernels do not satisfy
the standard Chapman–Kolmogorov relation. What we obtain is something that might
be called a “backward Chapman–Kolmogorov relation”, but the authors do not know any
theory on such a relation and the corresponding stochastic processes.

Furthermore, we can relate the properties of the three notions as follows:

(1) The Markov process (Mt) has finite second moment for all t ≥ 0 if and only if the
complement C+\Ft(C+) has finite half-plane capacity (see Remark 3.18) for all t ≥ 0

if and only if ξ ∈ D(Xt) for all t ≥ 0. The last equivalence follows from the spectral
theory (see [Sch12, Section 5.3]).

(2) The Markov process (Mt) has mean 0 and variance t for all t ≥ 0 if and only if

Ft(z) = z − t/z + O(1/|z|)

as z →∞ non-tangentially in C+ for all t ≥ 0 (Remark 2.4) if and only if the SAIP
(Xt) is normalized (again by the spectral theory).

(3) The Markov process (Mt) is stationary if and only if Fs ◦ Ft = Fs+t for all s, t ≥ 0

if and only if the SAIP (Xt) has stationary increments, i.e. Xt − Xs has the same
distribution as Xt−s for all 0 ≤ s ≤ t.

4.7. Construction of B-homogeneous Markov processes from additive free in-
crement processes. Following the idea of [Fra09a] we can construct B-homogeneous
transition kernels from free additive increment processes. Assume that (µst)0≤s≤t are the
laws of the increments of such a process, i.e. a weakly continuous �-convolution hemi-
group (defined as in Section 4.6 for the monotone convolution). By the subordination
property [Bia98], there exists a probability measure νst such that µ0t = µ0s B νst for
0 ≤ s ≤ t. They satisfy νtt = δ0 and the hemigroup property

νst B νtu = νsu, 0 ≤ s ≤ t ≤ u.

The reciprocal Cauchy transform Fνst can be expressed by use of the Voiculescu trans-
form ϕµst :

Fνst(z) = F−1
µ0s
◦ Fµ0t

(z) = ϕµ0s
(Fµ0t

(z)) + Fµ0t
(z)

= ϕµ0t
(Fµ0t

(z)) + Fµ0t
(z)− ϕµst(Fµ0t

(z)) = z − ϕµst(Fµ0t
(z)),

on a truncated cone where all the functions and compositions make sense. Eventually the
identity Fνst(z) = z − ϕµst(Fµ0t

(z)) holds on C+ by analytic continuation, because now
ϕµst is defined on C+ by �-infinite divisibility of µst. Using [BV93, Prop. 5.7], we see
that νst is weakly continuous with respect to (s, t). The probability measures (νst)0≤s≤t
therefore form a weakly continuous B-convolution hemigroup. We can thus construct a
B-homogeneous Markov process through the correspondence in Section 4.6.

Note that each νst is �-infinitely divisible (see Section 6.1.2), since ϕνst can be calcu-
lated as ϕνst(z) = ϕµst(Fµ0s

(z)), and so Theorem 6.19 is available.
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In the particular case of free Lévy processes, namely stationary additive free increment
processes, the Markov transition kernels are related to additive Boolean convolution ]
(2.2). Let (µt)t≥0 be a weakly continuous free convolution semigroup with µ0 = δ0. Then
the F -transform of νst has the explicit formula

Fνst(z) =
s

t
z +

(
1− s

t

)
Fµt(z), (4.15)

which was essentially calculated in [BB04]. Therefore, we have the formula

νst = µ
](1−s/t)
t .

Example 4.24 ([Bia98, Section 5.3]). If µt is the centered semicircle law with variance t,
then

Fνst(z) =
1

2

(
1 +

s

t

)
z +

1

2

(
1− s

t

)√
z2 − 4t.

Using (4.15) we can compute the transition kernels for the associated Markov process, to
get

kst(x, dy) =
t− s
2π

√
4t− y2

(sy − tx)(y − x) + (t− s)2
1[−2

√
t,2
√
t](y) dy + λδa,

where

a =
(t+ s)x− sign(x)(t− s)

√
x2 − 4s

2s
,

λ =


0, |x| ≤ t+ s√

t
,

1

2s

(
t+ s− |x|(t− s)√

x2 − 4s

)
, |x| > t+ s√

t
.

We extend the above expressions of a and λ to the case s = 0 by continuity.

Remark 4.25. D. Jekel has shown that not all Loewner chains arise from free increment
processes (see [Jek20, Section 4.4]); his counterexample is an additive Loewner chain
with F1 = Fσ and F2 = FσBσ, where σ = 1

2π

√
4− x2 1[−2,2](x) dx denotes the centered

semicircle distribution with variance 1. Combined with the one-to-one correspondences
from the previous section, this shows that not all real-valued B-homogeneous Markov
chains can be obtained from additive free increment processes in the way described in
this section.

4.8. Generators, Feller property, and martingale property of B-homogeneous
Markov processes

4.8.1. Generators in the stationary case. We now compute Hunt’s formula for the
generator of stationary B-homogeneous Markov processes. The computation was given
in [FM05] for compactly supported transition kernels. This section treats a general case.

Let (kt) be transition kernels for a stationary B-homogeneous Markov process. Then
the probability measures µt := kt(0, ·) are weakly continuous regarding t, and form a
B-convolution semigroup, namely the relation

µs B µt = µs+t
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holds for all s, t ≥ 0. This family admits a generator which has an integral representation
called themonotone Lévy–Khinchin representation proved by Muraki [Mur00] in the finite
variance case. The general case follows from Berkson and Porta’s result [BP78].

Theorem 4.26.

(1) Let {µt}t≥0 ⊂ P(R) be a weakly continuous B-convolution semigroup such that
µ0 = δ0 and let Ft = Fµt . Then the right derivative A(z) = d

dt

∣∣
t=0

Ft(z) exists,
and Ft satisfies the differential equation

d

dt
Ft(z) = A(Ft(z)), F0(z) = z, z ∈ C+, t ≥ 0. (4.16)

Moreover, the analytic function A is of the form

−A(z) = γ +

∫
R

1 + zx

z − x
ρ(dx), z ∈ C+, (4.17)

where γ ∈ R and ρ is a finite, non-negative measure on R. The pair (γ, ρ) is unique
and is called the generating pair.

(2) Conversely, given a pair (γ, ρ) of a real number and a finite, non-negative measure,
define a function A by (4.17). Then the solution to the differential equation (4.16)
defines a flow {Ft}t≥0 on C+, and so there exists a weakly continuous B-convolution
semigroup {µt}t≥0 such that Ft = Fµt for all t ≥ 0.

Now we relate the monotone Lévy–Khinchin representation to our Markov processes.

Lemma 4.27. Let (Mt)t≥0 be a stationary B-homogeneous Markov process with transition
kernels (kt)t≥0. Let (γ, ρ) be the generating pair in (4.17) associated to the monotone
convolution semigroup {kt(0, ·)}t≥0. Then for all x ∈ R we have, as t ↓ 0,

1

t

(y − x)2

1 + y2
kt(x, dy)→ ρ(dy) (weakly),

and
1

t

∫
R

(y − x)(1 + xy)

1 + y2
kt(x, dy)→ γ.

Proof. Let Gx,t and Fx,t be the Cauchy transform and its reciprocal of the distribution
kt(x, ·). Since the infinitesimal generator A(z) in (4.17) is defined by A(z) = d

dt

∣∣
t=0

F0,t(z),
we have

d

dt

∣∣∣∣
t=0

Gx,t(z) =
d

dt

∣∣∣∣
t=0

1

F0,t(z)− x
= −(z − x)−2A(z)

and so

A(z) = − lim
t→0

(z − x)2 1

t

(∫
R

1

z − y
kt(x,dy)− 1

z − x

)
= lim
t→0

1

t

∫
R

(z − x)(x− y)

z − y
kt(x,dy).

In particular for z = x+ iv we get

Im(A(x+ iv)) = lim
t→0

1

t

∫
R

(x− y)2v

v2 + (x− y)2
kt(x, dy).
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Fix x ∈ R. Since A(x + iv) = o(v) as v → ∞, for every ε > 0 there exists v0 > 0 such
that |A(x+ iv0)| < εv0. This shows that there exists t0 > 0 such that for all 0 < t < t0,

1

t

∫
R

(x− y)2

v2
0 + (x− y)2

kt(x, dy) < 2ε.

For some y0 > 0 we have 1 + y2 ≥ 1
2 (v2

0 + (x− y)2) for all y ≥ y0, and hence

1

t

∫
|y|>y0

(x− y)2

1 + y2
kt(x, dy) < 4ε, 0 < t < t0.

This implies that the family
{ (x−y)2

t(1+y2) kt(x, dy) : 0 < t < t0
}
is tight. Also this family is

uniformly bounded, because there exists a constant C > 0 not depending on y such that
we have 1 ≤ C 1+y2

1+(x−y)2 for all y ∈ R, and hence

1

t

∫
R

(x− y)2

1 + y2
kt(x,dy) ≤ C

t

∫
R

(x− y)2

1 + (x− y)2
kt(x,dy)→ C Im(A(x+ i)), t ↓ 0.

Take a weak limit ρ′ of this family. Then

A(z) = lim
t→0

1

t

∫
R

(z − x)(x− y)

z − y
kt(x, dy) = lim

t→0

1

t

∫
R

(
x− y − (x− y)2

z − y

)
kt(x,dy)

= lim
t→0

1

t

∫
R

(
1 + y2

y − z
− y
)

(x− y)2

1 + y2
kt(x, dy)− lim

t→0

1

t

∫
R

(
y − x− (x− y)2y

1 + y2

)
kt(x, dy)

=

∫
R

1 + yz

y − z
ρ′(dy)− lim

t→0

1

t

∫
R

(
y − x− (x− y)2y

1 + y2

)
kt(x, dy).

By the uniqueness of the Pick–Nevanlinna representation, we conclude that

ρ′ = ρ and γ = lim
t→0

1

t

∫
R

(
y − x− (x− y)2y

1 + y2

)
kt(x,dy),

which shows the desired claim.

To state Hunt’s formula we introduce the free difference quotient ∂ : C1(R)→ C(R2)

defined by
(∂f)(x, y) =

{
f(x)−f(y)

x−y , x 6= y,

f ′(x), x = y.
(4.18)

Then for f ∈ C2(R) we have

(∂x∂f)(x, y) =

{
f(y)−f(x)−(y−x)f ′(x)

(y−x)2 , x 6= y,
1
2f
′′(x), x = y.

(4.19)

Notice that the operator (4.19) was previously used by Anshelevich in a similar con-
text [Ans13].

Now we can compute the generators of the Markov processes. Let Bb(R) be the set of
all bounded Borel measurable functions f : R→ C.

Theorem 4.28. Let (Mt)t≥0 be a stationary B-homogeneous Markov process with tran-
sition kernels (kt)t≥0. Let Tt : Bb(R)→ Bb(R) be its transition semigroup

(Ttf)(x) =

∫
R
f(y) kt(x, dy), f ∈ Bb(R),

which satisfies TsTt = Ts+t for s, t ≥ 0. Then the generator of the transition semigroup
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is given by

(Gf)(x) :=
d

dt

∣∣∣∣
t=0

(Ttf)(x) = γf ′(x) +

∫
R
{(1 + y2)(∂x∂f)(x, y) + yf ′(x)} ρ(dy)

for f ∈ Cb(R) ∩ C2(R) and x ∈ R, where (γ, ρ) is the pair in (4.17) associated to the
monotone convolution semigroup {kt(0, ·)}t≥0.

Proof. For f ∈ Cb(R) ∩ C2(R) we have∫
R
f(y) kt(x,dy)− f(x) =

∫
R\{x}

{f(y)− f(x)} kt(x,dy)

=

∫
R\{x}

(
(1 + y2){f(y)− f(x)− (y − x)f ′(x)}

(y − x)2
+ yf ′(x)

)
(y − x)2

1 + y2
kt(x, dy)

+ f ′(x)

∫
R\{x}

(
y − x− (y − x)2y

1 + y2

)
kt(x, dy)

=

∫
R

{
(1 + y2)(∂x∂f)(x, y) + yf ′(x)

}
(y − x)2

1 + y2
kt(x, dy)

+ f ′(x)

∫
R

(
y − x− (y − x)2y

1 + y2

)
kt(x,dy).

Lemma 4.27 implies the desired formula.

Remark 4.29. The term yf ′(x) in the generator is a compensator: it is placed so that
the integral converges. If the measure ρ has a finite first moment, then we can integrate
out the compensator to get the reduced form

(Gf)(x) = γ̃f ′(x) +

∫
R

(1 + y2)(∂x∂f)(x, y) ρ(dy), (4.20)

where
γ̃ = γ +

∫
R
y ρ(dy).

Example 4.30. (1) If γ = 0 and ρ = δ0, then the generator is

(Gf)(x) =


f(0)− f(x) + xf ′(x)

x2
, x 6= 0,

1
2f
′′(0), x = 0,

and kt(0, ·) is the arcsine law with mean 0 and variance t. The infinitesimal generator
(see Theorem 4.26) for the B-convolution semigroup {kt(0, ·)}t≥0 is given by A(z) = − 1

z ,
and hence Fkt(0,·)(z) =

√
z2 − 2t. The transition probability of the associated stationary

Markov process is

kt(x, dy) =

√
2t− y2

π(x2 − y2 + 2t)
1(−
√

2t,
√

2t)(y) dy +
|x|√
x2 + 2t

δsign(x)
√
x2+2t(dy).

(2) If γ = −λ/2 and ρ = (λ/2)δ1 for λ > 0, then

(Gf)(x) =

λ
f(1)− f(x)− (1− x)f ′(x)

(1− x)2
, x 6= 1,

λ
2 f
′′(1), x = 1,

and kt(0, ·) is the monotone Poisson law with mean λt and variance λt [Mur01b].
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(3) The monotone stable process with index α ∈ (0, 2) and asymmetry parameter
β ∈ [1− 1/α, 1/α]∩ [0, 1] has the distribution characterized by Fµt(z) = (zα + teiαβπ)1/α

(see also Example 6.18). The function A(z) in Theorem 4.26 is given by 1
αe

iαβπz1−α. The
pair (γ, ρ) is computed by the Stieltjes inversion formula to be γ = −α−1 sinα(β− 1/2)π

and

(1 + y2)ρ(dy) =
sin(αβπ)

απ
1(0,∞)(y)y1−α dy +

sin(α(1− β)π)

απ
1(−∞,0)(y)|y|1−α dy.

In particular, if 1 < α ≤ 2, then ρ has a finite first moment, and one can show that γ̃ = 0

in the reduced version (4.20).
(4) If α = 1/2 and β = 1 in the above example, then the transition kernel kt(x, ·) =

δx B µt is explicitly given by

kt(x, dy) =
2t
√
y

π[y2 + 2(t2 − x)y + (t2 + x)2]
1(0,∞)(y) dy + λδ−(

√
|x|−t)2 ,

where

λ =

1− t√
|x|
, x < −t2,

0, x ≥ −t2.

The generator is given by

(Gf)(x) = −
√

2 f ′(x) +

∫ ∞
0

(
f(y)− f(x)− (y − x)f ′(x)

(y − x)2
+

y

1 + y2
f ′(x)

)
2
√
y

π
dy

for f ∈ Cb(R) ∩ C2(R) and x ∈ R.

4.8.2. Feller property in the stationary case. We continue the study of the station-
ary case. We show below that a stationary B-homogeneous Markov process is actually a
Feller process. The advantage of Feller processes includes the fact that the process has
a cadlag version and has the strong Markov property. We refer the reader to [Kal02,
Chap. 19] and [RY99, Chap. III] for Feller processes and semigroups.

Definition 4.31. Let A be a locally compact Hausdorff space. Let C0(A) be the Banach
space of continuous functions f : A→ C vanishing at infinity, equipped with the uniform
norm. A one-parameter semigroup (Qt)t≥0 of linear operators on C0(A) is called a Feller
semigroup if

(F1) 0 ≤ Qtf ≤ 1 whenever 0 ≤ f ≤ 1 and t ≥ 0,
(F2) (Qtf)(x)→ f(x) as t ↓ 0 for all f ∈ C0(A) and x ∈ A.

Let St := Tt|C0(R), where (Tt)t≥0 is the transition semigroup on Bb(R) defined in
Theorem 4.28.

Theorem 4.32. The family (St)t≥0 is a Feller semigroup on C0(R).

Proof. We need to prove that St defines a linear operator on C0(R). The set

D = spanC

{
1

z − x
: z ∈ C \ R

}
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is dense in C0(R) by Lemma 4.19. By the Markov property it is easy to show that
StD ⊂ D. Indeed,

St

n∑
i=1

λi
zi − x

=

n∑
i=1

λi
Ft(zi)− x

∈ D, (4.21)

where Ft is the reciprocal Cauchy transform of kt(0, ·) as before. By approximating C0(R)

by D and using supx∈R |Stf(x)| ≤ ‖f‖C0(R) we conclude that StC0(R) ⊂ C0(R).
The property (F1) is obvious, since each kt(x, ·) is a probability measure on R. For

continuity at t = 0, first observe that for g ∈ D and x ∈ R we have (Stg)(x) → g(x)

by using (4.21) and the fact that Ft(z) is right-continuous (even right-differentiable) at
t = 0. For a general f ∈ C0(R) we can take g ∈ D close in uniform norm to f , so that

|(Stf)(x)− f(x)| ≤ |(St(f − g))(x)|+ |(Stg)(x)− g(x)|+ |g(x)− f(x)|
≤ 2‖f − g‖C0(R) + |(Stg)(x)− g(x)|,

and hence (Stf)(x)→ f(x) for all x ∈ R as t ↓ 0.

From the theory of Feller processes, the family (St)t≥0 has an infinitesimal generator L
with domain

D(L) =

{
f ∈ C0(R) : lim

t↓0

Stf − f
t

exists in the uniform norm
}
.

Then Lf is defined to be the limit above for all f ∈ D(L). From Theorem 4.28, for
f ∈ D(L) ∩ C2(R) the generator L coincides with G. We show that D is contained in
D(L) (it is clear that D ⊂ C2(R)).

Proposition 4.33. We have D ⊂ D(L), and hence for functions in D the convergence
of the Hunt formula in Theorem 4.28 holds with respect to the uniform norm.

Proof. By linearity it suffices to take g(x) = 1
z−x . Using (4.21) we have

(Stg)(x)− g(x) = − Ft(z)− z
(Ft(z)− x)(z − x)

.

Let A(z) := limt↓0(Ft(z)− z)/t which exists locally uniformly on C+ by [BP78]. Then

(Stg)(x)− g(x)

t
+

A(z)

(z − x)2

=
1

z − x

[(
A(z)− Ft(z)− z

t

)
1

Ft(z)− x
+A(z)

(
1

z − x
− 1

Ft(z)− x

)]
,

which converges to zero uniformly in x ∈ R.

It is known from [Kal02, Prop. 19.9] that any dense subspace ofD(L) which is invariant
by the operators {St : t ≥ 0} is a core for L. Thus we conclude that D is a core for L.

Problem 4.34. Is it true that C∞c (R) ⊂ D(L), or more strongly C2
c (R) ⊂ D(L)?

4.8.3. Martingale property. A martingale property for (not necessarily stationary)
B-homogeneous Markov processes follows from (4.7).
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Proposition 4.35. Let (Mt)t≥0 be a B-homogeneous Markov process with a filtration (Ft)
such that M0 = 0, and let (Ft)t≥0 be the associated additive Loewner chain. Then, for
each fixed u ≥ 0 and z ∈ Fu(C+) the process (Nz

t )0≤t≤u defined by

Nz
t =

1

F−1
t (z)−Mt

is an (Ft)-martingale.

Proof. Note that each map Ft is univalent by Theorem 3.16.

We show that B-homogeneous Markov processes with suitable shifts are martingales.
This fact was observed by Wang and Wendler [WW13] in the discrete time setting. We
do not assume the finite variance of the process, which was assumed in [WW13].

Proposition 4.36. Let (Mt)t≥0 be a B-homogeneous Markov process with a filtration
(Ft) such that M0 = 0 and E|Mt| <∞ for all t > 0. Then the process (Mt − E[Mt])t≥0

is an (Ft)-martingale.

Proof. There is a proof based on Proposition 4.35, but we give another proof. Let
(kst)0≤s≤t be the transition kernels. The Chapman–Kolmogorov relation implies

∞ >

∫
R
|y| k0t(0,dy) =

∫
R

(∫
R
|y| kst(x, dy)

)
k0s(0,dx),

which implies that ∫
R
|y| kst(x, dy) <∞

for almost all x with respect to k0s(0,dx) = P(Ms ∈ dx). For such x or x = 0, the
equality Fkst(x,·)(z) = Fkst(0,·)(z)− x and Lemma 2.5 show that∫

R
y kst(x, dy) = lim

y→∞
(iy − Fkst(0,·)(iy) + x) =

∫
R
y kst(0,dy) + x.

This shows that, by the Markov property (4.4),

E[Mt|Fs] = Ms +

∫
R
y kst(0,dy) a.s.

Taking the expectation shows that the last integral is equal to E[Mt −Ms].

4.9. Alternative constructions of additive monotone increment processes. One
can also use quantum stochastic calculus to construct additive monotone increment pro-
cesses as operators on the symmetric Fock space. We will present two such constructions
here. It should be remarked that both these constructions require stronger conditions
than the construction via classical Markov processes that we presented above.

The first construction uses results of [Fra03] to reduce the problem of constructing
monotone increment processes to Schürmann’s theory of Lévy processes on involutive
bialgebras [Sch93]. This requires in particular stationarity, i.e., that the distributions of
increments depend only on the difference t− s. We will only give a very rough sketch of
this construction; more details about the tools that have to be used here can be found in
Franz’s lecture in [FS16].
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The second construction was carried out by Belton [Bel05], who proved that a class
of vacuum-adapted stochastic integrals produces stochastic processes with monotonically
independent increments. We will show how the coefficients can be chosen to ensure that
the resulting process is associated to a given additive Loewner chain. This construction
requires all distributions to be compactly supported. It produces bounded operators on
the symmetric Fock space, which can easily be seen to be self-adjoint.

For the prerequisites on quantum stochastic calculus we refer to [Par92, Mey93, Lin05].

4.9.1. Generating functionals and Schürmann triples. Let (µt)t≥0 be a weakly
continuous monotone convolution semigroup of probability measures on R which admit
moments of all orders and µ0 = δ0. Then we can associate to it a linear functional ψ on
the algebra of polynomials C[x] in one self-adjoint variable by setting

ψ(p) = lim
t↘0

1

t

(∫
R
p(x)µt(dx)− p(0)

)
, p ∈ C[x].

