
MONOTONE PROBABILITY THEORY

TAKAHIRO HASEBE

Abstract. This is an introduction to monotone probability theory, a kind of noncommuta-
tive probability based on the notion of monotone independence for noncommutative random
variables. The first part, Sections 1–4, introduces basic materials including noncommutative
probability spaces, monotone independence, sums and products of independent random vari-
ables, monotone cumulants, the central limit theorem, and Cauchy transform. The second part,
Section 5–8, focuses on more advanced topics including a detailed study of monotone convolu-
tion, noncommutative stochastic processes, connections to dynamics of holomorphic self-maps
of the upper half-plane (in particular, Loewner theory), and applications to outliers of random
matrices.
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Preface

Noncommutative probability theory is developing a kind of probability theory by regarding
operators as random variables. The mathematical basis of noncommutative probability theory
comes from quantum physics, where physical observables are modeled as self-adjoint operators
on a Hilbert space and the probability distribution of an observable is defined through the
spectral measure evaluated by a state.

An example of noncommutative random variable is a random matrix, i.e., a matrix that
has random variables as its entries. Two significant contributions have been made in an early
stage of research: Wishart in 1920’s applied random matrices as the estimator of the covari-
ance matrix of iid data of normally distributed random vectors; Wigner in 1950’s introduced
random matrices to model the energy levels of nucleons of nuclei. Since then random matrices
have discovered numerous connections and applications to other fields: connections to other
mathematics include the distribution of prime numbers, integrable systems (e.g. the Peinlevé
equations) [107], and random Young diagrams [36, 91, 123]; applications beyond mathematics
include log-gas systems [61], wireless communications [51], quantum information [47] and deep
learning [126].

Significant progress in noncommutative probability has been made in the context of operator
algebras: Voiculescu initiated free probability theory in 1980’s motivated by free group factors.
The central idea of free probability is “free independence” for noncommutative random variables
[144]. A parallelism lies between probability theory and free probability theory, and various
concepts are defined accordingly, e.g., free entropy, free convolution, free central limit theorem,
freely infinitely divisible distributions and free cumulants. In addition to operator algebras,
free probability has found various connections and applications to other fields including random
matrices, representation theory, combinatorics, complex analysis, Hopf algebras and quantum
groups. In particular, through random matrices, free probability has been applied beyond
mathematics to other fields, see e.g. [47, 51, 60].

Fock spaces form an important aspect of noncommutative probability from physical, prob-
abilistic, and operator-algebraic perspectives. Numerous generalized Fock spaces have been
proposed so far. In the 1990’s, De Giosa, Lu and Muraki introduced monotone Fock spaces,
creation and annihilation operators on them, and a monotone Brownian motion as the sum of



MONOTONE PROBABILITY THEORY 3

these operators [55, 104, 114]. Muraki identified the concept of “monotone probability theory”
as implicit in these operators [115, 116]. The building block is “monotone independence” for
noncommutative random variables. Again, a parallelism exists between monotone probability
and free or classical probability. Progress in this field has uncovered connections to various
fields as well. The monotone convolution of probability measures is characterized by the com-
position of holomorphic self-maps of the complex upper half-plane, thus finding a connection to
(holomorphic) dynamical systems. In particular, certain noncommutative stochastic processes
correspond to dynamics of holomorphic functions called Loewner chains. As for random ma-
trices, Cébron, Dahlqvist and Gabriel recently applied monotone independence to the analysis
of eigenvalues of large random matrices with perturbation [40]. Monotone independence also
appears in some graph product [1]. Given increasing new aspects of monotone independence,
it is now an appropriate time to offer a detailed expository article to these subjects.

The structure of this exposition is as follows. Section 1 offers the definition of noncom-
mutative probability spaces with examples, the definition of monotone independence and the
calculation of the distribution of the sum and product of monotonically independent random
variables.

Section 2 presents a canonical construction of monotonically independent subalgebras on the
free product algebra. Some properties of monotone independence, in particular, positivity and
associativity are proved.

Section 3 introduces the concept of monotone cumulants of random variables and demon-
strates how to calculate the monotone cumulants from the moments of random variables. The
monotone cumulants turn out to be useful for investigating the distribution of iid sums of ran-
dom variables. As applications, the central limit theorem and Poisson’s law of small numbers
for monotonically iid random variables are established. In particular, the arcsine distribution
appears in the monotone CLT instead of the normal distribution in the classical CLT.

Section 4 is concerned with tools in complex analysis. First we establish an integral formula
for Nevanlinna functions, i.e., holomorphic functions on the upper half-plane taking values
with nonnegative imaginary part. Then the Cauchy transform and several other transforms of
probability measures on the real line are investigated.

Section 5 introduces additive/multiplicative monotone convolutions for arbitrary probability
measures on the basis of complex-analytic methods. We then study various aspects of additive
monotone convolution, including the support and moments, convolution semigroups and infinite
divisibility.

Section 6 discusses monotone convolution hemigroups that describe the marginal distribu-
tions of noncommutative stochastic processes with monotonically independent increments (or
monotone additive processes). Their relation to Loewner theory is studied in details. We derive
an integral equation and an integro-differential equation satisfied by a Loewner chain.

Section 7 is devoted to constructions of monotone additive processes as operator processes
on Hilbert spaces. We present two constructions: one is the sum of three kinds of operators
on the monotone Fock space, which generalizes Lu and Muraki’s construction of monotone
Brownian motion. This construction heavily depends on the integral equation for Loewner
chains developed in Section 6. We also offer quite a different construction based on certain
classical Markov processes.