This functional is hermitian, positive on positive polynomials vanishing at 0, and maps
constant functions to zero. We call a functional on C[x] with these properties a generating
functional. By a GNS-type construction one can extend any generating functional ψ :

C[x]→ C to a Schürmann triple (ρ, η, ψ) of linear maps ρ : C[x]→ L(D), η : C[x]→ D,
ψ : C[x] → C. Here D is a pre-Hilbert space, L(D) denotes the ∗-algebra of adjointable
operators on D, i.e.,

L(D) = {f : D → D linear : ∃f∗ : D → D satisfying ∀u, v ∈ D : 〈u, fv〉 = 〈f∗u, v〉},

and the three maps (ρ, η, ψ) satisfy the relations

ρ(pq) = ρ(p)ρ(q), ρ(p∗) = ρ(p)∗, ρ(1) = idD,

η(pq) = ρ(p)η(q) + η(p)q(0),

〈η(p∗), η(q)〉 = ψ(pq)− p(0)ψ(q)− ψ(p)q(0)

for p, q ∈ C[x]. Denote by ε : C[x] → C the evaluation at 0, i.e., ε(p) = p(0). Then
the relations mean that ρ is a unital ∗-representation, η is a 1-ρ-ε-cocycle, and (p, q) 7→
〈η(p∗), η(q)〉 is the 2-ε-ε-coboundary of ψ in the usual Hochschild cohomology of as-
sociative algebras (where we view D and C as (ρ, ε)-bimodule and an (ε, ε)-bimodule,
respectively). This is actually a special case of a more general construction for generating
functionals on augmented ∗-algebras (see [Sch93, FS16]). In the constructions below we
will only need the values R = ρ(x), e = η(x), and b = ψ(x) of these maps.

Let ψ be a generating functional. Then there exists a triple (b, σ, ν), called the char-
acteristic triple of ψ, where b, σ ∈ R, σ ≥ 0, and ν is a finite non-negative measure on R
with ν({0}) = 0 and which admits moments of all orders, such that

ψ(p) = bp′(0) +
σ2

2
p′′(0) +

∫
R\{0}

p(u)− p(0)− p′(0)u

u2
ν(du) for p ∈ C[x]. (4.22)

If ψ(x2) = 0, then one sets b = ψ(x), σ = 0, ν = 0. If ψ(x2) 6= 0, then one chooses
a probability measure µ that solves the moment problem

∫
R u

kµ(du) = ψ(xk+2)/ψ(x2),
k ∈ N, and sets b = ψ(x), σ2 = ψ(x2)µ({0}), and ν = ψ(x2)

(
µ−µ({0})δ0

)
. Note that ν is

obtained as a solution of a moment problem, and it is in general not uniquely determined.
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LetH = C⊕L2(R, 1
x2 ν). Then one can check that η(p) = (σp′(0), p−p(0)) for p ∈ C[x],

D = η(C[x]) ⊆ H, and ρ(p)(λ, f) = (p(0)λ, pf) for (λ, f) ∈ C ⊕ D, p ∈ C[x], defines a
Schürmann triple for ψ. The operator ρ(p) may be unbounded, but it is well defined on
the space D, which is spanned by polynomials, because all moments of ν are finite.

Let e = η(x), R = ρ(x). Then

ψ(xn) =


0 if n = 0,

b if n = 1,

〈e, e〉 = σ2 + ν(R) if n = 2,

〈e,Rn−2e〉 =
∫
xn−2 ν(dx) if n ≥ 3.

(4.23)

Let us summarize this result.

Proposition 4.37. Let ψ : C[x] → C be a generating functional. Then there exists a
pre-Hilbert space D, a symmetric operator R acting on D, a vector e ∈ D, and a real
number b such that ψ is given by (4.23).

For Belton’s construction of not necessarily stationary monotone increment processes
we have to construct a family of triples (Rt, et, bt)t≥0 acting on a fixed Hilbert space H
for a time-dependent family of generating functionals (ψt)t≥0. So let (ψt)t≥0 be a family
of generating functionals such that the following conditions hold:

(M) Measurability: the functions R+ 3 t 7→ ψt(x
k) ∈ C are measurable for all k ∈ N.

(L) Local integrability and boundedness: ψt(x), ψt(x
2) ∈ L1

loc(R+), i.e.,∫ T

0

|ψt(x)|dt <∞ and
∫ T

0

|ψt(x2)|dt <∞

for all T > 0, and the function M : R+ → R+,

M(t) =


0 if ψt(x2) = 0,

sup
k≥1

∣∣∣∣ψt(xk+2)

ψt(x2)

∣∣∣∣1/k else,

is locally bounded, i.e.

sup
0≤t≤T

M(t) <∞ for all T > 0.

We start by rephrasing these conditions in terms of the characteristic triples.

Proposition 4.38. Assume (ψt)t≥0 is a family of generating functionals on C[x], and
let ((bt, σt, νt))t≥0 be a family of characteristic triples associated to it as in (4.22). Then
(ψt)t≥0 satisfies conditions (M) and (L) if and only if

(
(bt, σt, νt)

)
t≥0

satisfies the follow-
ing conditions:

(CP) Compactness: for all T > 0, the measures νt in the triple (bt, σt, νt) associated to
ψt as in (4.22) are supported in some compact interval [−MT ,MT ] for 0 ≤ t ≤ T .

(WM) Weak measurability: the function R+ 3 t 7→ νt is weakly measurable, that is,
R+ 3 t 7→

∫
R fνt(dx) ∈ C is measurable for all f ∈ Cb(R).

(B) Local boundedness: the functions R+ 3 t 7→ bt ∈ R and R+ 3 t 7→ νt(R) ∈ R+

are locally integrable, R+ 3 t 7→ σt ∈ R+ is locally square integrable.



58 U. Franz, T. Hasebe and S. Schleißinger

Proof. Let us first show that if ψt(x2) 6= 0 for some t ∈ R+, then M(t) as defined
in (L) is the smallest real number M > 0 such that νt is supported in [−M,M ]. Indeed,
if the probability measure µt denotes a solution of the moment problem

∫
R x

k dµt =

ψt(x
k+2)/ψt(x

2), then in (L) we take the supremum of∣∣∣∣ψt(xk+2)

ψt(x2)

∣∣∣∣1/k ≤ ‖x‖Lk(µt)

with equality for even k. Since the RHS increases to ‖x‖L∞(µt) = ‖x‖L∞(νt) as k → ∞,
we have proved our claim, and we can deduce that condition (CP) is equivalent to local
boundedness of the function M in (L).

Condition (CP) ensures that the triples (bt, σt, νt) are uniquely determined by ψt,
because the moment problem for compactly supported measures is determinate.

Since bounded continuous functions can be approximated by polynomials on some
compact interval containing the support of νt for all 0 ≤ t ≤ T , we see that (M) and (WM)
are equivalent, when (CP) holds. That local integrability of ψt(x) and ψt(x2) is equivalent
to (B) follows immediately from the relations ψt(x) = bt and ψt(x2) = νt(R) + σ2

t .

Let us now look at the equivalent conditions for the triples ((Rt, et, bt))t≥0.

Proposition 4.39. Let (ψt)t≥0 be a family of generating functionals satisfying condi-
tions (M) and (L).

Then there exists a Hilbert H and a family of triples ((Rt, et, bt))t≥0 such that

(i) ψt is determined by (Rr, et, bt) via formula (4.23) for all t ≥ 0;
(ii) R+ 3 t 7→ Rt ∈ B(H) is weakly measurable, R+ 3 t 7→ et ∈ H is weakly measurable,

and R+ 3 t 7→ bt ∈ R is measurable;
(iii)

∫ T
0
|bt|dt+ (

∫ T
0
‖et‖2 dt)1/2 + supt∈[0,T ] ‖Rt‖ is finite for all T > 0.

Proof. By Proposition 4.37, there exists a triple (R̃t, ẽt, b̃t) constructed on the pre-Hilbert
space D̃ = C⊕L2(R, 1

x2 νt) representing ψt as in (4.23) for each t ≥ 0. The weak measur-
ability of (ψt)t≥0 immediately gives the measurability of t 7→ b̃t = ψt(x).

We construct a family of triples ((Rt, et, bt))t≥0 acting on D = C⊕`2, using the theory
of orthogonal polynomials. To each of the finite measure νt, t ≥ 0, we can associate a
family of polynomials (ptn)

N(t)
n=0 with pt0 = 1 and deg(ptn) = n that are mutually orthogonal

with respect to the measure νt. If the support of νt is finite, then N(t) + 1 is equal
to its cardinality, otherwise we have N(t) = ∞. We normalize these polynomials so
that

∫
ptn(x)ptn(x) νt(dx) = νt(R) for n = 0, 1, . . . , N(t). We can define an isometry

ı1 : L2(R, νt) → `2 by ı1(ptn) =
√
νt(R) vn, n = 0, 1, . . . , N(t), where (vn)n≥0 denotes

the canonical orthonormal basis of `2. Furthermore, the Hilbert spaces L2
(
R, 1

xνt
)
and

L2(R, νt) are isomorphic via ı2 : L2
(
R, 1

x2 νt
)
3 f 7→ f

x ∈ L
2(R, νt).

We set

Rt = ıR̃tı
∗, et = ı(ẽt), bt = b̃t,

for t ≥ 0, with ı = (idC ⊕ ı1 ◦ ı2) : C⊕ L2
(
R, 1

x2 νt
)
→ C⊕ L2(R, νt). It is clear that this

triple also satisfies (i).



Monotone increment processes, Markov processes, and Loewner chains 59

Since ẽt = (σt, x) and pt0 = 1, we get et = (σt,
√
νt(R) v0). If (αtn)n∈N and (βtn)n∈N

denote the Jacobi parameters from the three-term-recurrence relation

xptn = αtnp
t
n+1 + βtnp

t
n + αtn−1p

t
n−1,

then Rt acts as
Rt(λ, vn) = (0, αtnvn+1 + βtnvn + αtn−1vn−1)

on C⊕`2. So weak measurability of t 7→ et and t 7→ Rt, i.e., measurability of the functions
t 7→ 〈v, et〉 and t 7→ 〈v,Rtw〉 for all v, w ∈ `2, is equivalent to measurability of t 7→ νt(R),
t 7→ σt, and of the t-dependence of the Jacobi parameters.

Let A = {t ≥ 0 : ψt(x
2) 6= 0}; this is a measurable set by the weak measurability of

(ψt)t≥0. Recall that σt = 0 and νt = 0 for t 6∈ A, and that for t ∈ A we can define νt as
νt = ψt(x

2)(µt−µt({0})δ0), where µt is the solution of the moment problem
∫
ukµt(du) =

ψt(x
k+2)/ψt(x

2), which is unique thanks to (CP). Using again (CP), we have

Gµt(z) =
∑
k≥0

ψt(x
k+2)

ψt(x2)zk+1

for sufficiently large z. This is clearly measurable as a function of t for each z with
sufficiently large |z|, which implies that its analytic continuation to C+ is also measurable
for all z ∈ C+. Therefore, by Stieltjes inversion (2.18), we get the measurability of

σ2
t = ψt(x

2)µt({0}) = ψt(x
2) lim
ε↘0

iεGµt(iε),

and of νt(R) = ψt(x
2)(1− µt({0})).

Similarly we can prove measurability of νt(B) for all Borel subsets B (see the argu-
ments in Theorem 4.12), of

∫
f dνt for all bounded continuous f , and finally of the Jacobi

parameters of νt.
The compactness condition (CP) and the boundedness assumption (B) ensure that

(iii) holds.

Remark 4.40. It is not difficult to check that conversely, if we have a family of triples
((Rr, et, bt))t≥0 satisfying conditions (ii) and (iii), and define (ψt)t≥0 via (4.23), the
(ψt)t≥0 will satisfy (M) and (L).

4.9.2. A construction of monotone Lévy processes using Schürmann’s repre-
sentation theorem. Let A = C[x] be the algebra of polynomials in one self-adjoint
variable. Note that x 7→ 0 ∈ C and x 7→ x1 + x2 ∈ C[x1, x2] ∼= A q A extend to unique
unital ∗-homomorphisms ε : A → C and ∆ : A → AqA (where q denotes the coproduct
in the category of associative unital ∗-algebra, i.e., the free product with identification of
the unit elements), and (A,∆, ε) is a dual semigroup in the sense of [Fra03, Section 2.1].

Let X = (Xt)t≥0 ⊆ L(H) be a SAIP over some concrete quantum probability space
(H,Ω), whereH is a pre-Hilbert space. Note that the conditionX ⊆ L(H) ensures that the
definition of monotone independence in Definition 1.9 makes sense even if H is only a pre-
Hilbert space, and that we can work with (L(H),ΦΩ) as an abstract quantum probability
space. Then all moments ofX exist and, if the distributions of the incrementsXt−Xs ofX
depend only on t − s, then x 7→ jst(x) = Xt −Xs ∈ L(H) defines a quantum stochastic
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process J =
(
jst : A → (L(H),ΦΩ)

)
0≤s≤t with values in the abstract probability space

(L(H),ΦΩ), which is a monotone Lévy process in the sense of [Fra03, Definition 2.5].
Let (µt)t≥0 be the monotone convolution semigroup consisting of the distributions ofX

with respect to to the state vector in which the increments are monotonically independent.
We denote by ψ the generating functional defined as the derivative at t = 0 of (µt)t≥0.
For our construction we will need the pre-Hilbert space D, the operator R = ρ(x), the
vector e = η(x), and the scalar b = ψ(x) obtained from the Schürmann triple of ψ in the
previous paragraph (see Proposition 4.37).

Let P be the two-dimensional ∗-algebra generated by one projection p. We equip
Ã = A q P with the ∗-bialgebra structure given in [Fra03, Prop. 3.1] for the monotone
case. Franz proved in [Fra03, Thm. 3.3] that we have a one-to-one correspondence between
monotone Lévy processes J on A and a class of Lévy processes in the sense of Schürmann
J̃ = (̃st : Ã → (L(H),ΦΩ))0≤s≤t on the ∗-bialgebra Ã and over some algebraic probabil-
ity space (L(H),ΦΩ). By Schürmann’s representation theorem (cf. [Sch93, Thm. 2.5.3]),
J̃ has a realization on a symmetric Fock space Γ acting as possibly unbounded opera-
tors on some common invariant dense subspace H ⊆ Γ. The operators X̃t = ̃0t(x) and
Qt = ̃0t(p) are obtained as solutions of the quantum stochastic differential equations

Qt = idΓ −
∫ t

0

Qs dΛs(idD),

X̃t =

∫ t

0

(
dA+

s (e) + dΛs(R− idD) + dAs(e) + ψ(x) ds− X̃s dΛs(idD)
)
.

This follows from the extension of the Schürmann triple on A to a Schürmann triple
on Ã given in [Fra03, Prop. 3.9]. Note that we can explicitly solve the first of these
equations; Qt is the second quantization of multiplication by the indicator function
1[t,+∞) on L2(R+, D) (see [Fra03, Prop. 3.10]). Equivalently, it is the tensor product
Qt = PΩ ⊗ IΓ[t,+∞)

of the orthogonal projection onto the vacuum vector Ω with the
identity operator, if we use the factorization ΓR+

∼= Γ[0,t] ⊗ Γ[t,+∞) of the Fock space.
By [Fra03, Thm. 3.7], we can recover a monotone Lévy process on C[x] and therefore

a SAIP Y = (Yt)t≥0 by setting
Yt = X̃tPt,

where Pt is the tensor product Pt = IΓ[0,t]
⊗PΩ of the identity operator with the orthogonal

projection onto the vacuum vector Ω, with respect to the factorization ΓR+
∼= Γ[0,t] ⊗

Γ[t,+∞). The process Y constructed in this manner is equivalent to X, i.e., all their
expectation values agree.

To realize a monotone Lévy processes on a symmetric Fock space we only need to
know its generating functional.

We can summarize this as follows.

Theorem 4.41. Let (cn)n≥1 be a sequence of real numbers that is conditionally positive
definite in the sense that the functional ψ : C[x]→ C determined by ψ(xn) = cn for n ≥ 1

and ψ(1) = 0 is positive on all positive polynomials vanishing at 0.
Then there exists a family X = (Xt)t≥0 of symmetric operators defined on a common

invariant subspace of the symmetric Fock space Γ = Γ(L2(R, D)) constructed from some
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pre-Hilbert space D, containing the vacuum vector Ω ∈ Γ, such that:

(i) The algebras A1 = span{Xk
t1 : k ≥ 1}, A2 = span{(Xt2 −Xt1)k : k ≥ 1}, . . . ,An =

span{(Xtn − Xtn−1)k : k ≥ 1} generated by the increments of X are monotonically
independent with respect to the vacuum state Φω(·) = 〈Ω, ·Ω〉 for n ≥ 1 and any
choice of 0 < t1 < · · · < tn.

(ii) The functions R+ 3 t 7→ 〈Ω, (Xs+t −Xs)
nΩ〉 ∈ C are differentiable in t for s, t > 0

and n ≥ 1, and we have

lim
t↘0

1

t
〈Ω, (Xs+t −Xs)

nΩ〉 = cn.

Proof. This follows from the results in [Fra03, Sch93] mentioned above.

Remark 4.42. If (µt)t≥0 is a monotone convolution semigroup of compactly supported
probability measures and (Ft)t≥0 denotes its reciprocal Cauchy transforms, then its gener-
ator A(z) = d

dt

∣∣
t=0

Ft(z) can be written as −A(z) = α+
∫

1
z−x τ(dx) with a real number α

and a compactly supported finite non-negative measure τ .
To construct the SAIP associated to (µt)t≥0, we have to choose the sequence (cn)n∈N

given by c1 = α, and cn =
∫
xn−2 τ(dx) for n ≥ 2, since

∞∑
n=0

cnz
−n−1 = ψ

(
1

z − x

)
=

d

dt

∣∣∣∣
t=0

∫
1

z − x
µt(dx) = −A(z)

z2
.

4.9.3. Belton’s construction. Let us now discuss Belton’s approach using vacuum-
adapted stochastic calculus to realize not necessarily stationary quantum stochastic pro-
cesses with monotonically independent increments (cf. [Bel05]).

We continue to use the more basic and more explicit notation of [Sch93, FS16] for
stochastic integrals, rather than the more elegant notation of Lindsay and Belton in
[Lin05, Bel05, Bel04]. In this construction all stochastic integrals will be vacuum-adapted,
i.e., the integrands are of the form

Et = Ê(s)⊗ PΩ on Γ ∼= Γ0,t ⊗ Γt,∞

for all t ≥ 0. We denote the vacuum projection acting on the future of t again by
Pt = IΓ[0,t]

⊗ PΩ. For a family of triples (Rt, et, bt)t≥0 as in Proposition 4.39, we define
the associated SAIP (Xt)t≥0 by the quantum stochastic integral

Xt =

∫ t

0

Ps
(
dΛ(Rs) + dA+(es) + dA(es) + bs ds

)
, t ≥ 0. (4.24)

Note that in Belton’s notation the stochastic integral in (4.24) is written

Xt =

∫ t

0

Ě dΛ,

with

Ě(s) =

(
bs 〈es|
|es〉 Rs

)
⊗ Ps, s ∈ R+,

where 〈es| and |es〉 denote the linear operators 〈es| : `2 3 v 7→ 〈es, v〉 ∈ C, |es〉 : C 3 λ 7→
λes ∈ `2.
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By the Ito formula for so-called Ω-processes we get the following formulas for the
powers of Xt.

Lemma 4.43. Let (Xt)t≥0 be defined by (4.24). Then we have the integral representations

Xn
t =

n−1∑
k=0

∫ t

0

Xk
s Ps dI(n,k)

s

for n ≥ 2, where the integrators dI(n,k)
s are given by

dI(n,0)
s = dΛ(Rns ) + dA+(Rn−1

s es) + dA(Rn−1
s es) + 〈es, Rn−2

s es〉︸ ︷︷ ︸
=ψs(xn)

ds,

dI(n,k)
s = dA+(Rn−1−k

s es) + dA(Rn−1−k
s es) + (k + 1) 〈es, Rn−2−k

s es〉︸ ︷︷ ︸
=ψs(xn−k)

ds,

for k ∈ {1, . . . , n− 2},
dI(n,n−1) = dA+(es) + dA(es) + n bs︸︷︷︸

=ψs(x)

ds.

Proof. Rewrite [Bel05, Cor. 2.1] in our notation and reorder the sums. The identification
of the coefficients of the “ds” term with values of ψt comes from (4.23).

Applying [Bel05, Thm. 2.1] with f = g = 0, we get the following integral equations
for the vacuum expectation of Xn

t :

〈Ω, Xn
t Ω〉 =

∫ t

0

n−1∑
k=0

(k + 1)ψs(x
n−k)〈Ω, Xk

sΩ〉ds. (4.25)

Since (Xt)t≥0 is bounded, we can expand the Cauchy transform

GXt(z) = 〈Ω, (z −Xt)
−1Ω〉

of the law of Xt into a power series

GXt(z) =

∞∑
n=0

z−n−1〈Ω, Xn
t Ω〉

for z ∈ C with |z| > ‖Xt‖.
Using the integral equation (4.25), we get the following differential equation for GX :

∂

∂t
GXt(z) =

∞∑
n=0

n−1∑
k=0

(k + 1)z−n−1ψt(x
n−k)〈Ω, Xk

t Ω〉

=

∞∑
`=0

z−`−1ψt(x
`)

∞∑
k=0

(k + 1)z−k〈Ω, Xk
t Ω〉

= At(z)
∂

∂z
GXt(z)

for sufficiently large |z|, where

−At(z) = z2
∞∑
`=0

z−`−1ψt(x
`).
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In terms of the reciprocal Cauchy transform we get the same equation,
∂

∂t
FXt(z) = At(z)

∂

∂z
FXt(z). (4.26)

Let (bt, σt, νt) be the characteristic triple associated to ψt in (4.22). Then the function
At can also be written as

−At(z) = bt +

∫
1

z − x
(νt + σ2

t δ0)(dx).

Theorem 4.44. Let (ψt)t≥0 be a family of generating functionals on C[z] satisfying (M)
and (L). Denote by ((Rt, et, bt))t≥0 the triples associated to (ψt)t≥0 by Proposition 4.39.

Then the vacuum adapted quantum stochastic integral in (4.24) defines a quantum
stochastic process (Xt). Furthermore, this quantum stochastic process is a SAIP and the
reciprocal Cauchy transforms

Fst(z) =
1

〈Ω,
(
z − (Xt −Xs)

)−1
Ω〉
, z ∈ C+, 0 ≤ s ≤ t,

of the distributions of its increments are the transition mappings of the additive Loewner
chain given by the solution of (4.26) with initial condition Fss(z) = z.

Proof. By Propositions 4.38 and 4.39, the family
(
(Rt, et, bt)

)
t≥0

has the properties (ii)
and (iii) of Proposition 4.39, therefore [Bel05, Thm. 3.1] ensures that (Xt)t≥0 is well
defined and a SAIP.

Equation (4.26) is the Loewner partial differential equation (3.4) for the additive
Herglotz vector field M(z, t) = At(z). This shows that the reciprocal Cauchy transforms
of (Xt)t≥0 indeed form an additive Loewner chain, as claimed.



5. Multiplicative monotone increment processes, classical
Markov processes, and Loewner chains

In this section we will construct a bijection between a class of unitary operator processes,
multiplicative Loewner chains, and some class of Markov processes on the unit circle.

5.1. From unitary multiplicative monotone increment processes to multi-
plicative Loewner chains. We will consider the following classes of unitary quantum
stochastic processes.

Definition 5.1. Let (H, ξ) be a concrete quantum probability space and (Ut)t≥0 ⊆ B(H)

a family of unitary operators with U0 = I. We will call (Ut) a unitary multiplicative
monotone increment process (UMIP) if the following conditions are satisfied:

(a) The mapping (s, t) 7→ µst is continuous with respect to weak convergence, where µst
denotes the distribution of U−1

s Ut.
(b) The tuple

(Ut1 − I, U−1
t1 Ut2 − I, . . . , U−1

tn−1
Utn − I)

is monotonically independent for all n ∈ N and all t1, . . . , tn ∈ R such that 0 ≤ t1 ≤
t2 ≤ · · · ≤ tn.

The random variables {U−1
s Ut : 0 ≤ s ≤ t} are called increments. If U−1

s Ut has the same
law as Ut−s for all 0 ≤ s ≤ t we say that increments are stationary and (Ut) is a unitary
multiplicative monotone Lévy process. We call (Ut) centered if 〈ξ, Utξ〉 ∈ R for all t ≥ 0.
We will call (Ut) normalized if 〈ξ, Utξ〉 = e−t for all t ≥ 0.

Theorem 5.2. Let (Ut)t≥0 be a UMIP in a quantum probability space (H, ξ). Let

ψst(z) =

〈
ξ,

zU∗sUt
1− zU∗sUt

ξ

〉
and ηst(z) =

ψst(z)

1 + ψst(z)

for 0 ≤ s ≤ t and |z| < 1, and let ηt = η0t. Then (ηt)t≥0 is a multiplicative Loewner
chain with transition mappings (ηst).

Proof. The continuity of (s, t) 7→ µst implies the continuity of (s, t) 7→ ηst due to Lem-
ma 2.11. The result now follows readily from U∗sUu = U∗sUtU

∗
t Uu, the fact that the pair

(U∗sUt − I, U∗t Uu − I) is monotonically independent, Remark 2.2, and (2.7).

Theorem 5.3. Two UMIPs are equivalent (in the sense of Definition 4.1) if and only if
the distributions of increments coincide.

[64]
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Proof. The “only if” part is similar to the proof of Theorem 4.7: we now take n = 1 and
f1(x) = xz/(1− xz) for z ∈ D, and use η-transforms with Theorem 5.2.

For the “if” part, by approximation it suffices to consider fi(x) = xki for integers ki.
For example if n = 3, k1, k2 ≥ 0 > k3 and t2 ≤ t1 ≤ t3 we write

〈ξ, f1(Ut1)f2(Ut2)f3(Ut3)ξ〉 = 〈ξ, (Ut2U−1
t2 Ut1)k1(Ut2)k2((U−1

t1 Ut3)∗U∗t1)|k3|ξ〉.

The product of unitaries on the RHS can further be expressed as a polynomial of Ut2−I,
U−1
t2 Ut1 − I, (Ut1 − I)∗ and (U−1

t1 Ut3 − I)∗. Then thanks to monotone independence for
the increments the inner product of each monomial factorizes, and each factor can be
computed in terms of the distribution of an increment. The final expression only depends
on the distributions of increments.

5.2. From multiplicative Loewner chains to �-homogeneous Markov processes

Definition 5.4. A probability kernel k on T is called �-homogeneous if it satisfies

δx � k(y, · ) = k(xy, · )

for all x, y ∈ T. A Markov process (Mt)t≥0 with values in T is called a �-homogeneous
Markov process if its transition kernels (kst)0≤s≤t satisfy the following conditions:

(a) The mapping (s, t) 7→ kst(x, ·) is continuous with respect to weak convergence for all
x ∈ T.

(b) The kernel kst is �-homogeneous for all 0 ≤ s ≤ t.

Theorem 5.5. Let (ηt)t≥0 be a multiplicative Loewner chain with transition mappings
(ηst)0≤s≤t. Then there exists a �-homogeneous Markov process (Mt)t≥0 with M0 = 1

whose transition kernels (kst)0≤s≤t are determined by∫
T

zy

1− zy
kst(x,dy) =

ηst(z)x

1− ηst(z)x
(= ψδx(ηst(z))) (5.1)

for 0 ≤ s ≤ t and x ∈ T.

Proof. The proof is similar to that of Theorem 4.12; one only needs to use the kernel
function zy/(1− zy) instead of 1/(z− y). The existence of a probability measure kst(x, ·)
follows from (5.1) and Lemma 2.9. The weak continuity of (s, t) 7→ kst(x, ·) follows from
Lemma 2.11. The measurability of x 7→ kst(x,B) follows from the inversion formulas
(2.20) and (2.21).

Let (Mt) be the Markov process constructed in Theorem 5.5. The Markov property
(4.4) entails

E
[

zMt

1− zMt

∣∣∣∣Fs] =
ηst(z)Ms

1− ηst(z)Ms
a.s., (5.2)

which plays an important role in the construction of UMIPs in the next section.

5.3. From �-homogeneous Markov processes to unitary multiplicative mono-
tone increment processes. In the unitary case there is no technical difficulty of un-
bounded operators that arose in the additive case.
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Let (Mt)t≥0 be a �-homogeneous Markov process on T with M0 = 1 adapted to
a filtration (Ft)t≥0. Let (Ω,F ,P) be the underlying probability space. We introduce a
family of unitary operators (Ut)t≥0 on L2(Ω,F ,P) by

Ut = I + (Mt − I)Pt, (5.3)

where Mt is regarded as a multiplication operator and Pt is the conditional expectation
E[ · |Ft] as before. We first check that each Ut is unitary. Recalling that Mt and Pt
commute, we have

U∗sUt = (I + (M∗s − I)Ps)(I + Pt(Mt − I))

= I + (M∗s − I)Ps + (Mt − I)Pt + (M∗s − I)Ps(Mt − I)

= I + (Mt − I)Pt + (M∗s − I)PsMt. (5.4)

Specializing to s = t shows that U∗t Ut = I. Similarly we can prove that UtU∗t = I.
Moreover, (Ut) is a UMIP as shown below.

Proposition 5.6. The unitary process (Ut) satisfies

Ps
zU∗sUt

1− zU∗sUt
Ps = ψst(z)Ps (5.5)

for 0 ≤ s ≤ t and z ∈ C \ T, where ψst(z) is defined by

ψst(z) =

∫
T

zy

1− zy
kst(1,dy).

In particular, the distribution of the unitary operator U∗sUt with respect to the state
〈1Ω, ·1Ω〉 is given by kst(1, ·).

Proof. We prove the formula (5.5) first for z ∈ D. The �-homogeneity condition implies
kst(x,dy) = δx � kst(1,dy) and hence∫

T

zy

1− zy
kst(x,dy) = ψδx(ηst(z)) =

ηst(z)x

1− ηst(z)x
,

where ηst := ψst/(1 + ψst). Therefore, the Markov property (5.2) holds, which can also
be expressed as

Ps
zMt

1− zMt
Ps =

ηst(z)Ms

1− ηst(z)Ms
Ps, 0 ≤ s ≤ t, z ∈ D. (5.6)

First we write

Ps
zU∗sUt

1− zU∗sUt
Ps = −Ps +

∞∑
n=0

znPs [I + (Mt − I)Pt + (M∗s − I)PsMt]
n
Ps

for z ∈ D. In the expansion of Ps[I + (Mt − I)Pt + (M∗s − I)PsMt]
nPs, the projection Pt

does nothing, so that we may replace Pt by the identity. This gives us

Ps
zU∗sUt

1− zU∗sUt
Ps = −Ps +

∞∑
n=0

Ps [zMt + z(M∗s − I)PsMt]
n
Ps. (5.7)
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Introducing the simplified notation Zt = (Mt− I)Pt and expanding the power, the above
can be expressed in the following way:

(5.7) = −Ps

+

∞∑
n=0

n∑
k=0

∑
p1,...,pk+1≥0

p1+···+pk+1=n−k

Ps(zMt)
p1(zZ∗sMt)(zMt)

p2(zZ∗sMt) · · · (zZ∗sMt)(zMt)
pk+1Ps

= −Ps +
∞∑
k=0

∑
p1,...,pk+1≥0

zp1+···+pk+1+kPsM
p1
t Z∗sM

p2+1
t Z∗sM

p3+1
t · · ·Z∗sM

pk+1+1
t Ps

= −Ps +

∞∑
k=0

∑
q1≥0

∑
q2,...,qk+1≥1

zq1+···+qk+1PsM
q1
t Z

∗
sM

q2
t Z

∗
sM

q3
t · · ·Z∗sM

qk+1

t Ps

= −Ps +

∞∑
k=0

Ps
1

1− zMt
Z∗s

zMt

1− zMt
Z∗s · · ·Z∗s

zMt

1− zMt
Ps.

Using the relations Z∗sPs = PsZ
∗
s = Z∗s and the Markov property (5.6), we can compute

the above further to get

(5.7) = −Ps +

∞∑
k=0

Ps
1

1− ηst(z)Ms

(
ηst(z)Ms

1− ηst(z)Ms

)k
(Z∗s )kPs

= −Ps + Ps
1

1− ηst(z)Ms

1

1− ηst(z)(I−Ms)
1−ηst(z)Ms

Ps

= −Ps + Ps
1

1− ηst(z)
Ps =

ηst(z)

1− ηst(z)
Ps = ψst(z)Ps,

as desired for z ∈ D. To show this identity for |z| > 1 we use the identity

zx

1− zx
= −1− z−1x

1− z−1x
, |z| > 1, |x| = 1,

and then setting x = U∗sUt and sandwiching by Ps yield

Ps
zU∗sUt

1− zU∗sUt
Ps = Ps

(
−1− z−1U∗sUt

I − z−1U∗sUt

)∗
Ps =

(
−1− ψst(z−1)

)
Ps

=

∫
T

(
−1− z−1x

1− z−1x

)
kst(1,dx)Ps = ψst(z)Ps.

Finally, applying (5.5) to the constant function 1Ω proves that〈
1Ω,

zU∗sUt
1− zU∗sUt

1Ω

〉
= ψst(z), (5.8)

which shows the last statement.

In order to generalize the functions zx/(1 − zx) to all continuous functions in the
above proposition, we need an approximation lemma.

Lemma 5.7. The set of functions

spanC{1, zx(1− zx)−1 : z ∈ C \ T} is dense in C(T).
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Proof. The proof is similar to that of Lemma 4.19.

Theorem 5.8. The process (Ut)t≥0 defined in (5.3) is a UMIP.

Proof. As M0 = 1, we have U0 = I. Due to Proposition 5.6, the distribution of U∗sUt is
equal to kst(1, ·), and the mapping (s, t) 7→ kst(1, ·) is weakly continuous by assumption.
Formula (5.4) implies that (U∗sUt−I)Pu = Pu(U∗sUt−I) = U∗sUt−I for all 0 ≤ s ≤ t ≤ u,
and hence

f(U∗sUt − I)Pu = Puf(U∗sUt − I) = f(U∗sUt − I) (5.9)

for all f ∈ Cb(C) with f(0) = 0. By Proposition 5.6, formula (5.8) and Lemma 5.7 we
obtain Psg(U∗t Uu)Ps = 〈1Ω, g(U∗t Uu)1Ω〉Ps for any 0 ≤ s ≤ t ≤ u and g ∈ C(T). This
also implies that

Psf(U∗t Uu − I)Ps = 〈1Ω, f(U∗t Uu − I)1Ω〉Ps (5.10)

for all f ∈ Cb(C). With the key formulas (5.9) and (5.10) the remaining proof is similar
to that of Theorem 4.21.

5.4. Summary of the one-to-one correspondences. All in all, Theorems 5.2, 5.5,
and 5.8 yield one-to-one correspondences between

(A) multiplicative Loewner chains (ηt)t≥0 in D (Def. 3.1),
(B) T-valued �-homogeneous Markov processes (Mt)t≥0 with M0 = 1 up to equivalence

(Def. 5.4 and Def. 4.9),
(C) unitary multiplicative monotone increment processes (Ut)t≥0 up to equivalence

(Def. 5.1 and Def. 4.1).

Moreover, the above objects also correspond to:

(D) families (µst)0≤s≤t of probability measures on T such that

(i) µtt = δ1 for all t ≥ 0,

(ii) µsu = µst � µtu for all 0 ≤ s ≤ t ≤ u,
(iii) (s, t) 7→ µst is weakly continuous.

(C)⇒(D). Given a UMIP (Ut) we define µst to be the law of U−1
s Ut. This is indepen-

dent of a choice of a UMIP in the same equivalence class by Theorem 5.3.
(D)⇒(A). Given (µst) we define the transition mappings ηst = ηµst . Then (η0t) forms

a multiplicative Loewner chain.
Thus our constructions yield bijections between the objects (A)–(D).
Following the additive case, we also call such a family of probability measures sat-

isfying the three conditions in (D) a weakly continuous �-convolution hemigroup. By
replacing � by another convolution ? we also define a notion of weakly continuous
?-convolution hemigroups.

Furthermore, we can relate properties of the three notions as follows:

(1) The Markov process (Mt)t≥0 is centered for all t ≥ 0 if and only if the quantum
process (Ut)≥0 is centered if and only if η′t(0) ∈ R for all t ≥ 0.
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(2) The Markov process (Mt)t≥0 is normalized with E[Mt] = e−t for all t ≥ 0 if and only
if the quantum process (Ut)t≥0 is normalized if and only if η′t(0) = e−t for all t ≥ 0.

(3) The Markov process (Mt)t≥0 is stationary if and only if (Ut) is stationary, i.e. U∗sUt
and Ut−s have the same law for all 0 ≤ s ≤ t, if and only if the Loewner chains form
a semigroup: ηs ◦ ηt = ηs+t.

5.5. Construction of �-homogeneous Markov processes from multiplicative
free increment processes. Assume that (µst)0≤s≤t<∞ are probability distributions
on T coming from the increments of a free multiplicative increment process started at 1,
i.e. they form a weakly continuous �-convolution hemigroup (see Section 5.4) and µtt = δ1.
It is known that each µst is �-infinitely divisible. There exists a family of probability
measures (νst)0≤s≤t on T such that

µ0t = µ0s � νst

for 0 ≤ s ≤ t [Bia98]. These measures are unique because the η-transforms can be
obtained via ηνst(z) = η−1

µ0s
◦ ηµ0t

(z) in a neighborhood of 0. Note that the �-infinite
divisibility of µ0s implies that ηµ0s

is univalent, and hence η−1
µ0s

is defined in a neigh-
borhood of 0. The weak continuity for the map (s, t) 7→ νst now follows from [BV92,
Prop. 2.5]. Thus (νst) forms a weakly continuous �-convolution hemigroup, and hence
we can construct a �-homogeneous Markov process via the correspondence in Sec-
tion 5.4.

In particular, in the stationary case µst can be expressed as µt−s, where (µt)t≥0 forms
a weakly continuous �-convolution semigroup on T with µ0 = δ1. The η-transform of νst
above can be expressed as

ηνst(z)

z
=

(
ηµt(z)

z

)1−s/t

, (5.11)

which was essentially proved in [BB05]. Notice that one has to choose a suitable branch
of the power function z 7→ zt in order to define the RHS of (5.11). Formula (5.11) also
shows that

νst = µ
∪×(1−s/t)
t , (5.12)

where ∪× is multiplicative Boolean convolution defined in (2.8).

5.6. Generators, Feller property, and martingale property of �-homogeneous
Markov processes

5.6.1. Generators in the stationary case. We compute Hunt’s formula for the gen-
erators of stationary �-homogeneous Markov processes on T with initial distribution δ1.
Let (kt) be the transition kernels. Then the distributions µt := kt(1, ·) = P[Mt ∈ ·] are
weakly continuous regarding t and form a �-convolution semigroup, namely

µs � µt = µs+t, s, t ≥ 0.

As in the additive case, the Hunt formula for Markov processes is closely related to
the Lévy–Khinchin representation for the �-convolution semigroups proved by Bercovici
[Ber05, Thm. 4.2].
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Theorem 5.9.

(1) Let {µt}t≥0 ⊂ P(T) be a weakly continuous �-convolution semigroup such that µ0 =

δ1, and let ηt := ηµt . Then the right derivative B(z) = d
dz

∣∣
t=0

ηt(z) exists and {ηt}
satisfies the differential equation

d

dt
ηt(z) = ηt(z)B(ηt(z)), η0(z) = z, t ≥ 0, z ∈ D. (5.13)

Moreover, the function B is of the Herglotz form

B(z) = iα−
∫
T

1 + zζ

1− zζ
ρ(dζ), (5.14)

where α ∈ R and ρ is a finite, non-negative measure on T. The pair (α, ρ) is unique
and is called the generating pair.

(2) Conversely, given an analytic map B of the form (5.14), the solution {ηt} to the
differential equation (5.13) can be expressed as ηt = ηµt for a weakly continuous
�-convolution semigroup {µt}t≥0 such that µ0 = δ1.

We will first relate kt(x, ·) to the generating pairs (α, ρ). The proof is similar to and
easier than the additive case (see Section 4.8.1) because any family of uniformly bounded
finite, non-negative measures on T is tight.

Lemma 5.10. Let (Mt)t≥0 be a stationary �-homogeneous Markov process with M0 = 1

and with transition kernels (kt)t≥0. Let (α, ρ) be the generating pair in (5.14) associated
to the �-semigroup {kt(1, ·)}t≥0. Then for all x ∈ T we have, as t ↓ 0,

1

t
Re(1− x̄y) kt(x, dy)→ ρ(dy) (weakly),

and
1

t

∫
T

Im(x̄y) kt(x, dy)→ α. (5.15)

Proof. Let ψx;t and ηx;t be the moment generating function and its η-transform of the
distribution kt(x, ·). Let B be the infinitesimal generator for the semigroup {kt(1, ·)}t≥0

given in (5.14). Computing the derivative of ψx;t(z) = xη0;t(z)/(1− xη0;t(z)) at t = 0 we
have

B(z) = − lim
t→0

1

t

∫
T

(1− zx)(1− x̄y)

1− zy
kt(x, dy)

= − lim
t→0

1

t

(∫
T

1 + zy

1− zy
Re(1− x̄y) kt(x, dy) + i

∫
T

Im(1− x̄y) kt(x, dy)

)
.

Substituting z = 0 we get the uniform boundedness for the family of finite, non-negative
measures {t−1 Re(1− x̄y) kt(x, dy) : 0 < t < 1}. Therefore we can extract a weak limit ρ′,
which is a finite, non-negative measure on T. By the uniqueness of the Herglotz repre-
sentation we get ρ′ = ρ, and the convergence (5.15) as well.

To describe Hunt’s formula for the unitary case, we identify a function f on T with
the function x 7→ f(eix) defined on R. Similarly, we identify a measure µ on T with the
measure B 7→ µ(eiB), B a Borel subset of R. Instead of the free difference quotient (4.18)
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we introduce the following operator δ : C1(T)→ C(T2):

(δf)(θ, φ) =


f(θ)−f(φ)

tan((θ−φ)/2) , θ − φ /∈ πZ,
2f ′(θ), θ − φ ∈ π(2Z),

0, θ − φ ∈ π(2Z + 1).

(5.16)

Then, for f ∈ C2(T) we have the formula

(∂θδf)(θ, φ) =

{
f(φ)−f(θ)−sin(φ−θ)f ′(θ)

1−cos(θ−φ) , θ − φ /∈ π(2Z),

f ′′(θ), θ − φ ∈ π(2Z).
(5.17)

Let Bb(T) be the set of bounded Borel measurable functions from T to C.

Theorem 5.11. Let (Mt)t≥0 be a stationary �-homogeneous Markov process withM0 = 1

and with transition kernels (kt)t≥0. Let Tt : Bb(T)→ Bb(T) be its transition semigroup

(Ttf)(θ) =

∫
[0,2π)

f(φ) kt(θ,dφ), f ∈ Bb(T), (5.18)

which satisfies TsTt = Ts+t for s, t ≥ 0. The generator of the transition semigroup is then
given by

(Gf)(θ) :=
d

dt

∣∣∣∣
t=0

(Ttf)(θ) = αf ′(θ) +

∫
[0,2π)

(∂θδf)(θ, φ) ρ(dφ)

for f ∈ C2(T) and θ ∈ [0, 2π), where (α, ρ) is the pair in (5.14) associated to the �-
semigroup {kt(1, ·)}t≥0.

Proof. For θ, φ ∈ [0, 2π) we have∫
[0,2π)

f(φ) kt(θ,dφ)− f(θ) =

∫
[0,2π)\{θ}

{f(φ)− f(θ)} kt(θ,dφ)

=

∫
[0,2π)\{θ}

f(φ)− f(θ)− sin(φ− θ)f ′(θ)
1− cos(φ− θ)

(1− cos(φ− θ)) kt(θ,dφ)

+ f ′(θ)

∫
[0,2π)\{θ}

sin(φ− θ) kt(θ,dφ)

=

∫
[0,2π)

(∂θδf)(θ, φ)(1− cos(φ− θ)) kt(θ,dφ) + f ′(θ)

∫
[0,2π)

sin(φ− θ) kt(θ,dφ).

Then Lemma 5.10 completes the proof.

Example 5.12. (1) The unitary monotone Brownian motion (see Example 7.10) has
�-infinitely divisible distributions characterized by α = 0 and ρ = (1/2)δ1 on T. Then

(Gf)(θ) =

{
f(0)−f(θ)+(sin θ)f ′(θ)

2(1−cos θ) , θ /∈ π(2Z),
1
2f
′′(0), θ ∈ π(2Z).

(2) The probability measure µt = (1−e−t)h+e−tδ1 forms a �-convolution semigroup
with µ0 = δ1. The η-transform is given by ηµt(z) = e−tz[1 − (1 − e−t)z]−1, and the
function B in (5.14) is given by B(z) = z − 1. The pair (α, ρ) is given by α = 0 and
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dρ(ζ) = [1− Re(ζ)]h(dζ), and hence the generator for the associated Markov process is

(Gf)(θ) =

∫
[0,2π)

(∂θδf)(θ, φ) (1− cosφ)
dφ

2π
.

for f ∈ C2(T) and θ ∈ [0, 2π). The transition kernel kt(x, ·) := δx � µt is characterized
by

ψkt(x,·)(z) =
xηµt(z)

1− xηµt(z)
=

xz

et − (et + x− 1)z
,

from which we can prove that kt(x, ·) is absolutely continuous with respect to h unless
x = 1.

5.6.2. Feller property in the stationary case. Similarly to the additive case in
Section 4.8.2, �-homogeneous Markov processes also have the Feller property (see Def-
inition 4.31). Let St be the restriction of Tt to C(T), where (Tt)t≥0 is the transition
semigroup on Bb(T) defined in Theorem 5.11.

Theorem 5.13. The family (St)t≥0 is a Feller semigroup on C(T).

Proof. Let fz(x) = zx/(1− zx) and

D = spanC{1, fz : z ∈ C \ T} ⊂ C(T).

By Lemma 5.7, D is dense in C(T). The arguments in the proof of Theorem 4.32 can be
used to prove that StD ⊂ D for all t ≥ 0, (St)t≥0 is a contraction semigroup on C(T),
and (Stf)(x)→ f(x) as t ↓ 0 for all f ∈ C(T) and x ∈ T.

Let L be the infinitesimal generator of (St)t≥0 with domain

D(L) =

{
f ∈ C(T) : lim

t↓0

Stf − f
t

exists in the uniform norm
}
. (5.19)

We can prove by direct computation that D ⊂ D(L), which implies that for functions
in D the convergence of the Hunt formula in Theorem 5.11 holds uniformly. Since D is a
dense subspace of C(T) and is invariant under {St : t ≥ 0}, we conclude that D is a core
for L.

5.6.3. Martingale property. As well as the additive case, (not necessarily stationary)
�-homogeneous Markov processes satisfy a martingale property. The proof is easier in
this case since all moments are finite.

Proposition 5.14. Let (Mt)t≥0 be a �-homogeneous Markov process with a filtration
(Ft) such that M0 = 1 and let (ηt)t≥0 be the associated multiplicative Loewner chain.
Then for each fixed u ≥ 0 and z ∈ ηu(D) the process (Nz

t )0≤t≤u defined by

Nz
t =

η−1
t (z)Mt

1− η−1
t (z)Mt

is an (Ft)-martingale.

Proof. This is a direct consequence of (5.2). Note that each map ηt is univalent by
Theorem 3.16.
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Corollary 5.15. Let (Mt)t≥0 be a �-homogeneous Markov process on T with a filtration
(Ft) such that M0 = 1. Then E[Mt] 6= 0 for every t ≥ 0 and the process (Mt/E[Mt])t≥0

is an (Ft)-martingale.

Proof. Recall that ηt is the η-transform of Mt (since M0 = 1) and hence ηt(z) = E[Mt]z

+O(z2). The map ηt is univalent and hence E[Mt] 6= 0. Then η−1
t (z) = z/E[Mt] +O(z2)

in a neighborhood of z = 0 and then taking the derivative of E[Nz
t |Fs] = Nz

s at z = 0

concludes the proof.



6. Limit theorems for additive monotone convolution and
geometric function theory

The goal of this section is to study limit theorems for additive monotone convolution, to
characterize some subclasses of probability measures with univalent Cauchy transforms
in terms of geometric function theory, and to find relations between the above two results.

Recall that non-commutative probability theory provides us with further four additive
convolutions of probability measures on R (see Section 2.1). While anti-monotone convo-
lution is simply a reversion of the monotone convolution, we will find several interesting
relations to Boolean, classical, and free convolutions.

6.1. Khinchin’s limit theorem and univalent Cauchy transforms

6.1.1. Preliminaries from complex analysis. We denote by Univ(R) the set of all
probability measures on R having a univalent Cauchy transform. The Hurwitz theorem
and Lemma 2.6 show that Univ(R) is a weakly closed subset of P(R).

The following criterion for univalence was shown by Noshiro [Nos34] and Warschaw-
ski [War35]. While its proof is simple, it is quite useful.

Lemma 6.1. Let D ⊂ C be a convex open set and let f : D → C be analytic. Suppose for
some θ ∈ (0, 2π], Im(eiθf ′(z)) > 0 for z ∈ D. Then f is univalent in D.

Proof. We can assume that θ = 0 by considering the function eiθf(z) instead of f itself.
We have

f(z0)− f(z1) =

∫ 1

0

d

dt
f((1− t)z0 + tz1) dt = (z0 − z1)

∫ 1

0

f ′((1− t)z0 + tz1) dt.

Hence |f(z0)− f(z1)| ≥ C(z0, z1)|z0 − z1|, where C(z0, z1) = inf{Im[f ′((1− t)z0 + tz1)] :

t ∈ [0, 1]} > 0.

The following result can be extracted from the proof of Muraki [Mur00, Lemma 6.3]
(see also [Has10, Lemma 2.3]).

Lemma 6.2. If λ = µBν and λ has a finite variance, then µ, ν also have finite variances
and

m1(λ) = m1(µ) +m1(ν), σ2(λ) = σ2(µ) + σ2(ν).

The following result can be extracted from the proof of [Has10, Thm. 2.4], but we
show it here. For t ∈ R, let Ct be the set of all z ∈ C with Im(z) > t.

Lemma 6.3. If µ has a finite variance σ2(µ), then Fµ is univalent in Cσ(µ).

[74]
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Proof. Fµ has a Nevanlinna representation

Fµ(z) = z −m1(µ) +

∫
R

1

x− z
τ(dx),

where τ is a finite, non-negative measure. We have τ(R) = σ2(µ) (see [Maa92, Prop. 2.2];
Maassen assumed that m1(µ) = 0, but his result easily extends to the case m1(µ) 6= 0).
We have

|Fµ(z0)− Fµ(z1)| =
∣∣∣∣z0 − z1 +

∫
R

z0 − z1

(x− z0)(x− z1)
τ(dx)

∣∣∣∣
≥ |z0 − z1|

(
1−

∫
R

1

Im(z0) Im(z1)
τ(dx)

)
= |z0 − z1|

(
1− σ2(µ)

Im(z0) Im(z1)

)
.

If z0, z1 ∈ Cσ(µ), then 1− σ2(µ)
Im(z0) Im(z1) > 0 and hence Fµ is univalent in Cσ(µ).

Remark 6.4. Maassen proved that Fµ : Cσ(µ) → Cσ(µ) assumes every point of C2σ(µ)

exactly once.

Lemma 6.5. For any probability measure µ on R and for any t > 0, we have

lim
z∈Ct, |z|→∞

|Fµ(z)| =∞.

Proof. We show the equivalent statement limz∈Ct,|z|→∞ |Gµ(z)| = 0. Assuming this were
not the case, one would find ε > 0, t > 0 and zn ∈ Ct such that |zn| ≥ n and |Gµ(zn)| ≥ ε
for any integer n ≥ 1. Since |1/(zn − x)| ≤ 1/t for any x ∈ R and n ≥ 1 and since
1/(zn − x) → 0 as n → ∞ for each x, one may use the dominated convergence theorem
to conclude that Gµ(zn)→ 0, a contradiction.

Lemma 6.6.

(1) Let µ, ν, ν′ ∈ P(R) such that µB ν = µB ν′. Then ν = ν′.
(2) Let µ, µn, νn, n = 1, 2, 3, . . . , be probability measures on R. Assume that µnBνn

w→ µ.
Then µn

w→ µ if and only if νn
w→ δ0.

(3) Let λn, µn, νn ∈ P(R) such that λn = µn B νn and µn converges weakly to some
probability measure. Then λn converges weakly to some probability measure if and
only if νn converges weakly to some probability measure.

Proof. (1) From (the proof of) [BV93, Prop. 5.4] there exist truncated cones Γλ,M , Γλ′,M ′

such that Fν , Fν′ are univalent on Γλ′,M ′ and Fν(Γλ′,M ′), Fν′(Γλ′,M ′) ⊂ Γλ,M , and Fµ
is univalent on Γλ,M . Hence we may apply the inverse F−1

µ to Fµ ◦ Fν(z) = Fµ ◦ Fν′(z)
from the left for z ∈ Γλ′,M ′ . This implies by analytic continuation that Fν = Fν′ on C+

and hence ν = ν′.

(2) Suppose that µn
w→ µ. From [BV93, Propositions 5.4 and 5.7] and their proofs,

there exist λ,M, λ′,M ′, λ′′,M ′′ > 0 such that Fµ, Fµn are all univalent on Γλ′,M ′ and
FµnBνn are all univalent on Γλ′′,M ′′ such that

Fµ(Γλ′,M ′), Fµn(Γλ′,M ′) ⊃ Γλ,M ⊃ FµnBνn(Γλ′′,M ′′).
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Hence the left compositional inverses of Fµ, Fµn may be defined on Γλ,M , and moreover,
we may assume that F−1

µn converge to F−1
µ locally uniformly in Γλ,M . Hence, for each

z ∈ Γλ′′,M ′′ ,
Fνn(z) = F−1

µn (FµnBνn(z))→ F−1
µ (Fµ(z)) = z (6.1)

as n → ∞ (more precisely, the identity Fνn(z) = F−1
µn (FµnBνn(z)) may be first justified

for z = iy for sufficiently large y and then for all z ∈ Γλ′′,M ′′ by the identity theorem).
This implies that νn

w→ δ0 by Lemma 2.6.
Conversely, if νn

w→ δ0, then there exists a domain Γβ,L such that all F−1
νn are defined

on Γβ,L as the right compositional inverses of Fνn and that F−1
νn (z) converge to z locally

uniformly in Γβ,L. Hence

Fµn(z) = FµnBνn(F−1
νn (z))→ Fµ(z), z ∈ Γβ,L

as n→∞. This implies that µn
w→ µ again by Lemma 2.6.

(3) The proof of (2) works with slight modifications.

Remark 6.7. A similar result is shown by Wang in [Wan12, Prop. 2.2].

6.1.2. Infinitesimal arrays and additive monotone convolution. We prove under
some assumptions that the limits of monotone convolutions of infinitesimal triangular
arrays coincide with probability measures with univalent Cauchy transforms. A family
of probability measures {µn,j : 1 ≤ j ≤ kn, n ≥ 1} is called an infinitesimal (triangular)
array if kn ↑ ∞ and for any δ > 0,

lim
n→∞

sup
1≤j≤kn

µn,j([−δ, δ]c) = 0. (6.2)

For an associative binary operation ? on P(R), we say that a probability measure µ is
the ?-limit of an infinitesimal array if the weak convergence

µn,1 ? · · · ? µn,kn
w→ µ as n→∞

holds for some infinitesimal triangular array {µn,j : 1 ≤ j ≤ kn, n ≥ 1}. The set of all
?-limits of infinitesimal arrays is denoted by IA(?) or IA(?,R).

A probability measure µ on R is said to be ?-infinitely divisible if for every n ∈ N
there exists µn ∈ P(R) such that µ = µ?nn (n-fold convolution). The set of ?-infinitely
divisible distributions is denoted by ID(?,R) or simply ID(?). It is known that ID(?)

is closed with respect to weak convergence when ? ∈ {∗,�}, but whether ID(B,R) is
weakly closed is not known.

For classical convolution ∗, Khinchin proved that

IA(∗) = ID(∗) (6.3)

(see [GK54, §24, Theorem 2]). Also for free convolution �, Bercovici and Pata [BP00]
proved the analogue of Khinchin’s theorem:

IA(�) = ID(�). (6.4)

Our concern in this section is the class IA(B,R). We start from a general result valid
for any convolution.
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Proposition 6.8. Let ? be an associative binary operation on P(R).

(1) The set IA(?) is closed under the convolution ?.
(2) The set IA(?) is closed with respect to weak convergence.

Proof. (1) Obvious.
(2) Let µ(m) be a sequence of probability measures which are limits of infinitesimal

arrays, and suppose that µ(m) converges to a probability measure µ weakly. Take an
infinitesimal triangular array {µ(m)

n,j : 1 ≤ j ≤ k
(m)
n , n ≥ 1} such that for each m ≥ 1,

µ
(m)
n,1 ? · · · ?µ

(m)

n,k
(m)
n

w→ µ(m) as n→∞. We take a distance d(·, ·) which is compatible with
the weak convergence (for example d can be taken to be the Lévy–Prokhorov distance).
Then, for each integer m ≥ 1, there exists a positive integer n(m) such that

sup
1≤j≤k(m)

n

µ
(m)
n,j ([−m−1,m−1]c) <

1

m
for n ≥ n(m),

d
(
µ

(m)
n,1 ? · · · ? µ(m)

n,k
(m)
n

, µ(m)
)
<

1

m
for n ≥ n(m).

If we define µm,j := µ
(m)
n(m),j for 1 ≤ j ≤ km := k

(m)
n(m), m ≥ 1, then this is an infinitesimal

array converging weakly to µ. Indeed, for any ε, δ > 0, we can find an integer M ≥ 1

such that 1/M < ε, δ. Then

sup
1≤j≤km

µm,j([−δ, δ]c) ≤ sup
1≤j≤k(m)

n(m)

µ
(m)
n(m),j([−m

−1,m−1]c) < 1/m < ε

for m ≥M. By the triangular inequality,

d(µm,1 ? · · · ? µm,km , µ) ≤ d(µ
(m)
n(m),1 ? · · · ? µ

(m)

n(m),k
(m)

n(m)

, µ(m)) + d(µ(m), µ)

≤ 1/m+ d(µ(m), µ)→ 0,

as m→∞, which completes the proof.

Theorem 6.9.

(1) Univ(R) ⊂ IA(B).
(2) Assume that an infinitesimal array {µn,j : 1 ≤ j ≤ kn, n ≥ 1} satisfies the condition

sup
1≤j≤kn

σ2(µn,j)→ 0 as n→∞.

If µn,1B· · ·Bµn,kn converges weakly to a probability measure µ, then Gµ is univalent.

Proof. (1) By Theorem 3.20(a), we have Fµ = F1 for an additive Loewner chain (Fµt)t≥0

with transition mappings (Fµst)0≤s≤t. For n ≥ 1 and 1 ≤ j ≤ n we define µn,j =

µ(j−1)/n,j/n. This defines an infinitesimal triangular arraybecause the continuity of
(s, t) 7→ Fµst implies (6.2). We have

µ = µ0,1 = µ0,1/n B · · ·B µ(n−1)/n,1

for all n ≥ 1. Hence, µ ∈ IA(B).

(2) For any ε > 0, there exists N ≥ 1 such that σ2
n := sup1≤j≤kn σ

2(µn,j) < ε for
n ≥ N . By Lemma 6.3, Fµn,j is univalent in Cε ⊂ Cσn for any j, and since Fµn,j (Cε) ⊂ Cε,
the composition Fµn,1 ◦ · · · ◦ Fµn,kn is univalent in Cε for n ≥ N . By taking the limit
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n→∞, Fµ (which is not a constant) is also univalent in Cε. Since ε > 0 is arbitrary, we
conclude that Fµ is univalent in C+.

The second statement is hopefully the case without any assumption on the variances,
and such is true for the case of the unit circle (see Theorem 7.5). Hence, let us pose a
conjecture here:

Conjecture 6.10. Univ(R) = IA(B).

Remark 6.11. Anshelevich and Arizmendi [AA17] introduced a class of probability mea-
sures L that is characterized by the property Fµ(z+2π) = Fµ(z)+2π for all z ∈ C+. They
proved Theorem 6.9((1)) when µ ∈ L ∩Univ(R) by using Theorem 7.5 that we prove
later; see [AA17, Remark 51]. Adopting a similar argumentation also shows the following
partial answer to Conjecture 6.10: If {µn,j}1≤j≤kn,1≤n ⊂ L is an infinitesimal array, and
if µn,1B · · ·Bµn,kn weakly converges to a probability measure µ, then µ ∈ Univ(R)∩L.
This partial answer makes the conjecture more reasonable.

For monotone convolution, the inclusion ID(B) ⊂ IA(B) is rather immediate from
differential equations; see Section 6.2.1. By contrast to classical and free probabilities,
we can prove that IA(B) is strictly larger than ID(B). For this it suffices to prove that
Univ(R) \ ID(B) 6= ∅ by Theorem 6.9. For this we give three counterexamples using
monotone cumulants introduced in [HS11] and one counterexample with a geometric
proof.

Recall that a probability measure with compact support is B-infinitely divisible if
and only if its monotone cumulant sequence {rn}n≥1 is conditionally positive definite,
namely the determinant of the n × n matrix {ri+j}ni,j=1 is non-negative for any n ∈ N;
see [Has11, Thm. 8.5] which contains the proof for the monotone case.

Example 6.12. The standard semicircle distribution is in Univ(R) but is not in ID(B).
Let {rn}n≥1 be the monotone cumulants. The values of some rn are computed in [CGW18,
Appendix] (we can also use [HS11, Thm. 4.8] or [HS11, Prop. 4.7] for the computation
of rn):

{rn}10
n=1 =

{
0, 1, 0,

1

2
, 0,

1

2
, 0,

7

12
, 0,

2

3

}
, det{ri+j}5i,j=1 = − 1

3456
< 0,

which shows that the measure is not B-infinitely divisible. However, since the semicircle
distribution is �-infinitely divisible it has a univalent Cauchy transform (see Proposi-
tion 6.20).

Moreover, numerical simulation suggests that the semicircle distribution with any
mean is not B-infinitely divisible. More precisely, let rn(a) be the monotone cumulants of
the semicircle distribution with mean a and variance 1. Let hn(a) := det{ri+j(a)}ni,j=1.
From the graph drawn by simulation, the function min{h2(a), h3(a), h5(a)} seems nega-
tive for all a ∈ R, but a rigorous proof is perhaps difficult since h5(a) is a polynomial of
degree 20.

The shift of a probability measure may break the B-infinite divisibility.
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Example 6.13. The arcsine law with mean a ∈ R and variance t > 0,

asa,t =
1

π
√

2t− (x− a)2
1(−
√

2t+a,
√

2t+a)(x) dx,

is B-infinitely divisible if and only if a = 0. Indeed, it is well known that as0,t is B-
infinitely divisible (see [Mur00]). For a 6= 0, let {rn}n≥1 be the monotone cumulants. We
can see that

{rn}4n=1 =

{√
t a, t,

t3/2a

2
,
t2a2

6

}
,

∣∣∣∣r2 r3

r3 r4

∣∣∣∣ = − t
3a2

12
< 0.

This shows that, when a 6= 0, the measure asa,t is not B-infinitely divisible. On the other
hand, the Cauchy transform Gasa,t(z) = 1/

√
(z − a)2 − 2t is univalent on C+.

Note that the right monotone shift µBδa is the usual shift, but the left one δaBµ is in
general different. It also turns out that the left monotone shift may break the B-infinite
divisibility.

Example 6.14. Let a ∈ R and t > 0. The left monotone shift δa B as0,t is B-infinitely
divisible if and only if a = 0. Indeed, let {rn}n≥1 be the monotone cumulants. We can
see that

{rn}4n=1 =

{√
t a, t,− t

3/2a

2
,
t2a2

6

}
,

∣∣∣∣r2 r3

r3 r4

∣∣∣∣ = − t
3a2

12
< 0.

This shows that, when a 6= 0, the measure δa B as0,t is not B-infinitely divisible. On the
other hand, the reciprocal Cauchy transform FδaBas0,t(z) =

√
z2 − 2t − a is univalent

on C+.

Remark 6.15. We can also give a geometric proof of ID(B) 6= IA(B). Choose µ such
that Fµ is univalent and Fµ(C+) = C+ \ γ(0, 1] for a simple curve γ : [0, 1] → C+ with
γ(0) ∈ R and γ(0, 1] ⊂ C+. This is possible for any such curve due to Theorem 3.17.
Assume that γ is not a vertical line segment. Then µ ∈ IA(B) due to Theorem 6.9.

Furthermore, assume that the curve is parametrized by half-plane capacity, i.e. the
unique conformal mapping gt : C+ \ γ(0, t]→ C+ with hydrodynamic normalization has
half-plane capacity t, which means gt(z) = z+ t

z + · · · , at∞. Then ft = g−1
t is an additive

Loewner chain satisfying the Loewner equation from Proposition 3.14 with

M(z, t) =
1

U(t)− z
,

where U(t) = gt(γ(t)) (see [Law05, Prop. 4.4]). Any other Loewner chain generating Fµ
corresponds to a time change of the Loewner chain (ft).

Now assume that µ ∈ ID(B). Then, by Theorem 6.16, Fµ can be embedded into
a Loewner chain (ht) which is a semigroup. The additivity of the half-plane capacity
implies that ht(z) = z − ct

z + · · · for some c > 0. A time change yields c = 1 and we
have (ht) = (ft), which implies M(z, t) does not depend on t, i.e. U(t) ≡ u ∈ R. In other
words, γ[0, 1] must be a vertical line segment connecting u to some u+ iT , T > 0, which
is a contradiction to our assumption. Hence, µ 6∈ ID(B).
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6.2. Subclasses of probability measures with univalent Cauchy transforms.
The class Univ(R) of probability measures on R with univalent Cauchy transforms is
important in view of Theorem 6.9. We present several of its subclasses.

6.2.1. Monotonically infinitely divisible distributions. We start from a basic char-
acterization of the class ID(B) proved by Muraki [Mur00] in the finite variance case and
Belinschi [Bel05] in the general case.

Theorem 6.16.

(1) If µ ∈ ID(B), then there exists a unique weakly continuous B-convolution semigroup
{µt}t≥0 ⊂ P(R) such that µ0 = δ0 and µ1 = µ.

(2) If {µt}t≥0 ⊂ P(R) is a weakly continuous B-convolution semigroup such that µ0 =

δ0, then µ1 ∈ ID(B).

Theorems 6.16 and 4.26 provide one-to-one correspondences between the following
sets:

(i) ID(B);
(ii) the set of weakly continuous B-convolution semigroups {µt}t≥0 such that µ0 = δ0;
(iii) the set of analytic mappings A of the form (4.17).

It is well known that
ID(B) ⊂ Univ(R) (6.5)

since for µ ∈ ID(B) the map Fµ is obtained as a time 1 map of the flow as described in
Theorem 4.26.

As a subclass of Univ(R), one missing property of ID(B) is the following.

Conjecture 6.17. The set ID(B) is weakly closed.

There are not many examples of B-infinitely divisible distributions available in the
literature. This is because proving a specific distribution to be B-infinitely divisible is
equivalent to embedding the map Fµ into a flow, which is a hard problem. For example
it is not known whether the standard normal distribution N(0, 1) is in ID(B) or not. We
present one family of explicit examples below.

Example 6.18. The monotonically stable distribution mα,ρ,t, α ∈ (0, 2], ρ ∈ [0, 1] ∩
[1− 1/α, 1/α], t > 0 is introduced in [Has10] and is characterized by

Gmα,ρ,t(z) = (zα + teiαρπ)−1/α, z ∈ C+,

where the power functions wβ are defined continuously for angles argw ∈ (0, 2π). It
is Lebesgue absolutely continuous and the density is studied in [HS15]. It satisfies the
semigroup property

mα,ρ,s Bmα,ρ,t = mα,ρ,s+t (6.6)

and hence is B-infinitely divisible. The analytic vector field A associated to the semigroup
{mα,ρ,t}t≥0 in Theorem 4.26 is given by

A(z) =
1

α
eiαρπz1−α.
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In particular, the case α = 2 (then only ρ = 1/2 is allowed) corresponds to the centered
arcsine law with variance t/2

m2,1/2,t(dx) = as0,t/2 =
1

π
√
t− x2

1[−
√
t,
√
t](x) dx,

and the case α = 1 corresponds to the Cauchy distribution.

6.2.2. Freely infinitely divisible distributions. A �-infinitely divisible measure has
a free analogue of the Lévy–Khinchin representation in terms of the Voiculescu trans-
form (2.3).

Theorem 6.19 ([BV93]). For a probability measure µ on R, the following statements are
equivalent:

(1) µ ∈ ID(�).
(2) For any t > 0, there exists µ�t ∈ P(R) with the property ϕµ�t(z) = tϕµ(z).

(3) −ϕµ extends to a Pick function, i.e. an analytic map of C+ into C+ ∪ R.
(4) There exist γ ∈ R and a finite, non-negative measure ρ on R such that

ϕµ(z) = γ +

∫
R

1 + zx

z − x
ρ(dx), z ∈ C+.

The pair (γ, ρ) is unique.

Moreover, given γ ∈ R and a finite, non-negative measure ρ on R, there exists a unique
�-infinitely divisible distribution µ which has the Voiculescu transform of the form (4).

The following is a well-known result, whose proof is provided for completeness.

Proposition 6.20. ID(�) ⊂ Univ(R).

Proof. The function F−1
µ defined by z + ϕµ(z) extends analytically to C+ by Theo-

rem 6.19. Such F−1
µ coincides with the right inverse of Fµ in a domain of the form Γλ,M ,

and so F−1
µ (Fµ(z)) = z for z ∈ Γλ,M . By the identity theorem, this is the case for all

z ∈ C+ and hence Fµ is univalent in C+.

Example 6.21. The free (strictly) stable distribution fα,ρ,t, α ∈ (0, 2], ρ ∈ [0, 1] ∩
[1− 1/α, 1/α], t > 0, is introduced in [BV93] and is characterized by

ϕfα,ρ,t(z) = −teiαρπz1−α, z ∈ C+.

It is Lebesgue absolutely continuous and its density is studied in [BP99, Appendix] and
in [Dem11, HK14]. The density can be written explicitly in special cases when α =

1/2, 1, 2. In particular, f1,ρ,t is the Cauchy distribution and coincides with m1,ρ,t. The
most important case is α = 2 and corresponds to the semicircle distribution with mean 0
and variance t

f2,1/2,t(dx) =
1

2πt

√
4t− x2 1[−2

√
t,2
√
t](x) dx,

which has the Cauchy transform

Gf2,1/2,t(z) =
z −
√
z2 − 4t

2t
, z ∈ C+,
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where the square root
√
w is defined continuously on angles argw ∈ (0, 2π). In this case

the range is the half-disk

Gf2,1/2,t(C
+) = {z = x+ iy : x2 + y2 < 1/t, y < 0}. (6.7)

Example 6.22. The free Poisson (or Marchenko–Pastur) distribution mpλ, λ > 0, is
given by

max{1− λ, 0}δ0 +
1

2πx

√
((1 +

√
λ)2 − x)(x− (1−

√
λ)2)1((1−

√
λ)2,(1+

√
λ)2)(x) dx,

which has the Voiculescu and Cauchy transforms

ϕmpλ(z) =
λz

z − 1
, z ∈ C+,

Gmpλ(z) =
z + 1− λ−

√
(z + 1− λ)2 − 4z

2z
,

where the square root
√
w is defined continuously on angles argw ∈ (0, 2π).

Recent works have found many probability measures in ID(�) including the normal
distribution [BB+11]. For other examples see [Has16] and references therein.

One may wonder whether the ∗-infinitely divisible distributions form a subclass of
Univ(R). This is not the case in general, as Section 6.2.7 shows.

6.2.3. Unimodal distributions. A Borel measure µ on R is said to be unimodal with
mode c ∈ R if there exist a non-decreasing function f : (−∞, c) 7→ [0,∞) and a non-
increasing function g : (c,∞) 7→ [0,∞) and λ ∈ [0,∞] such that

µ(dx) = f(x)1(−∞,c)(x) dx+ λδc + g(x)1(c,∞)(x) dx. (6.8)

Note that c need not be unique. For instance it can be any point in the support of
a uniform distribution. The set of unimodal probability measures on R is denoted by
UM(R). It is closed with respect to weak convergence, see e.g. [Sat13, Exercise 29.20],
and the inclusion UM(R) ⊂ Univ(R) holds, as Theorem 6.23 below shows.

The unimodal probability measures have been characterized in several ways in the
literature.

Theorem 6.23. Let µ be a probability measure on R. The following statements are equiv-
alent:

(1) µ is unimodal with mode c.
(2) Im((z − c)G′µ(z)) ≥ 0 for all z ∈ C+.
(3) There exists an R-valued random variable X, independent of a uniform random vari-

able U on (0, 1), such that µ is the law of UX + c.
(4) The following three assertions hold:

• Gµ is univalent in C+.
• Gµ(C+) is horizontally convex: if z1, z2 ∈ Gµ(C+) with the same imaginary part,
then (1− t)z1 + tz2 ∈ Gµ(C+) for any t ∈ (0, 1).

• There exist points zn ∈ C+ such that zn → c and

lim
n→∞

Im(Gµ(zn)) = inf
z∈C+

Im(Gµ(z)).
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Remark 6.24. (a) Kaplan [Kap52] proved that if µ does not have an atom, then (1)
implies (2) and (4), but it seems that he did not prove the converse statements.

(b) The equivalence between (1) and (2) is essentially proved by Isii [Isi58, Thm. 3.2′].

Proof of Theorem 6.23. For simplicity we assume that c = 0. The general case follows by
a simple transformation.

(1)⇔(3) is Khinchin’s characterization [Khi38] (see also [GK54, §32, Theorem 2]),
saying that a probability measure µ on R is unimodal with mode 0 if and only if there
exists a probability measure ν such that

µ̂(t) =
1

t

∫ t

0

ν̂(s) ds, (6.9)

where µ̂ is the characteristic function of µ. This is equivalent to saying that µ is the law
of a random variable UX where U is a uniform random variable on (0, 1) and X is any
R-valued random variable independent of U .

(2)⇒(3). Since zG′µ(z) is a Pick function and limy→∞ iy(iyG′µ(iy)) = −1, there exists
a probability measure ν such that zG′µ(z) = −Gν(z). Integration gives us

Gµ(z) = −
∫
R\{0}

1

x
log

(
z − x
z

)
ν(dx) +

ν({0})
z

. (6.10)

Since the Cauchy transform of the uniform distribution on (0, x) (or (x, 0) if x < 0) is
equal to − 1

x log
(
z−x
z

)
, we conclude that µ is the law of UX where X has the law ν.

(3)⇒(2). (3) implies the representation (6.10), which implies zG′µ(z) = −Gν(z).
(2)⇔(4). This follows from Hengartner and Schober [HS70] with a suitable Möbius

transformation from the unit disk onto the upper half-plane.

Example 6.25. The uniform distribution ut on (0, t), t > 0, has the Cauchy transform

Gut(z) =
1

t
log

z

z − t
,

which appeared in the proof of Theorem 6.23. The range Gut(C+) is the strip {z∈C− :

−π/t < Im(z) < 0}which becomes smaller as t becomes larger. This domain is horizontally
convex.

Example 6.26. The range of the Cauchy transform of the semicircle distribution with
mean 0 and variance t is the half-disk (6.7), which is horizontally convex. This domain is
also starlike in the sense of Definition 6.48.

Subclasses of UM(R) are provided in Sections 6.2.5 and 6.2.6.

6.2.4. Self-decomposable distributions. In classical probability, a subclass of IA(∗)
= ID(∗) can be provided by the self-decomposable distributions. The free analogue was
defined by Barndorff-Nielsen and Thorbjørnsen [BNT02]. We also discuss the mono-
tone version. It turns out that all these classes are contained in Univ(R); see Sec-
tions 6.2.5, 6.2.6 for the classical and free cases and Section 6.3.2 for the monotone
case.

Let Dcµ be the scaling of a probability measure µ by a constant c ∈ R, namely
(Dcµ)(A) = µ(A/c) for Borel sets A ⊂ R when c 6= 0 and D0µ = δ0.
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Definition 6.27. Let ? be an associative binary operation on P(R). A probability mea-
sure µ on R is said to be ?-self-decomposable if for any c ∈ (0, 1) there exists a probability
measure µc such that µ = (Dcµ) ? µc. This class is denoted by SD(?).

The following property readily follows from the definition.

Proposition 6.28. Suppose that an associative binary operation ? is commutative and
satisfies Dc(µ ? ν) = (Dcµ) ? (Dcν) for all c ∈ R and µ, ν ∈ P(R). Then SD(?) is closed
under the operation ?.

For ? = ∗ or �, it is known that SD(?) is weakly closed and the measure µc is unique.
We later show that the same is true for monotone convolution.

6.2.5. Classically self-decomposable distributions. The class SD(∗) of classically
self-decomposable distributions is known to be a weakly closed subset of ID(∗). Yama-
zato [Yam78] proved that all ∗-self-decomposable distributions are unimodal:

SD(∗) ⊂ UM(R),

and thus SD(∗) ⊂ Univ(R). The classical stable distributions and in particular the
normal distribution are ∗-self-decomposable.

A further subclass of SD(∗) is the class GGC of generalized gamma convolutions
[Bon92]. This class is defined to be the weak closure of the set

{γ(p1, θ1) ∗ · · · ∗ γ(pn, θn) : pk, θk > 0, n ∈ N, k = 1, . . . , n},

where γ(p, θ) is the gamma distribution
1

θpΓ(p)
xp−1e−x/θ 1(0,∞)(x) dx, p, θ > 0.

It is known that all gamma distributions are ∗-self-decomposable, and hence GGC ⊂
SD(∗).

Generalized gamma convolutions are all supported on [0,∞). Bondesson introduced
the class of extended GGCs (denoted by EGGC, also called the Thorin class). It is the
weak closure of the set

{γ(p1, θ1) ∗ · · · ∗ γ(pn, θn) : pk > 0, θk ∈ R, k = 1, . . . , n, n ∈ N},

where γ(p, θ) is defined to be the scalingDθ(γ(p, 1)) for all θ ∈ R (this definition coincides
with the original one when θ > 0). Since SD(∗) is closed under the convolution ∗ and
γ(p, θ) ∈ SD(∗) for all p > 0 and θ ∈ R, we conclude that EGGC ⊂ SD(∗). Thus, those
well-known classes SD(∗), GGC and EGGC are all contained in Univ(R).

6.2.6. Freely self-decomposable distributions. The class SD(�) of freely self-de-
composable distributions was originally introduced by Barndorff-Nielsen and Thorb-
jørnsen [BNT02]. It is known that SD(�) is a weakly closed subset of ID(�). This class
may be characterized in terms of the free cumulant transform Cµ(z) = zϕµ(1/z), where
ϕµ is the Voiculescu transform.

Theorem 6.29 ([HST19]). For a probability measure µ on R the following statements
are equivalent:

(i) µ ∈ SD(�).
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(ii) Cµ extends to an analytic map Cµ : C− → C such that the derivative C ′µ satisfies
Im(C ′µ(z)) ≤ 0 for any z ∈ C−.

(iii) There exists β in R and a non-negative measure σ on R, with
∫
R log(|x| + 2)σ(dx)

<∞, such that C ′µ may be extended to all of C− via the formula

C ′µ(z) = β +

∫
R

x+ z

1− zx
σ(dx), z ∈ C−. (6.11)

If (i)–(iii) are satisfied, then the pair (β, σ) in (iii) is unique. Additionally, for a pair (β, σ)

of a real number and a non-negative measure on R satisfying the integrability condition
above, there exists a unique µ ∈ SD(�) such that C ′µ is represented in the form (6.11).

Hasebe and Thorbjørnsen [HT16] showed the free analogue of Yamazato’s theorem:

SD(�) ⊂ UM(R).

Furthermore we may show the following.

Proposition 6.30. SD(�) ⊂ SD(B).

Proof. By definition, for any c ∈ (0, 1), there exists µc such that µ = (Dcµ) � µc. From
the subordination property for free convolution (see e.g. [BB04] or the original article
[Bia98]), there exists another probability measure νc such that µ = (Dcµ) B νc, and
hence µ ∈ SD(B).

The above results and arguments show that

SD(�) ⊂ ID(�) ∩ SD(B) ∩UM(R).

Example 6.31. The free stable distribution has the semigroup property fα,ρ,s � fα,ρ,t =

fα,ρ,s+t and the stability Dc(fα,ρ,t) = fα,ρ,cαt, c > 0. These conditions imply that

fα,ρ,t = (Dcfα,ρ,t) � fα,ρ,(1−cα)t, c ∈ (0, 1),

and hence the �-self-decomposability.

Other examples of freely self-decomposable distributions are some free Meixner dis-
tributions and the classical normal distributions (see [HST19]).

6.2.7. Univalence and regularity of probability measures. We have seen several
sufficient conditions for a probability measure to have a univalent Cauchy transform.
This section presents a necessary condition in terms of some regularity property of a
probability measure. This result is a slight generalization of [Has10, Thm. 3.5], but the
proof is almost the same.

Proposition 6.32. Let µ ∈ Univ(R). Suppose that µ has an isolated atom at a ∈ R,
namely µ({a}) > 0 and µ({a}) = µ((a − ε, a + ε)) for some ε > 0. Then µ|R\{a} is
Lebesgue absolutely continuous with L∞ density.

Proof. We prove in fact that

Gµ(Bε(a)c ∩ C+) is a bounded subset of C−, (6.12)

where Bε(a) is the ball at a with radius ε > 0. We postpone the proof of (6.12) and
suppose for now that this is the case.
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Note that, in general, the singular part of a probability measure µ is supported on
the set {

x ∈ R : lim
y↓0

Im(Gµ(x+ iy)) = −∞
}
, (6.13)

which follows from the simple estimate

µ((x− h, x+ h))

2h
≤
∫
|u−x|<h

h

h2 + (u− x)2
µ(du)

≤ − Im(Gµ(x+ ih)), x ∈ R, h > 0, (6.14)

and the basic fact (see [Rud87, Thm. 7.15]) that the singular part is supported on{
x ∈ R : lim

h↓0

µ((x− h, x+ h))

2h
=∞

}
.

Obviously (6.12) implies that the set (6.13) is {a}, and hence µ|R\{a} is Lebesgue abso-
lutely continuous. The density is essentially bounded since, thanks to (6.12), the RHS
of (6.14) is bounded by a uniform constant independent of h and x ∈ (a− ε, a+ ε)c.

Now we prove the key fact (6.12). Let τ be a finite, non-negative measure such that
µ = λδa + τ and λ = µ({a}). It is supported on (a − ε, a + ε)c and hence the Cauchy
transform Gτ is analytic in Bε(a).

Suppose that (6.12) is not the case. Then we can find a sequence of points z1, z2, z3, . . .

in C+ ∩ Bε(a)c such that Fµ(zn) → 0. We look for a point z ∈ C+ and n ∈ N such that
Fµ(z) = Fµ(zn). A solution z to the equation Fµ(z) = Fµ(zn) is a zero of the function

fn(z) := z − a+ Fµ(zn)(λ+ (z − a)Gτ (z)). (6.15)

For sufficiently large n, the function fn(z)− (z−a) is smaller in absolute value than f(z)

on ∂Bε(a), and hence f has a unique zero in Bε(a) by Rouché’s theorem. This zero is
not a since λFµ(zn) 6= 0. Therefore, we found a point z 6= a such that Fµ(z) = Fµ(zn).
It remains to show that z ∈ C+. Indeed, Fµ maps C− into C− and (a − ε, a + ε) into
R ∪ {∞}, and hence z ∈ C+. This contradicts the univalence of Fµ.

Since the Poisson distribution contains two isolated atoms, we obtain the following
consequence.

Corollary 6.33. ID(∗) is not a subset of Univ(R).

Some problems are presented below.

Problem 6.34. Is it possible to extend Proposition 6.32 to the case where a is an atom
which is not isolated?

As a clue to this problem, consider the probability measure

µ =
1

2
δ0 +

1

2
1[0,1](x) dx, (6.16)

which is unimodal and hence has a univalent Cauchy transform. The Cauchy transform
is

Gµ(z) =
1

2

(
1

z
+ log

z

z − 1

)
, (6.17)
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where log is the principal value. Obviously we see that Gµ(z) → ∞ as z → 1. This
example shows that we cannot expect the property (6.12) for any ε > 0 for a measure in
Univ(R) with a non-isolated atom.

Problem 6.35. Is there a singular probability measure in Univ(R)?

6.2.8. Limit theorems and infinitely divisible distributions. As we saw many
univalent Cauchy transforms can be provided by infinitely divisible distributions, which
are known to appear in limit theorems. We make some observations on limit theorems
and pose some problems.

The classical Lévy–Khinchin representation says that

ID(∗,R) = {µγ,ρ∗ : γ ∈ R, ρ is a finite, non-negative measure on R},

where µγ,ρ∗ is the probability measure characterized by∫
R
ezxµγ,ρ∗ (dx) = exp

(
γz +

∫
R

(
ezx − 1− zx

1 + x2

)
1 + x2

x2
ρ(dx)

)
, z ∈ iR. (6.18)

Note that the integrand
(
ezx − 1 − zx

1+x2

)
1+x2

x2 is defined to be 1
2z

2 at x = 0, so that it
becomes a continuous function on R. Similarly, Theorem 6.19 implies that

ID(�,R) = {µγ,ρ� : γ ∈ R, ρ is a finite, non-negative measure on R},

where µγ,ρ� is the probability measure characterized by the parameter (γ, ρ) in Theo-
rem 6.19(4).

In addition to classical and free Khinchin’s theorems (6.3) and (6.4), classical and free
limit theorems are equivalent in the following sense.

Theorem 6.36. Let {µn,j}1≤j≤kn,n≥1 be an infinitesimal array of probability measures
on R and let an ∈ R. The following statements are equivalent:

(1) δan ∗ µn,1 ∗ · · · ∗ µn,kn
w→ µγ,ρ∗ .

(2) δan � µn,1 � · · · � µn,kn
w→ µγ,ρ� .

(3) For the shifted measures µ̊n,j(B) := µn,j(B + an,j) (B is a Borel set) and an,j =∫
|x|<r xµn,j(dx) (r > 0 is any fixed number), we have

kn∑
j=1

x2

1 + x2
µ̊n,j(dx)

w→ ρ, an +

kn∑
j=1

(
an,j +

∫
R

x

1 + x2
µ̊n,j(dx)

)
→ γ.

The equivalence of (1) and (3) is well known in classical probability [GK54, Chap-
ter 4], and the equivalence of (2) and (3) was proved by Chistyakov and Goetze [CG08,
Thm. 2.2]. Note that a Boolean version also holds [Wan08]. However, we prove that the
monotone version fails to hold even if an = 0.

Proposition 6.37. In the setting of Theorem 6.36, suppose moreover that an = 0. Then
the statement

µn,1 B · · ·B µn,kn
w→ µγ,ρB (6.19)

is not equivalent to the statements (1)–(3) in Theorem 6.36.

Proof. Take kn = 2n and µn,1 = · · · = µn,n to be the symmetric arcsine law as0,1/n with
variance 1/n, and take µn,n+1 = · · · = µn,2n = δa/n, a 6= 0. The semigroup property (6.6)
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implies that µn,1B· · ·Bµn,2n is the shifted arcsine law asa,1 which is not even B-infinitely
divisible (see Example 6.13). However, the central limit theorem says that the measure
µn,1 ∗ · · · ∗ µn,2n converges to N(a, 1).

Therefore, the following question remains unsolved.

Problem 6.38. Characterize the convergence (6.19).

Note that Anshelevich and Williams [AW14] proved that (6.19) is equivalent to asser-
tions (1)–(3) in Theorem 6.36 when an = 0 and the distributions are identical, namely
µn,1 = · · · = µn,kn . In this identical setting, the Khinchin type theorem is still open.

Conjecture 6.39. Suppose that µ, µn ∈ P(R), n ∈ N, and {kn}n≥1 is a sequence of
strictly increasing natural numbers. If µBknn

w→ µ, then µ ∈ ID(B).

This Khinchin type theorem fails for non-identical distributions since we know that
IA(B) is strictly larger than ID(B); see Theorem 6.9 and Example 6.12. Moreover, no
integral representation is known for the whole class IA(B). So, even if one solves Prob-
lem 6.38, there is no clue about how the convergence µn,1 B · · · B µn,kn

w→ µ could
be characterized (as in Theorem 6.36(3)) for a general µ ∈ IA(B) and an infinitesi-
mal array {µn,j}. However, the subclasses ID(B) and UM(R) of IA(B) have integral
representations; see (4.17) and (6.10). As mentioned, the class ID(B) already has a char-
acterization due to Anshelevich and Williams [AW14] in terms of a limit theorem for
identical distributions without a shift. It is then natural to search for limit theorems
converging to measures in UM(R).

Problem 6.40. Find a limit theorem that characterizes the class UM(R) as the set of
all possible weak limits.

6.3. Lévy’s limit theorem, monotone self-decomposability, starlike Cauchy
transforms, and Markov transform. The most important subclass of Univ(R) in
this paper is the class of monotonically self-decomposable distributions. We give three
complete characterizations of this class in terms of Lévy’s limit theorem, starlike Cauchy
transforms and the Markov transform.

6.3.1. Lévy’s limit theorem. We discussed in Section 6.2.8 some limit theorems. The
classes of classical and free self-decomposable distributions also have nice characteriza-
tions in terms of a limit theorem.

Definition 6.41. For ? ∈ {∗,�,B}, we say that a probability measure belongs to class
L(?) if it is the weak limit of the probability measures

Dbn(µ1 ? · · · ? µn), n = 1, 2, 3, . . . , (6.20)

where bn are positive real numbers and µn are probability measures on R such that
{Dbn(µk)}1≤k≤n,1≤n forms an infinitesimal array.

Remark 6.42. It is common to include a shift and consider the convergence of δan ?
Dbn(µ1 ? · · · ? µn) when ? = ∗ or ? = �, but in order to avoid the subtlety of shifts for
monotone convolution, we confine ourselves to the case an = 0.
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Obviously, L(?) is a subset of IA(?). Lévy proved that (see [Lev54, Thm. 56] or
[GK54, §29, Theorem 1])

SD(∗) = L(∗). (6.21)

The free analogueSD(�) = L(�)was proved byChistyakov andGoetze [CG08, Thm. 2.10],
which is actually a consequence of (6.21) and Theorem 6.36. Sakuma [Sak09] gave a more
direct proof.

We can prove the analogous statement for monotone convolution. Recall that, from
Definition 6.2.4, for every µ ∈ SD(B) and c ∈ (0, 1) there exists µc ∈ P(R) such that

µ = (Dcµ)B µc or Gµ(z) = c−1Gµ(c−1Fµc(z)). (6.22)

Moreover, we may define µ0 := µ and µ1 := δ0. Lemma 6.6(1) implies that µc is unique
and Lemma 6.6(3) shows that the map [0, 1]→ P(R), c 7→ µc, is weakly continuous.

Theorem 6.43. SD(B) = L(B).

Proof. SD(B) ⊂ L(B). Take the decomposition µ = (Dcµ) B µc for 0 ≤ c < 1 with
convention that µ0 = µ. Let µk := Dk(µ(k−1)/k) for k ∈ N. It satisfies the identity
Dkµ = (Dk−1µ)B µk for all k ∈ N, and iterating this identity yields

µ = D1/n(µ1 B · · ·B µn).

It then remains to prove that {D1/nµk}1≤k≤n, n≥1 forms an infinitesimal array. Indeed,
recalling from Lemma 6.6((2)) that µc w→ δ0 as c ↑ 1, for each δ, ε > 0 we may take k0 =

k0(δ, ε) ∈ N with µ(k−1)/k([−δ, δ]c) < ε for all k ≥ k0, and hence (D1/nµk)([−δ, δ]c) < ε

for all k0 ≤ k ≤ n and n ∈ N too. Then there exists n0 = n0(δ, ε) ∈ N such that
(D1/n0

µk)([−δ, δ]c) < ε for all 1 ≤ k < k0. Thus we have

sup
1≤k≤n

(D1/nµk)([−δ, δ]c) < ε, n ≥ n0,

showing the infinitesimality.
SD(B) ⊃ L(B). Take µ ∈ L(B) and assume that µ is not δ0. We may take probability

measures µn and positive numbers bn such that Dbn(µ1 B · · · B µn)
w→ µ and such that

{Dbn(µk)}1≤k≤n,1≤n forms an infinitesimal array.

Step 1. We show that
lim
n→∞

bn = 0, lim
n→∞

bn+1

bn
= 1.

Indeed, there exists k0 ∈ N such that µk0 is not equal to δ0. The infinitesimality of
{Dbn(µk)}1≤k≤n,n≥1 then shows that Dbnµk0

w→ δ0 as n→∞ and hence bn → 0. For the
second limit, let λn := Dbn(µ1 B · · ·B µn). In the obvious identity

λn+1 = (Dbn+1/bnλn)B (Dbn+1
µn+1),

the first and the third measures converge to µ and δ0 respectively (the latter follows
from the infinitesimality), and hence Lemma 6.6(2) shows that Dbn+1/bnλn

w→ µ. Since
λn

w→ µ 6= δ0, we must have bn+1/bn → 1 (see [GK54, §10, Theorem 2]).

Step 2. Let c∈ (0, 1). From Step 1 there exist subsequences {m(k)}k≥1 and {n(k)}k≥1

of N such that m(k) < n(k) and bn(k)/bm(k) → c; see the proof of [Sat13, Thm. 15.3] for
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details. We denote (m(k), n(k)) simply by (m,n). In the identity

λn = (Dbn/bmλm)BDbn(µm+1 B · · ·B µn), (6.23)

the first and second probability measures converge to µ and Dcµ respectively, and hence
Lemma 6.6(3) shows that the third one converges to some probability measure. Thus we
have µ ∈ SD(B).

The above limit theorem shows that the reciprocals of starlike functions can be char-
acterized as the limits of some iterated compositions of analytic self-maps.

We still lack a characterization of convergence of Dbn(µ1B· · ·Bµn) to a B-self-decom-
posable distribution.

Problem 6.44. Given µ ∈ SD(B), µn ∈ P(R) and bn > 0 such that {Dbn(µk)}1≤k≤n,1≤n
forms an infinitesimal array, find a necessary and sufficient condition for the convergence
Dbn(µ1 B · · ·B µn)

w→ µ in a way similar to Theorem 6.36(3).

We prove a few basic properties of the class SD(B).

Proposition 6.45. SD(B) is a weakly closed subset of P(R).

Proof. Take µn ∈ SD(B) and suppose that µn
w→ µ ∈ P(R). By definition, for any

c ∈ (0, 1) and n ∈ N there exists a µcn ∈ P(R) such that µn = (Dcµn)Bµcn. Lemma 6.6(3)
shows that, as n→∞, the measure µcn weakly converges to some µc ∈ P(R), and hence
µ = (Dcµ)B µc.

Proposition 6.46. If µ ∈ SD(B), a ∈ R and b > 0, then (Dbµ)B δa ∈ SD(B).

Remark 6.47. The distribution δaB(Dbµ) may not belong to SD(B); see Example 6.55.

Proof of Proposition 6.46. The identity (6.22) implies (Dbµ) B δa = Dc((Dbµ) B δa) B
(δ−ca B (Dbµ

c)B δa).

6.3.2. Monotone self-decomposability and starlike Cauchy transform. We char-
acterize the set SD(B). The key concept is the starlikeness.

Definition 6.48. An analytic map G : C+ → C with non-tangential limit G(∞) = 0

is said to be starlike if G is univalent in C+ and cG(C+) ⊂ G(C+) for any c ∈ (0, 1).
We denote by Star(R) the set of probability measures on R that have starlike Cauchy
transforms.

Note that µ ∈ Star(R) if and only if Fµ is univalent and cFµ(C+) ⊂ Fµ(C+) for all
c ∈ (1,∞), i.e. Fµ is starlike with respect to ∞.
Theorem 6.49. SD(B) = Star(R).

Proof. SD(B) ⊃ Star(R). Suppose that Gµ is starlike. It is by definition univalent. It
also satisfies Gµ(C+) ⊂ GDcµ(C+) for every c ∈ (0, 1). Then we may define the analytic
univalent map Fc := G−1

Dcµ
◦ Gµ : C+ → C+. Since Gµ(iy) = 1

iy (1 + o(1)) as y → ∞,
we have the asymptotic form Fc(iy) = iy(1 + o(1)) as y → ∞. Lemma 2.3 implies the
existence of some µc ∈ P(R) such that Fc = Fµc , and hence µ = (Dcµ)B µc, as desired.

SD(B) ⊂ Star(R). Take µ ∈ SD(B). It is easy to see from (6.22) that cGµ(C+) ⊂
Gµ(C+) for all c ∈ (0, 1). It then remains to prove that µ ∈ Univ(R). The relation (6.22)
implies that Dtµ = (Dsµ) B (Dtµ

s/t) for all 0 < s ≤ t ≤ 1. Let Ft(z) := FDtµ(z) and
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fs,t(z) := FDtµs/t(z), which are continuous with respect to s and t for every fixed z. Take
0 < s ≤ t ≤ 1. Then we obtain

Ft = Fs ◦ fs,t.

Therefore, (Ft)0≤t≤1 is (a part of) an additive Loewner chain with transition mappings
(fst), and hence each map fst is univalent due to Theorem 3.16. Therefore, by taking t = 1,
we conclude that µs ∈ Univ(R) for 0 < s < 1 and hence the weak limit µ = lims↓0 µ

s

belongs to Univ(R) too.

6.3.3. Monotone self-decomposability and Markov transform. Next we obtain a
certain integral representation for probability measures in SD(B) = Star(R). Actually
it is related to the Markov transform that is known to be a useful tool in asymptotic
representation theory [Ker98].

A Rayleigh measure on R is a finite signed Borel measure ν that satisfies

0 ≤ ν((−∞, x]) ≤ 1, x ∈ R, (6.24)

ν(R) = 1, (6.25)∫
R

log(1 + |x|) |ν|(dx) <∞. (6.26)

Integration by parts shows that (6.26) may be written in the equivalent form∫ ∞
0

1−Dν(x)

1 + x
dx <∞,

∫ 0

−∞

Dν(x)

1 + |x|
dx <∞, (6.27)

where Dν(x) = ν((−∞, x]) is the distribution function.
Let Ray(R) be the set of Rayleigh measures on R. The Markov transform [Ker98,

FF16] is a bijection M : Ray(R)→ P(R) defined by

GM(ν)(z) = exp

(
−
∫
R

log(z − x) ν(dx)

)
, z ∈ C+, (6.28)

where log is the principal value. It satisfies the master equation
d

dz
GM(ν)(z) = −Gν(z)GM(ν)(z).

Then we have the following.

Theorem 6.50. Let µ be a probability measure on R. The following are equivalent:

(1) µ ∈ SD(B).
(2) Im

(G′µ(z)

Gµ(z)

)
≥ 0 for all z ∈ C+.

(3) There exists a probability measure ν on R satisfying the integrability condition∫
R

log(1 + |x|) ν(dx) <∞

such that µ = M(ν). Moreover, if µ has a finite variance, then so does ν, and in this
case the mean and the variance of ν are given by m1(ν) = m1(µ) and σ2(ν) = 2σ2(µ).

Remark 6.51. (i) The question of characterizing the range of the Markov transform of
probability measures was raised in [FF16, Section 7].
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(ii) The equivalence of (1) and (2) is known in Lecko [Lec01] and Lecko and Lyzzaik
[LL03] in a more general setting by using Julia’s lemma. We give another proof similar
to that in [Pom75, Thm. 2.5].

Proof. (1)⇒(2). Take µ ∈ SD(B) = Star(R). We follow several steps below.
(a) We first show that Gµ(· + iσ) : C+ → C− is also starlike for any σ > 0. We fix

c ∈ (0, 1) and σ > 0 for the moment. From the argument in the proof of Theorem 6.49 and
Lemma 2.3, there exists a univalent function Fc : C+ → C+ satisfying Im(Fc(z)) ≥ Im(z)

for any z ∈ C+. This implies that Fc(Cσ) ⊂ Cσ for any σ > 0 (recall that Cσ stands for
the set of z ∈ C such that Im(z) > σ). Therefore, we obtain

cGµ(Cσ) = cGDcµ(Fc(Cσ)) = Gµ(c−1Fc(Cσ)) ⊂ Gµ(c−1Cσ) ⊂ Gµ(Cσ).

This implies that Gµ(·+ iσ) : C+ → C− is starlike.
(b) Since γσ = {Gµ(t+ iσ)}t∈R is a Jordan curve and it is the boundary of Gµ(Cσ),

from a geometric observation of starlikeness, for each σ > 0, either d
dt argGµ(t+ iσ) ≥ 0

for all t ∈ R or d
dt argGµ(t+ iσ) ≤ 0 for all t ∈ R.

(c) Next we will show that for any σ > 0, d
dt argGµ(t+ iσ) is not identically 0. If it is

identically 0 for some σ > 0, then Gµ(t+ iσ) lies on a line passing through 0. Lemma 6.5
implies that |Gµ(t+ iσ)| → 0 as t→ ±∞, which contradicts the univalence of Gµ.

(d) We show that either d
dt argGµ(t + iσ) ≥ 0 for any t ∈ R, σ > 0 or d

dt argGµ(t +

iσ) ≤ 0 for any t ∈ R, σ > 0. If there exist σ1, σ2 > 0 such that d
dt argGµ(t + iσ1) ≥ 0

and d
dt argGµ(t+ iσ2) ≤ 0 for any t ∈ R, then we may assume without loss of generality

that σ1 < σ2. Then the supremum

σ3 := sup
{
σ ∈ [σ1, σ2]

∣∣ d
dt argGµ(t+ iσ) ≥ 0 for all t ∈ R

}
exists in [σ1, σ2]. By continuity we must have d

dt argGµ(t+ iσ3) = 0 for any t ∈ R, which
contradicts (c).

(e) Note that d
dt argGµ(t+ iσ) = Im

(
d
dz logGµ(z)

)
|z=t+iσ = Im

(G′µ(z)

Gµ(z)

)∣∣
z=t+iσ

. Since
G′µ(z)

Gµ(z) = − 1
z (1 + o(1)) as z →∞ non-tangentially, we have Im

(G′µ(z)

Gµ(z)

)
≥ 0 for all z ∈ C+.

(2)⇒(3). Since G′µ(z)

Gµ(z) = − 1
z (1 + o(1)) as z → ∞ non-tangentially, there exists a

probability measure ν such that G′µ(z)

Gµ(z) = −Gν(z). Integration leads to

Gµ(z) = exp

(
−
∫ z

Gν(w) dw + c

)
,

where c ∈ C is a constant and
∫ z
Gν(w) dw is an indefinite integral whose derivative is

Gµ(z). By integration by part,

Gν(z) =

∫
R

1

z − x
µ(dx) = −

∫
R

1

(z − x)2
Dν(x) dx,

where Dν(x) = ν((−∞, x]) is the distribution function of ν. Therefore, up to constants
we obtain ∫ z

Gν(w) dw =

∫
R

(
1

z − x
+

x

1 + x2

)
Dν(x) dx. (6.29)
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We will show that
∫ 0

−∞
|x|

1+x2Dν(x) dx < ∞ and
∫∞

0
x

1+x2 (1 − Dν(x)) dx < ∞ which
are equivalent to the desired integrability condition. Combining (6.29) with the identity

0 = − log z + iπ +

∫ ∞
0

(
1

z − x
+

x

1 + x2

)
dx

gives

−
∫ z

Gν(w) dw + c = − log z + c+ iπ +

∫ ∞
0

(
1

z − x
+

x

1 + x2

)
(1−Dν(x)) dx

−
∫ 0

−∞

(
1

z − x
+

x

1 + x2

)
Dν(x) dx.

In order that exp(−
∫ z
Gν(w) dw+c) defines a Cauchy transform of a probability measure,

the function

f(z) =

∫ ∞
0

(
1

z − x
+

x

1 + x2

)
(1−Dν(x)) dx−

∫ 0

−∞

(
1

z − x
+

x

1 + x2

)
Dν(x) dx

must be bounded as z →∞ non-tangentially. After some computation, we have

Re[f(iy)] =

∫ ∞
0

x(y2 − 1)

(x2 + y2)(1 + x2)
(1−Dν(x) +Dν(−x)) dx,

which converges by monotone convergence to
∫∞

0
x

1+x2 (1−Dν(x)+Dν(−x)) dx as y →∞.
This must be bounded and hence the integrability condition on ν follows.

(3)⇒(1). Lemma 6.1 shows that logGµ(z) is univalent. Assume z = x+iσ ∈ Gµ(C+).
Since d

dt argGµ(t + iσ) > 0 from (3), the curve γσ := (Gµ(t + iσ))t∈R does not contain
the point cz for any c ∈ (0, 1). By Lemma 6.5, the curve γσ ∪ {0} is Jordan closed curve
and it surrounds cz, and hence cz ∈ Gµ(Cσ).

Suppose that the probability measure µ has a finite variance. We can show that

Gν(z) = −
G′µ(z)

Gµ(z)
=

1

z

(
1 +

m1(µ)

z
+

2m2(µ)−m1(µ)2

z2
+ o(z−2)

)
.

Hence m1(ν) = m1(µ) and m2(ν) = 2m2(µ)−m1(µ)2 and hence σ2(ν) = 2σ2(µ).

The above characterization enables us to prove the absence of atoms.

Proposition 6.52. If µ is B-self-decomposable and is not a delta measure, then µ does
not have an atom.

Remark 6.53. In classical and free probabilities it is known that any ∗- or �-self-decom-
posable distribution is Lebesgue absolutely continuous; see [Sat13, Thm. 27.13] for the
classical case, and [HS17, Thm. 3.4] for the free case. Our result is a partial analogy with
these results. Note that in [Ker98, Thm. 2.4.5] it is stated that a measure in SD(B) with
compact support is Lebesgue absolutely continuous, but we could not find a reference
with a proof. Thus we pose the following problem.

Problem 6.54. Is there a B-self-decomposable distribution that has a non-zero singular
continuous part?
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Proof of Proposition 6.52. By Theorem 6.50 there exists a probability measure ν such
that

∫
R log(1 + |x|) ν(dx) < ∞ and µ = M(ν). Note that µ = δb if and only if ν = δb.

Therefore, our assumption says that ν is not a Dirac delta measure.
It is well known (and follows readily from the dominated convergence theorem) that

µ({a}) = limy↓ iyGµ(a+ iy) for all a ∈ R. Using (6.28) then yields

µ({a}) = lim
y↓0

iyGµ(a+ iy) = lim
y↓0

exp

(∫
R

log
iy

iy + a− x
ν(dx)

)
.

Now, by the monotone convergence theorem,

Re

∫
R

log
iy

iy + a− x
ν(dx) =

1

2

∫
R

log
y2

y2 + (a− x)2
ν(dx)→ −∞ · ν(R \ {a}) = −∞

as y ↓ 0. This shows that µ({a}) = 0 for any a ∈ R.

Example 6.55. Take ν =
∑n
k=1 wkδak , where −∞ < a1 < · · · < an < ∞, n ≥ 2, and∑n

k=1 wk = 1, wk > 0. Then

GM(ν)(z) =

n∏
k=1

(z − ak)−wk ,

where the powers are the principal value. The Stieltjes inversion shows that the probability
measure M(ν) is absolutely continuous with density

p(x) =


0, x > an or x < a1,

sinπ(wp+1 + · · ·+ wn)

π

n∏
k=1

|x− ak|−wk , x ∈ (ap, ap+1), 1 ≤ p ≤ n− 1.

The range GM(ν)(C+) is of the form C− \
⋃n−1
p=1 Lp, where Lp = {reiθp : r ≥ rp} are

half-lines with

rp = min
x∈(ap,ap+1)

n∏
k=1

|x− ak|−wk , θp = −π(wp+1 + · · ·+ wn).

In particular, when ν = 1
2 (δ−1 + δ1), then M(ν) is the symmetric arcsine law on [−1, 1]

and the range GM(ν)(C+) is given by C− \ i[−1,∞). Moreover, take a 6= 0. Since
FδaBM(ν)(z) = FM(ν)(z) − a, we have FδaBM(ν)(C+) = −a + C+ \ i(0, 1]. This easily
shows that rFδaBM(ν)(C+) 6⊂ FδaBM(ν)(C+) for every r > 1 and hence δa BM(ν) is not
in SD(B).

Example 6.56. The Boolean stable distribution bα,ρ,t, with α ∈ (0, 2], ρ ∈ [0, 1] ∩ [1 −
1/α, 1/α], t > 0 was introduced in [SW97] and is characterized by

Gbα,ρ,t(z) =
1

z + teiαρπz1−α , z ∈ C+. (6.30)

It is B-self-decomposable if and only if α ∈ (0, 1] since it satisfies

bα,ρ,t = M(((1− α)δ0 + αδ1)~ bα,ρ,t),

which was computed in [AH16b, Example 5.8(2)] only for ρ = t = 1, but extends to
all parameters. Various properties of Boolean stable distributions are investigated in
[AH14, HS15, AH16a].
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Example 6.57. The monotonically stable distribution mα,ρ,t is B-self-decomposable
since it satisfies mα,ρ,t = (Dcmα,ρ,t) B mα,ρ,(1−cα)t. Arizmendi and Hasebe [AH16b,
Example 5.8(1)] proved that

mα,ρ,t = M(bα,ρ,t)

for ρ = t = 1, where bα,ρ,t is the Boolean stable distribution (6.30). This formula extends
to all parameters.

Example 6.58. The free stable distribution is �-self-decomposable and hence it is also
B-self-decomposable (see Section 6.2.6). Arizmendi and Hasebe [AH16b, Example 5.8(3)]
proved that

fα,ρ,t = M(f]αα,ρ,t)

for ρ = t = 1, where ] is Boolean convolution. This result may be generalized to arbitrary
parameters.

We give counterexamples to some inclusions.

Example 6.59. (1) SD(B) 6⊂ ID(B) since the semicircle distribution is in SD(�) ⊂
SD(B) but is not B-infinitely divisible (see Example 6.12).

(2) SD(B) 6⊂ UM(R) since the centered arcsine law is not unimodal but it is B-self-
decomposable.

(3) UM(R) 6⊂ SD(B) since there is a bounded simply connected domain that is
horizontally convex but not starlike. Note that such a domain can be realized as the
range of Gµ for some probability measure µ ∈ Univ(R) with compact support by Theo-
rem 3.17(b).



7. Limit theorems for multiplicative monotone convolution

This section is the multiplicative analogue of Section 6, i.e. we study the convolution �
and probability measures on T with univalent η-transform.

Non-commutative probability theory provides us with further four multiplicative con-
volutions of probability measures on T, see Section 2.2. Again, we will also encounter the
Boolean, classical, and free convolution on P(T).

Recall that the normalized Haar measure h on the unit circle plays a special role for
all those convolutions.

7.1. Preliminaries. We denote by Univ(T) the set of all probability measures µ on T
which have univalent ψµ. Note that ψµ is univalent if and only if ηµ is univalent. The
Hurwitz theorem and Lemma 2.11 then show that Univ(T) ∪ {h} is a weakly closed
subset of the set P(T) of all probability measures on T.

A useful and interesting example is the Poisson kernel. By Lemma 2.10, for every
c ∈ D \ {0} there exists a probability measure pkc on T such that ηpkc(z) = cz, and this
measure turns out to be the Poisson kernel:

pkc(dξ) =
1− |c|2

|1− cξ|2
h(dξ) =

1− |c|2

1− 2|c| cos(θ − arg c) + |c|2
dθ

2π
,

where ξ = eiθ and arg c is of any branch. Then we have Σpkc(z) = 1/c, and hence
ηµ�pkc = η(cz) which implies that µ � pkc = µ � pkc. Moreover, mn(pkc) = cn for
n ∈ N and hence mn(µ ~ pkc) = cnmn(µ). This implies that ψµ~pkc(z) = ψµ(cz) and
hence ηµ~pkc(z) = ηµ(cz). Thus we obtain

µ � pkc = µ � pkc = µ~ pkc

and
pk�n

c = pk�nc = pk~nc = pkcn . (7.1)

Note that pkc converges weakly to δζ as c tends to ζ ∈ T, and pkc converges to h as
c→ 0. These results can be verified via Lemma 2.11. Thus we may extend the parameter
of pkc to c ∈ D by weak continuity.

7.2. Khinchin’s limit theorem and univalent moment generating functions. We
prove that the set of possible limits of monotone convolution of infinitesimal arrays on T
is exactly the set of all µ for which ψµ is univalent together with the Haar measure h.
For additive monotone convolution we have met a technical difficulty and we needed
assumptions of finite variance, but for multiplicative convolution on T we can show the
complete result.

[96]
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Definition 7.1. A family of probability measures {µn,j : 1 ≤ j ≤ kn, n ≥ 1} on T is
called an infinitesimal (triangular) array if kn ↑ ∞ and for any δ ∈ (0, π),

lim
n→∞

sup
1≤j≤kn

µn,j([−δ, δ]c) = 0,

where the arc {eiθ : θ ∈ [−δ, δ]} is identified with the interval [−δ, δ], and [−δ, δ]c denotes
the complement of the arc [−δ, δ] in T.

Take an associative binary operation ? on P(T). A probability measure µ on T is
called the ?-limit of an infinitesimal array if there exists an infinitesimal array {µn,j}
such that

µn,1 ? · · · ? µn,kn
w→ µ as n→∞.

The set of all ?-limits of infinitesimal arrays is denoted by IA(?,T) or IA(?). Following
the arguments of Proposition 6.8, we can show that IA(?,T) is (operationally) closed
under ? and (topologically) closed with respect to weak convergence.

A probability measure µ on T is said to be ?-infinitely divisible if for every n ∈ N
there exists µn ∈ P(T) such that µ = µ?nn (n fold convolution). The set of ?-infinitely
divisible distributions is denoted by ID(?,T) or simply ID(?). Note that the iterative
use of (2.10) shows that

h = h?n, n ∈ N, ? ∈ {�,�,~},

and hence the Haar measure is ?-infinitely divisible for the three convolutions.
The Khinchin type result is also true on T.

Proposition 7.2. IA(~,T) = ID(~,T).

Proof. The inclusion IA(~,T) ⊂ ID(~,T) is known from [Par67, Thm. 5.2]. The converse
inclusion can also be proved by using several results from [Par67]. Namely, every µ in
ID(~,T) has the form µ = λ~ ν, where λ is the normalized Haar measure on a compact
subgroup of T, namely on T or on Zp := {e2πik/p : 0 ≤ k ≤ p−1} for some p ≥ 2, and ν is
an infinitely divisible distribution without an idempotent factor [Par67, p. 106, Thm. 7.2].
Since IA(~,T) is closed under convolution, it suffices to show that λ and ν both are limits
of infinitesimal arrays. We start from ν. It has a Lévy–Khinchin representation [Par67,
p. 103, Thm. 7.1], with which we can naturally define its convolution roots νn such that
ν~nn = ν and νn

w→ δ1. Thus we conclude that ν ∈ IA(~). For λ, we consider two cases.
If λ is the normalized Haar measure h on T (then in fact µ = h), then we can see from
(7.1) and Lemma 2.11 that

(pk1−1/n)~n
2

= pk(1−1/n)n2
w→ h as n→∞, (7.2)

and so λ ∈ IA(~). If λ is the normalized Haar measure on a finite group Zp for some
p ≥ 1, then for λn := (1− 1/n)δ1 + (1/n)δe2πi/p we can prove that

lim
n→∞

mk(λ~n
2

n ) = mk(λ) =

{
0, k /∈ pZ,
1, k ∈ pZ,

and hence by Lemma 2.11(6), λ~n
2

n
w→ λ, and thus λ ∈ IA(~). Altogether, we conclude

the inclusion ID(~,T) ⊂ IA(~,T).
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The free analogue holds as well.

Proposition 7.3. IA(�,T) = ID(�,T).

Proof. Belinschi and Bercovici [BB08] proved the inclusion ⊂. For the converse inclu-
sion, recall that only the Haar measure is �-infinitely divisible with zero mean [BV92,
Lemma 6.1]. If µ ∈ ID(�,T) is not the Haar measure, then there exists a function u as
described in Theorem 7.11 below. Defining a probability measure µn having the function
(1/n)u, we obtain µ = µ�n

n for every n ∈ N, and also µn
w→ δ1 using [BV92, Prop. 2.9],

and hence µ ∈ IA(�). If µ = h, then we can see from (7.1) and Lemma 2.11 that

(pk1−1/n)�n2

= pk(1−1/n)n2
w→ h, as n→∞, (7.3)

and hence h ∈ IA(�).

The goal of this section is to demonstrate that IA(�,T) = Univ(T) ∪ {h}. For this
we need some estimates.

Lemma 7.4. Let µ be a probability measure on T, let δ ∈ (0, π/2) and n ∈ N. Then

µ([−δ, δ]c) ≤ π2

2δ2
|1−m1(µ)|, (7.4)

|1−m1(µ)|2 ≤ 2δ2 + 10(µ([−δ, δ]c))2, (7.5)

|1−mn(µ)| ≤ π2n

2
|1−m1(µ)|. (7.6)

Proof. We start from the obvious inequality

µ([−δ, δ]c) ≤
∫

[−δ,δ]c

1− cosx

1− cos δ
µ(dx) ≤ 1

1− cos δ

∫
(−π,π]

(1− cosx)µ(dx). (7.7)

Elementary calculus shows that sinx ≥ 2x/π for 0 ≤ x ≤ π/2 and hence 1 − cos δ =

2 sin2(δ/2) ≥ 2δ2/π2. Thus (7.7) implies

µ([−δ, δ]c) ≤ π2

2δ2

∣∣∣∣∫
(−π,π]

(1− eix)µ(dx)

∣∣∣∣ =
π2|1−m1(µ)|

2δ2
, (7.8)

which is (7.4). Inequality (7.5) is verified as

|1−m1(µ)|2 =

(∫
|x|≤δ

(1− cosx)µ(dx) +

∫
[−δ,δ]c

(1− cosx)µ(dx)

)2

+

(∫
|x|≤δ

sinxµ(dx) +

∫
[−δ,δ]c

sinxµ(dx)

)2

≤ (1− cos δ + 2µ([−δ, δ]c))2 + (sin δ + µ([−δ, δ]c))2

≤ 2(1− cos δ)2 + 2(2µ([−δ, δ]c))2 + 2 sin2 δ + 2(µ([−δ, δ]c))2

≤ 2δ2 + 10(µ([−δ, δ]c))2. (7.9)

For (7.6), note that the following elementary inequalities hold:

1− cosx ≥ 2

π2
x2, x ∈ [−π, π], (7.10)

|1− eix| ≤ |x|, x ∈ R. (7.11)
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On the one hand (7.10) shows that

|1−m1(µ)|2 ≥
(∫ π

−π
(1− cosx)µ(dx)

)2

≥ 4

π4

∫ π

−π
x2 µ(dx). (7.12)

On the other hand, using (7.11) and the Schwarz inequality shows that

|1−mn(µ)| ≤
∫ π

−π
|1− einx|µ(dx) ≤ n

∫ π

−π
|x|µ(dx) ≤ n

(∫ π

−π
x2 µ(dx)

)1/2

. (7.13)

The third inequality follows from (7.12) and (7.13).

Now we show the Khinchin type theorem.

Theorem 7.5. IA(�) = Univ(T) ∪ {h}.

Proof. We can show that h ∈ IA(�) from exactly the same arguments in (7.3) thanks to
(7.1). Similarly, delta measures are contained in IA(�) since δeiβ = δeiβ/n � · · · � δeiβ/n
(n-fold).

Suppose that ψµ is univalent and µ is not a delta measure. This implies that 0 <

|m1(µ)| < 1 and so there exist α > 0, β ∈ [0, 2π) such that η′µ(0) = m1(µ) = e−α+iβ . By
Theorem 3.21(b), we find a multiplicative Loewner chain {ηt}t≥0 such that η1 = ηδ

e−iβ�µ

and η′t(0) = e−αt. Let ηst := η−1
s ◦ ηt : D→ D be the corresponding transition mappings.

Lemma 2.10 shows that there exists a family of probability measures (µst)0≤s≤t≤∞ on T
such that ηst = ηµst . We have the following properties:

(a) µ0,1 = δe−iβ � µ;
(b) µss = δ1 for any s ∈ [0,∞);
(c) m1(µst) = e−α(t−s);
(d) µst � µtu = µsu for 0 ≤ s ≤ t ≤ u <∞.

For δ ∈ (0, π/2) and any 0 ≤ s ≤ t, using (7.4) and the inequality 1− e−x ≤ x for x ≥ 0

shows that

µst([−δ, δ]c) ≤
π2

2δ2
|1−m1(µst)| ≤

π2α(t− s)
2δ2

. (7.14)

Let us put νn,j := µ j−1
n , jn

(1 ≤ j ≤ n). Properties (a) and (d) imply that

µ = δeiβ � νn,1 � · · · � νn,n.

It then follows from (7.14) that

sup
1≤j≤n

νn,j([−δ, δ]c) ≤
π2α

2δ2n
,

and so {νn,j} is an infinitesimal array. Thus µ is the �-limit of an infinitesimal array.
Conversely, suppose that µ is the �-limit of an infinitesimal array {µn,j : 1 ≤ j ≤ kn,

n ≤ 1} and µ 6= h. The estimate (7.5) entails

sup
1≤j≤kn

|1−m1(µn,j)| → 0, n→∞. (7.15)



100 U. Franz, T. Hasebe and S. Schleißinger

Note that ψδ1(z) = z/(1− z) and ηδ1(z) = z. Let ν be a probability measure on T. Using
(7.6) then shows, for all z ∈ D,∣∣∣∣ψν(z)− z

1− z

∣∣∣∣ =
∣∣∣ ∞∑
n=1

(1−mn(ν))zn
∣∣∣

≤ π2

2
|1−m1(ν)|

∞∑
n=1

n|z|n ≤ π2|1−m1(ν)|
2(1− |z|)2

. (7.16)

Combining the inequalities (7.15) and (7.16) yields

sup
1≤j≤kn,z∈rD

|ψµn,j (z)− ψδ1(z)| → 0, n→∞

for any 0 < r < 1, and

|ηµn,j (z)− z| =
∣∣∣∣ ψµn,j (z)

1 + ψµn,j (z)
− ψδ1(z)

1 + ψδ1(z)

∣∣∣∣ =
|ψµn,j (z)− ψδ1(z)|

|1 + ψµn,j (z)||1 + ψδ1(z)|
≤ 4|ψµn,j (z)− ψδ1(z)|,

since Re[ψµn,j (z)] ≥ − 1
2 . Hence, we have supz∈rD,1≤j≤kn |ηµn,j (z) − z| → 0 as n → ∞.

Fix any numbers 0 < r < r′ < 1. Applying Cauchy’s integral formula to the derivative
yields

d

dz
(ηµn,j (z)− z) =

1

2πi

∫
∂(r′D)

ηµn,j (ξ)− ξ
(ξ − z)2

dξ,

and hence sup1≤j≤kn,z∈rD
∣∣ d

dz (ηµn,j (z)− z)
∣∣→ 0 as n→∞. In particular,

inf
1≤j≤kn, z∈rD

Re

[
d

dz
ηµn,j (z)

]
> 0

for sufficiently large n. Now Lemma 6.1 shows that ηµn,j is univalent in rD. Since
ηµn,j (rD) ⊂ rD (see Lemma 2.10), the composition ηµn,1 ◦ · · · ◦ ηµn,kn is also univa-
lent in rD, and hence its limit ηµ is univalent in rD since it is not a constant (recall that
the η-transform is constant only for the Haar measure). Since 0 < r < 1 was arbitrary,
the map ηµ is univalent in D.

Examples of probability measures in IA(�) are shown in Section 7.3.

7.3. Subclasses of probability measures with univalent moment generating
functions. We have seen that the class Univ(T) characterizes the monotone limit dis-
tributions for infinitesimal arrays. We now introduce several subclasses of Univ(T) which
can be characterized by simple geometric or analytic conditions.

7.3.1. Monotonically infinitely divisible distributions on T. Bercovici [Ber05,
Thm. 4.4] characterized �-infinitely divisible distributions on the unit circle.

Theorem 7.6.

(1) If µ ∈ ID(�,T)\{h}, then there exists a weakly continuous �-convolution semigroup
{µt}t≥0 ⊂ P(T) such that µ0 = δ1 and µ1 = µ.

(2) If {µt}t≥0 ⊂ P(R) is a weakly continuous �-convolution semigroup such that µ0 =

δ1, then µ1 ∈ ID(�,T) \ {h}.
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In (1), the semigroup {µt}t≥0 need not be unique. The non-uniqueness is studied in
[Has13, Thm. 5.8].

Recall that the η-transforms of a weakly continuous �-convolution semigroup satisfies
differential equation (5.13), which entails the univalence of each map ηt. Therefore, we
obtain the following.

Corollary 7.7. ID(�,T) ⊂ Univ(T)∪ {h}. In particular, if µ ∈ ID(�,T) \ {h}, then
the first moment of µ is different from 0.

Proof. Note that the first moment of µ is equal to η′µ(0).

Let α ∈ [−π/2, π/2]. A univalent function f : D→ C with f(0) = 0 is called α-spiral-
like if e−e

iαtw ∈ f(D) for every t ≥ 0 and w ∈ f(D).
In the special case α = 0, f is a starlike mapping. If α = ±π/2, then f maps D onto

a disk, which implies f(z) = az for some a ∈ C \ {0}.
An analytic f : D→ C with f(0) = 0 is univalent and α-spirallike if and only if

Re

[
e−iα

zf ′(z)

f(z)

]
≥ 0 (7.17)

on D, see [Pom75, Thm. 6.6]. (Note that in [Pom75], f is called spirallike of type α if
e−e

−iαtw ∈ f(D).)

Corollary 7.8. Let µ ∈ P(T). Then µ ∈ ID(�,T) \ {h} if and only if there exist
β ∈ [−π/2, π/2], R ≥ 0, and a β-spirallike mapping f : D→ C with f(0) = 0, f ′(0) = 1,
such that

ηµ = f−1 ◦ (e−Re
iβ

· f).

If this holds true, then e−Re
iβ

is the first moment of µ.

Proof. First we consider the special case µ = δα. Then ηµ(z) = αz. We can take f(z) = z.
Suppose that µ ∈ ID(�,T) \ {h} is not a delta measure (and hence ηµ is not a

rotation). By Theorem 7.6, ηµ can be embedded into a multiplicative Loewner chain
(ηt)t≥0 at t = 1 and the transition mappings ηst satisfy ηst = η0,t−s = ηt−s. Furthermore
we have η′0t(0) = e−at for some a ∈ C. By the Schwarz lemma we must have Re(a) > 0,
and hence a = Reiβ for some R > 0 and β ∈ (−π/2, π/2).

Equation (3.5) yields
∂

∂t
ηst(z) = M(ηst(z)), s ≤ t,

where M(z) = −zp(z) for a holomorphic p : D → C with p(0) = a and Re(p(z)) > 0

for all z ∈ D. (If Re(p(z)) = 0 for some z, then p is constant and µ is a delta measure,
which is excluded now.) According to [GH+08, Thm. 2.3] or [Bec76, Lemma 1], the locally
uniform limit limt→∞ eatηs,t(z) =: fs(z) exists and (ft)t is an increasing Loewner chain
with ft ◦ ηst = fs, and f0(0) = 0, f ′0(0) = 1. As ηst = η0,t−s, we have

f0 = lim
t→∞

eat−asη0,t−s(z) = e−as lim
t→∞

eatηs,t(z) = e−asfs.

Hence, the Loewner chain has the simple form (eatf0)t≥0, which implies that f0 is a
β-spirallike mapping. We conclude that f0 = f1 ◦ η01 = (eaf0) ◦ η01 and thus η01 = ηµ =

f−1
0 ◦ (e−Re

iβ

f0).
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Conversely, if ηµ has the form ηµ = f−1 ◦ (e−Re
iβ · f), then (ft)t≥0 := (eatf)t≥0

with a = Reiβ is an increasing Loewner chain and η0t = f−1
t ◦ f0 defines a semigroup

of analytic mappings of D with η0t(0) = 0 and η01 = ηµ. Lemma 2.10 and Theorem 7.6
imply that µ ∈ ID(�,T) \ {h}.

Corollary 7.9. The set ID(�,T) is weakly closed.

Proof. The class of all univalent functions f : D→C with f(0)=0 and f ′(0)=1 is compact
with respect to locally uniform convergence, see [Pom75, Thm. 1.7]. By using (7.17), we
see that the set of all functions of the form f−1 ◦ (e−Re

iβ · f) from Corollary 7.8 together
with the function 0 forms a compact set. The result now follows by using Lemmas 2.10
and 2.11.

Example 7.10. The distribution {µt}t>0 of a unitary monotone Brownian motion was
introduced and studied by Hamdi [Ham15]. Its �-infinitely divisible distribution is char-
acterized by α = 0 and ρ = 1

2δ1 in (5.14). The moment generating function is

ψµt(z) = −1

2
+

1 + z

2
√
z2 − 2(2e−t/2 − 1)z + 1

.

It is absolutely continuous with respect to h and the density is
dµt
dh

(eiθ) =
cos(θ/2)√

cos2(θ/2)− e−t/2
1(−2 arccos(e−t/4),2 arccos(e−t/4))(θ), −π < θ < π,

where arccos is a strictly decreasing function from (−1, 1) onto (0, π). The density diverges
at the edges of the support, and hence is not unimodal. It can be observed that µt

w→ h

as t→∞.

7.3.2. Freely infinitely divisible distributions on T. Bercovici and Voiculescu in-
vestigated the unit circle case (see [BV92]). We exclude the measures with vanishing
mean to define the Σ-transform, and correspondingly we denote by ID×(�,T) the set of
�-infinitely divisible distributions with non-zero mean. It is known (see [BV92, Lemma
6.1]) that

ID×(�,T) = ID(�,T) \ {h}.

The class ID×(�,T) is characterized as follows.

Theorem 7.11. Let µ ∈ P×(T). The following three statements are equivalent:

(1) µ ∈ ID(�,T).
(2) There exists a weakly continuous �-convolution semigroup {µt}t≥0 ⊂ P(T) such that

µ0 = δ1 and µ1 = µ.
(3) There exists an analytic map u : D→ H ∪ iR such that Σµ(z) = exp(u(z)).

The analytic map u in (3) above can be characterized by the Herglotz representation

u(z) = −iα+

∫
T

1 + zζ

1− zζ
ρ(dζ), (7.18)

where α ∈ R and ρ is a finite, non-negative measure on T.
Note that α is not unique due to the transformation α 7→ α + 2πn for n ∈ Z. Also

the convolution semigroup {µt}t≥0 in (2) is not unique either up to the transformation
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{µt}t≥0 7→ {De2πnti(µt)}t≥0 for n ∈ Z. However, a canonical bijection between {µt}t≥0

and u can be given by Σµt(z) = exp(tu(z)). A non-canonical choice appears only when
we go from µ ∈ ID×(�,T) to {µt}t≥0 or from µ ∈ ID×(�,T) to u.

Proposition 6.20 has the following multiplicative analogue.

Proposition 7.12. ID(�,T) ⊂ Univ(T) ∪ {h}.

Proof. Suppose that µ ∈ ID×(�,T). Theorem 7.11 shows that f(z) := zΣµ(z) extends
to an analytic map defined in D. By the definition of Σµ, the identity f(ηµ(z)) = z holds
in neighborhood of 0, and so in D by the identity theorem. Hence ηµ is univalent in D.

Note that ID(�,T) is weakly closed since it coincides with IA(�,T).

Example 7.13. The distributions {µt}t≥0 of unitary free Brownian motion, introduced
by Biane [Bia97a], is characterized by Σµt(z) = exp

( t(1+z)
2(1−z)

)
. Biane proved that it is

Lebesgue absolutely continuous at any t > 0 [Bia97b, Prop. 10], and Zhong proved that
the density is unimodal [Zho14, Thm. 5.4].

7.3.3. Unimodal distributions on T. We investigate unimodal distributions on T.

Definition 7.14. Let α, β ∈ R such that 0 ≤ β − α ≤ 2π. A measure µ on T is said
to be unimodal with antimode eiα and mode eiβ if there exist λ ∈ [0,∞) and a function
f : (α, α+ 2π)→ [0,∞), non-decreasing on (α, β) and non-increasing on (β, α+ 2π) such
that

µ(dθ) = f(θ) dθ + λδβ .

If α = β and α+ 2π = β, we understand that f is non-increasing on (α, α+ 2π) and f is
non-decreasing on (α, α + 2π), respectively. A measure µ on T is said to be unimodal if
it is unimodal with some antimode and mode.

The set of unimodal distributions on T is denoted by UM(T). Similarly to the case
of R, the set of unimodal distributions is closed with respect to weak convergence (this
fact can also be deduced from Lemma 2.11 and Theorem 7.16).

Proposition 7.15. UM(T) ⊂ Univ(T) ∪ {h}.

Proof. If µ is unimodal with antimode 1 and mode −1 without an atom, then we can
directly use [Kap52, Thm. 3] (see also [AA75, Thm. 40]). If µ has an atom, then we can
resort to approximation. For a general mode and an antimode, if they are different points
then we can apply a suitable Moebius transformation (see the map T in the proof of
Lemma 7.21 below). Finally, if the mode and antimode coincide, then we can easily find
approximating unimodal distributions whose mode and antimode are different.

An analogue of Theorem 6.23 can be formulated as follows.

Theorem 7.16. Let µ be a probability measure on T that is not a Haar measure. Let
α, β ∈ R such that 0 ≤ β − α ≤ 2π. The following are equivalent:

(1) µ is unimodal on T with antimode eiα and mode eiβ.
(2) Re

(
e
i
2 (α+β−π)(z − e−iα)(z − e−iβ)ψ′µ(z)

)
≥ 0 in D.
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Remark 7.17. A geometric characterization of unimodality exists and strengthens Propo-
sition 7.15. If eiα 6= eiβ , then conditions (1) and (2) above are also equivalent to the
following four geometric conditions:

(a) ψµ is univalent.
(b) The domain ψµ(D) is vertically convex, namely for any z1, z2 ∈ ψµ(D) having the

same real part and for any t ∈ (0, 1), the point (1− t)z1 + tz2 also belongs to ψµ(D).
(c) There exist points zn in D converging to e−iβ such that

lim
n→∞

Re(ψµ(zn)) = sup
z∈D

Re(ψµ(z)).

(d) There exist points z′n in D converging to e−iα such that

lim
n→∞

Re(ψµ(z′n)) = inf
z∈D

Re(ψµ(z)).

The proof can be obtained from [HS70, Thm. 1] (or the proof of [RZ76]) with a suitable
Moebius transformation (see the transformation T in Lemma 7.21 below).

If eiα = eiβ , then we can use results in [HS70, Section 6] with a simple rotation z 7→ γz

for some γ ∈ T. More specifically, if α = β, then the equivalence still holds with the above
(b) replaced by

(b′) z + iy ∈ ψµ(D) for any z ∈ ψµ(D) and y ≥ 0,

and if α+ 2π = β, then the equivalence holds with (b) replaced by

(b′′) z + iy ∈ ψµ(D) for any z ∈ ψµ(D) and y ≤ 0.

Example 7.18. The range domains that satisfy both (b′) and (b′′) are only vertical stripes
and the half-planes. These domains are realized respectively by the uniform distributions
on arcs of T and the Dirac delta measures. For example the uniform distribution µ on
the upper semicircle {z ∈ T : arg z ∈ [0, π]} has the moment generating function

ψµ(z) =
i

π
log

1 + z

1− z
,

which is a bijection of the unit disk onto the vertical stripe
{
w ∈ C : − 1

2 < Re(w) < 1
2

}
.

This distribution is unimodal with any antimode in the lower semicircle and any mode
in the upper semicircle. The special choice (antimode,mode) = (1, 1) corresponds to the
case α = β = 0, and the choice (antimode,mode) = (−1,−1) corresponds to α+ 2π = β,
where α = π.

The proof of Theorem 7.16 follows from the lemmas below, which strengthen [Kap52,
Thm. 3]. Note that the number e

i
2 (α+β−π) in Theorem 7.16 is different from e

i
2 (π−α−β)

in Lemma 7.21 since the integral kernel is (e−iθ +z)/(e−iθ−z) in the moment generating
function (2.19), while the kernel (eiθ + z)/(eiθ − z) is used in the lemmas below.

Lemma 7.19. Let f be holomorphic on D. Then f satisfies

inf
z∈D

Re[f(z)] > −∞ and Re(z2 − 1)f ′(z) ≥ 0 on D (7.19)
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if and only if there exist c ≥ 0, d ∈ R and a function k : (−π, π)→ R in L1(dθ), bounded
below, non-increasing on (−π, 0) and non-decreasing on (0, π), such that f is written as

f(z) =

∫ π

−π

eiθ + z

eiθ − z
k(θ) dθ + c · 1− z

1 + z
+ id, z ∈ D. (7.20)

Remark 7.20. There might exist a condition weaker than infz∈D Re(f(z)) > −∞ such
that the condition of k being bounded below can be removed, but we do not pursue this
direction.

Proof. By the Herglotz formula (Lemma 2.8), there exists a non-negative finite measure
ρ on T such that

(z2 − 1)f ′(z) =

∫
(−π,0)∪(0,π)

eiθ + z

eiθ − z
ρ(dθ)− i Im f ′(0) + ρ({0})1 + z

1− z
+ ρ({π})1− z

1 + z
.

Then we have

f(z) = i

∫
(−π,0)∪(0,π)

(
cos θ − 1

2
log(1 + z)− cos θ + 1

2
log(1− z) + log(1− ze−iθ)

)
ρ(dθ)

sin θ

− i Im f ′(0)

2
log

1− z
1 + z

− ρ({0})z
1− z

− ρ({π})z
1 + z

+ f(0). (7.21)

To prove some integrability of the measure ρ, we look at

−Re f(r) + Re f(0) =

∫
(−π,0)∪(0,π)

arg(1− re−iθ)ρ(dθ)

sin θ
+
ρ({0})r
1− r

+
ρ({π})r

1 + r

for r ∈ (0, 1). Since arg(1− e−iθ) = (π− |θ|)sign(θ)/2 and Re f ≥ m for some m ∈ R, we
conclude by Fatou’s lemma that

−m+ Re f(0) ≥ lim
r↑1

(∫
(−π,0)∪(0,π)

arg(1− re−iθ)ρ(dθ)

sin θ
+
ρ({0})r
1− r

+
ρ({π})r

1 + r

)
≥
∫

(−π,0)∪(0,π)

lim
r↑1

arg(1− re−iθ)ρ(dθ)

sin θ
+ lim

r↑1

ρ({0})r
1− r

+
ρ({π})

2

=

∫
(−π,0)∪(0,π)

(π − |θ|) ρ(dθ)

2| sin θ|
+ lim

r↑1

ρ({0})r
1− r

+
ρ({π})

2
,

which proves that ρ({0}) = 0 and dρ(θ)/| sin θ| is a finite measure on any compact subset
of (−π, π).

Now define the non-negative function

h(θ) :=

∫ θ

0

ρ(dφ)

2 sinφ
, θ ∈ (−π, π),

which is non-increasing on (−π, 0) and non-decreasing on (0, π). Note that h belongs to
L1((−π, π),dθ). Performing integration by parts for (7.21) implies that

f(z) = i

∫ π

−π

(
sin θ · log

1 + z

1− z
− 2zi

eiθ − z

)
h(θ) dθ − i Im f ′(0)

2
log

1− z
1 + z

− ρ({π})z
1 + z

+ f(0)

=

∫
(−π,π)

eiθ + z

eiθ − z
h(θ) dθ +

ρ({π})
2

−1 + z

−1− z
+ ia log

1− z
1 + z

+ C,
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where a is a real number and C is a complex number. According to the identities∫ π

0

eiθ + z

eiθ − z
dθ = 2i log

1− z
1 + z

+ π,

∫ π

−π

eiθ + z

eiθ − z
dθ = 2π, (7.22)

the function

k(θ) = h(θ) +
Re(C)

2π
+

1

4π
+
a

4
sign(θ)

and the numbers c = ρ({π})/2 and d = Im(C) give the desired formula (7.20).
The converse statement can be obtained by mostly tracing the above arguments back-

wards. When proving the boundedness of Re f from below, one should use

Re
eiθ + z

eiθ − z
≥ 0

and (7.22).

Lemma 7.21. Let f be holomorphic on D and α, β ∈ R such that 0 < β − α < 2π. Then
f satisfies

inf
z∈D

Re[f(z)] > −∞ and Re
[
ei
π−α−β

2 (z − eiα)(z − eiβ)f ′(z)
]
≥ 0 on D (7.23)

if and only if there exist c ≥ 0, d ∈ R and a function k : (α, α + 2π) → R in L1(dθ),
bounded below, non-decreasing on (α, β) and non-increasing on (β, α+2π), such that f is
written as

f(z) =

∫ π

−π

eiθ + z

eiθ − z
k(θ) dθ + c · e

iβ + z

eiβ − z
+ id, z ∈ D. (7.24)

Proof. Let w = T (z) := γ z+ia
1−iaz , where γ = ei

α+β−π
2 and a ∈ (−1, 1) is uniquely deter-

mined by (a + i)/(a − i) = ei
β−α+π

2 . Then T defines a homeomorphism of D and it is
an analytic bijection of D. By direct computation, a branch of θ 7→ arg T (eiθ) is strictly
increasing on [0, 2π), and T (1) = eiα and T (−1) = eiβ . Defining f̃(z) = f(T (z)) = f(w)

and by direct computation one has

(z2 − 1)f̃ ′(z) =
1 + a2

1− a2

1

γ
(w − eiα)(w − eiβ)f ′(w).

Thus we apply Lemma 7.19 to f̃ and obtain an integral representation

f̃(z) =

∫ π

−π

eiθ + z

eiθ − z
k̃(θ) dθ + c̃ · −1 + z

−1− z
+ id̃.

Going back to f(w), we apply the change of variable eiθ = T−1(eiϕ) to get

f(w) =

∫ π

−π

T−1(eiϕ) + z

T−1(eiϕ)− z
k̃(arg T−1(eiϕ))

(T−1)′(eiϕ)

T−1(eiϕ)
eiϕ dϕ+ c̃ · −1 + z

−1− z
+ id̃.

Setting b = iaγ for simplicity, we obtain

T−1(eiϕ) + z

T−1(eiϕ)− z
· (T−1)′(eiϕ)

T−1(eiϕ)
eiϕ =

eiϕ + w

eiϕ − w
− 2i Im(beiϕ)

|1 + beiϕ|2
.

Hence

f(w) =

∫ π

−π

eiϕ + w

eiϕ − w
k̃(arg T−1(eiϕ)) dϕ+ c · e

iβ + w

eiβ − w
+ C,
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where c = c̃(1 − a2)/(1 + a2) and C ∈ C is a constant. We can incorporate the real
part of C into k̃(arg T−1(eiϕ)) using (7.22). The function ϕ 7→ k̃(arg T−1(eiϕ)) satisfies
the desired monotonicity. It is also integrable since k̃ is integrable and the determinant
regarding the change of variable eiϕ = T (eiθ) is continuous and strictly positive on the
circle.

Lastly, the converse statement can be obtained by tracing the above arguments back-
wards.

In Lemma 7.21 we have assumed α 6= β mod 2π. It is tempting to prove the statement
for α = β mod 2π by some approximation arguments, but it seems not very easy. Instead
we give a proof similar to that of Lemma 7.21.

Lemma 7.22. Let f be holomorphic on D and α ∈ R. Then f satisfies

inf
z∈D

Re[f(z)] > −∞ and Re
[
ei(

π
2−α)(z − eiα)2f ′(z)

]
≥ 0 on D (7.25)

if and only if there exist c ≥ 0, d ∈ R and a function k : (α, α + 2π) → R in L1(dθ),
non-increasing and bounded below, such that f is written as

f(z) =

∫ α+2π

α

eiθ + z

eiθ − z
k(θ) dθ + c · e

iα + z

eiα − z
+ id, z ∈ D. (7.26)

Proof. Let w = ei(α+π)z and f̃(z) := f(ei(α+π)z) = f(w). Then

ei(
π
2−α)(w − eiα)2f ′(w) = −i(z + 1)2f̃ ′(z) (7.27)

for all z ∈ D. Hence the Herglotz formula

−i(z + 1)2f̃ ′(z) =

∫
(−π,π)

eiθ + z

eiθ − z
ρ(dθ) + ρ({π})1− z

1 + z
+ ia (7.28)

exists for some a ∈ R and a finite non-negative measure ρ on T. Then we have

−if̃(z) =

∫
(−π,π)

(
log(1 + z)− log(1− ze−iθ) + i sin θ

z

1 + z

)
ρ(dθ)

1 + cos θ

+
ρ({π})z
(1 + z)2

− ia

1 + z
+ C (7.29)

for some C ∈ C. Notice that applying Taylor’s theorem around θ = π shows that the
integral converges.

To derive the integrability of ρ(dθ)/(1 + cos θ), we take the curve z = iy/(1 − iy) =

(−y2 + iy)/(y2 + 1), y ∈ R, which is contained in D and tends to −1 as y →∞. On this
curve one can see that

−Re f̃(z) =

∫
(−π,π)

(
arg(1 + iy)− arg

(
1 + i

−y cos θ − y2 sin θ

1 + y2(1 + cos θ)− y sin θ

))
ρ(dθ)

1 + cos θ

+ ρ({π})y − a+ Im(C). (7.30)

Notice that 1+y2(1+cos θ)−y sin θ = (1+y2) Re(1−ze−iθ) > 0. Then one can prove that
the integrand is non-negative for y > 0. Hence we can apply Fatou’s lemma as y → ∞
using the assumption of Re f̃(z) being bounded below to conclude that

ρ({π}) = 0, ∞ >

∫
(−π,π)

(
π

2
+
θ

2

)
ρ(dθ)

1 + cos θ
.
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This shows that one can integrate out the term i sin θz/(1 + z) from (7.29), and the
function

h(θ) :=
1

2

∫ π

θ

ρ(dφ)

1 + cosφ
(7.31)

is finite, non-increasing on (−π, π) and h ∈ L1((−π, π),dθ). Then one obtains, for some
b ∈ R and D ∈ C,

−if̃(z) = −2

∫
(−π,π)

(
log(1 + z)− log(1− ze−iθ)

)
dh(θ) +

ib

1 + z
+D

=

∫
(−π,π)

−2iz

eiθ − z
h(θ) dθ +

ib

1 + z
+D

and hence

f̃(z) =

∫ π

−π

eiθ + z

eiθ − z
h(θ) dθ − b

1 + z
+ iD −

∫ π

−π
h(θ) dθ

=

∫
(−π,π)

eiθ + z

eiθ − z
k̃(θ) dθ +

b̃(−1 + z)

−1− z
+ iã,

where k̃(θ) = h(θ) + d for some d, ã, b̃ ∈ R. The assumption infz∈D Re f̃(z) > −∞ and
the dominated convergence theorem imply 2b̃ = limr↓−1 Re(1 + r)f̃(r) ≥ 0. The desired
statement for f can be obtained by the rotation z 7→ e−i(π+α)z.

The converse statement can be obtained by tracing the above arguments backwards.

7.3.4. Starlike moment generating functions. We find a class of probability mea-
sures on T analogous to SD(B), namely those which may be characterized by the star-
likeness of ψ-transform.

Definition 7.23. Let µ ∈ P(T). We say that ψµ is starlike if ψµ is univalent and ψµ(D)

is star-shaped with respect to 0, i.e. cψµ(D) ⊂ ψµ(D) for every c ∈ (0, 1). The set of
probability measures with starlike moment generating functions is denoted by Star(T).

In contrast to probability measures on the real line, there is no natural concept of
“dilation” on the unit circle. In order to find a probabilistic characterization of Star(T),
we propose an alternative operation. Observe first that for all µ ∈ P(T) we have

ψ(1−c)h+cµ = cψµ.

Definition 7.24. A probability measure µ on T is said to be of type H if µ ∈ P×(T)

and for every c ∈ (0, 1) there exists µc ∈ P(T) such that (1− c)h+ cµ = µ � µc. The set
of such probability measures is denoted by H(�).

Remark 7.25. We need to assume that µ ∈ P×(T); otherwise Theorem 7.26 below does
not hold. Indeed, take µ = 1

2 (δ1 + δ−1) /∈ P×(T) and define ηc(z) =
√
cz/
√

1− (1− c)z2

for c ∈ (0, 1). We can check that ηc(0) = 0 and ηc(D) ⊂ D, and so by Lemma 2.10 there
exists a probability measure µc ∈ P(T) such that ηc = ηµc . We can easily check that
cψµ = ψµ ◦ ηc for all c ∈ (0, 1), but ψµ(z) = z2/(1− z2) is not univalent.

For µ ∈ H(�), the condition µ ∈ P×(T) implies that the inverse series ψ−1
µ (z) =

(1/m1(µ))z + · · · exists and converges in a neighborhood of 0 and hence µc is uniquely
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determined by the formula
ηµc(z) = ψ−1

µ (cψµ(z)) (7.32)

around the origin. We may also define µ0 = h and µ1 = δ1. Then (7.32) and Lemma 2.11
imply that [0, 1] 7→ P(T), c 7→ µc, is weakly continuous. Note that h /∈ H(�) ∪ Star(T).

Theorem 7.26. Star(T) = H(�).

Proof. In the proof we adopt the notation Hcµ := (1− c)h + cµ.
Star(T) ⊂ H(�). Let µ ∈ Star(T). Since ψµ is univalent, ψ′µ(0) 6= 0 and hence

µ ∈ P×(T). From the inclusion ψHcµ(D) = cψµ(D) ⊂ ψµ(D) we may define the univalent
map ηc = ψ−1

µ ◦ ψHcµ : D → D. It satisfies ηc(0) = 0, and then applying Lemma 2.10
shows that ηc = ηµc for some µc ∈ P(T). This µc satisfies µ � µc = Hcµ.

Star(T) ⊃ H(�). Take µ ∈ H(�) and take the decomposition Hcµ = µ � µc. This
relation obviously shows that cψµ(D) ⊂ ψµ(D) for all c ∈ (0, 1), and so it suffices to
prove the univalence of ψµ. In a neighborhood of 0 we have (7.32), which implies that
µc � µd = µcd. Introducing the reparametrization µt := µexp(−t) then shows that

µs � µt = µs+t, s, t ≥ 0, µ0 = δ1. (7.33)

Therefore, {µt}t≥0 is a weakly continuous �-convolution semigroup, and by Corollary 7.7,
we have µt ∈ Univ(T) for all t ≥ 0.

Take and fix ε ∈ (0, 1) such that ψµ is univalent in εD. Take 0 < r < 1. Since µt
w→ h

as t → ∞, by Lemma 2.11 there exists t = t(ε, r) > 0 such that supz∈rD |ηµt(z)| < ε.
Since ηµt is univalent on rD, the function ψµ = etψµ ◦ ηµt is also univalent on rD. Since
0 < r < 1 was arbitrary, we conclude that ψµ is univalent on D.

The starlike functions have a well-known characterization; see [Pom75, Thm. 2.6].

Theorem 7.27. Suppose that µ ∈ P×(T). The following are equivalent:

(1) µ ∈ H(�).
(2) Re

( zψ′µ(z)

ψµ(z)

)
≥ 0.

If the above conditions hold, then the infinitesimal generator B for the convolution semi-
group (7.33) is given by B(z) = − ψµ(z)

zψ′µ(z) .

Remark 7.28. If the above conditions hold, then there exists c ∈ D\{0} and a probability
measure ρ on T such that

ψµ(z) = cz exp

(
−2

∫
T

log(1− ξz) ρ(dξ)

)
. (7.34)

However, the parameters c and ρ must satisfy a (seemingly complicated) additional con-
dition in order to have Re[RHS of (7.34)] ≥ −1/2.

Example 7.29. The distribution µt of unitary monotone Brownian motion (see Ex-
ample 7.10) has a univalent ψµt which has the starlike range

ψµt(D) = {z ∈ C : Re(z) > −1/2} \ [((1− e−t/2)−1/2 − 1)/2,∞).
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Example 7.30. Take ρ = w1δe−iθ1 + w2δe−iθ2 , where −π ≤ θ1 < θ2 < π, w1 + w2 = 1,
w1, w2 > 0. Then (7.34) at z = eiθ reads

ψ(eiθ) =


cei(w1θ1+w2θ2)+i(w1−w2)π

2(1− cos(θ − θ1))w1(1− cos(θ − θ2))w2
, θ1 < θ < θ2,

−cei(w1θ1+w2θ2)

2(1− cos(θ − θ1))w1(1− cos(θ − θ2))w2
, θ2 < θ < θ1 + 2π.

The range is C\ (L1∪L2) where Lk are half-lines of the form {reiαk : r ≥ rk}, and hence
Re[ψ(z)] ≥ −1/2 can never be satisfied.

Example 7.31. Take ρ = (1 − t)h + tδ1, t ∈ (0, 1). Then the RHS of (7.34) at z = eiθ

reads

ψ(eiθ) =
cei(1−t)θ+itπ

|2 sin(θ/2)|2t
, 0 < θ < 2π.

The range of ψ is contained in {z ∈ C : Re(z) > −1/2} if 0 < c ≤ 22t−1 and 0 < t < 1/2.
In this case the probability measure µ such that ψµ = ψ is Haar absolutely continuous
with density

dµ

dh
(eiθ) =

c cos((1− t)θ + tπ)

22t−1 sin2t(θ/2)
+ 1, 0 < θ < 2π.

7.3.5. Univalence and regularity of probability measures. The multiplicative ver-
sion of Proposition 6.32 holds true.

Proposition 7.32. Let µ ∈ Univ(T). Suppose that µ has an isolated atom at ζ ∈ T.
Then µ|T\{ζ} is absolutely continuous with respect to the Haar measure h and its density
is L∞.

Proof. The proof is similar to that of Proposition 6.32. The functions ψµ and ηµ play the
roles of Gµ and Fµ, respectively. For example the inequality (6.14) can be replaced by

µ({eiϕ : |ϕ− θ| < h})
h

≤
∫
|ϕ−θ|<h

1− r2

1 + r2 − 2r cos(ϕ− θ)
µ(deiϕ)

≤ Re(2ψµ(re−iθ) + 1),

where h = 1− r ∈ (0, 1) and θ ∈ [0, 2π). The remaining arguments are omitted here.

Remark 7.33. Anshelevich and Arizmendi proved a weaker version using the wrapping
map [AA17, Prop. 56]. We are not sure if the above result can also be proved with the
wrapping map.

Corollary 7.34. ID(~) is not a subset of Univ(T) ∪ {h}.

Proof. Let µ = pδ1 +(1−p)δ−1, 1/2 ≤ p < 1. It embeds into the ~-convolution semigroup

µ~t =
1 + (2p− 1)t

2
δ1 +

1− (2p− 1)t

2
δ−1, t ≥ 0

and hence µ is ~-infinitely divisible. Proposition 7.32 shows that µ is not in Univ(T).
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7.3.6. Problems. We can ask several multiplicative versions of questions that appeared
in the additive case.

(1) Can we characterize the unimodal distributions in terms of a limit theorem?
(2) We characterized unimodal distributions in terms of ψµ, and characterized a class of

probability measures which have starlike ψµ. On the other hand many other classes of
univalent functions on the unit disk are known in the literature, e.g. close-to-convex
functions and spiral-like functions. Can we characterize probability measures whose
moment generating functions ψµ belong to those classes?

(3) Are themultiplicative versions of Problem 6.37 andConjecture 6.39 true? (Cf. [AW14].)
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