Lastly, Section 8 addresses applications/connections of monotone independence to random
matrices and a graph product. For a large square random matrix, a small number of eigenvalues
located away from the other eigenvalues are called outliers. Existence or non-existence of
outliers for some random matrix models are analyzed by using monotone independence. In
graph theory, there are numerous binary operations on graphs called graph products. One of
them is called a comb product and is connected to monotone independence. We apply the
monotone CLT to the iterated comb product graph, which allows us to estimate the number of
closed paths of the graph.
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Some topics that are not included but deserve to be mentioned are: a Hopf algebraic approach
to cumulants; refined limit theorems that lead to deep dynamics of iteration of holomorphic
self-maps; connections of monotone probability and free probability; C∗-algebras related to
monotone probability. Some references to these subjects are provided in Notes 3.6, 3.6, 5.4 and
7.3 respectively. Finally, it is worth noting that the monograph [86] and the expository article
[132] are also valuable sources on monotone and other notions of independence written from
different perspectives.

I am grateful to Dan Voiculescu who encouraged me to write an introductory exposition
of monotone probability theory. I greatly appreciate discussions with Guillaume Cébron and
Katsunori Fujie, which improved my understanding of applications of monotone independence
to random matrices. I would like to thank Katsunori Fujie and Wojciech M lotkowski for reading
the manuscript and giving helpful comments.

Sapporo, October 2025
Takahiro Hasebe
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Notation

N: the set of positive integers {1, 2, 3, ...}
N0: the set of nonnegative integers {0, 1, 2, 3, ...}
[n]: the set {1, 2, ..., n} for any n ∈ N
1A: the unit of a unital algebra A

Sp(a): the spectrum {z ∈ C : z1A−a is not invertible} of an element a of a unital C∗-algebra

⟨S⟩: the subalgebra generated by a subset S of an algebra

C∗⟨S⟩: the C∗-subalgebra generated by a subset S of a C∗-algebra
−→∏
t∈T

at: the ordered product at1at2 · · · atn for a totally ordered set T = {t1 < t2 < · · · < tn}

and elements at of an associative algebra A; the ordered product is 1A if T = ∅
B(H): the set of bounded linear operators on a Hilbert space H

MN(C): the set of N ×N matrices with complex entries

C(X): the set of C-valued continuous functions on a topological space X

B(X): the set of the Borel subsets of a topological space X

D: the complex unit disk {z ∈ C : |z| < 1}
C+: the complex upper half-plane {z ∈ C : ℑ(z) > 0}

µa: the analytic distribution of a real random variable a; φ(an) =

∫
R
xn µa(dx), n ∈ N

Gµ: the Cauchy transform

∫
R

1

z − t
µ(dt)

Fµ: the reciprocal Cauchy transform 1/Gµ(z)

ψµ: the moment generating function

∫
R

zt

1 − zt
µ(dt) =

1

z
Gµ

(
1

z

)
− 1

ηµ: the η-transform
ψµ(z)

1 + ψµ(z)
= 1 − zFµ

(
1

z

)
arg: the argument function defined on C \ [0,+∞) so that arg z ∈ (0, 2π)

▽γ: the sector domain {z ∈ C+ : γ|ℜ(z)| < ℑ(z)}, γ > 0

χB: the characteristic function of a subset B, i.e., χB(x) = 1 if x ∈ B and χB(x) = 0
otherwise

mn(µ): the nth moment

∫
R
tn µ(dt) of a Borel measure µ on R, if it exists

Var(µ): the variance of a probability measure µ on R
△: the set {(s, t) ∈ R2 : 0 ≤ s ≤ t < +∞}
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1. Monotone independence

The standard Kolmogorov’s formulation of probability theory builds upon a probability space
that is a triple of a set Ω, a σ-field F ⊆ 2Ω and a probability measure P defined as a function on
F . The idea of noncommutative probability is to shift the focus from the probability space to
the function space over it, say L∞ := L∞(Ω,F ,P). We can regard the expectation E as a linear
functional on L∞. The central idea is to generalize L∞ to a possibly noncommutative algebra
and E to a linear functional on it, which leads to the concept of noncommutative probability
space. Elements of the algebra are called random variables. To contrast, the usual probability
theory is often called classical probability theory, just as mechanics in physics before quantum
theory is referred to as classical mechanics.

Numerous notions in probability theory can naturally be formulated in the noncommutative
setting. In this section, we will consider the distribution of a random variable, independence
of random variables, and the sum and product of independent random variables. A striking
feature is that the notion of independence is not unique. What we focus on is the one called
“monotone independence”.

1.1. Noncommutative probability spaces. We start by collecting basic materials in algebra
and functional analysis. We quote some results on C∗-algebras, which can be found e.g. in [50].

Definition 1.1. Let A be an associative algebra over C, possibly not having a unit.

(i) A is called a ∗-algebra if there exists a map A ∋ a 7→ a∗ ∈ A that satisfies (a∗)∗ = a,
(ab)∗ = b∗a∗ and (λa+ µb)∗ = λa∗ + µb∗ for all λ, µ ∈ C and all a, b ∈ A.

(ii) A is called a Banach algebra if A is a Banach space with respect to a norm ∥ · ∥ and the
inequality ∥ab∥ ≤ ∥a∥∥b∥ holds for all a, b ∈ A.

(iii) A is called a C∗-algebra if A is a ∗-algebra and also a Banach algebra such that ∥a∗a∥ =
∥a∥2 holds for all a ∈ A.

For an algebra A, especially when it is non-unital, we define its unitization Ã := C ⊕ A
with unit 1Ã := (1, 0) and multiplication (λ, a)(µ, b) := (λµ, λb + µa + ab). If A is a ∗-algebra

then Ã is a unital ∗-algebra with involution (λ, a)∗ := (λ, a∗).

Definition 1.2. (i) A pair (A,φ) of an associative algebra A over C and a linear functional
φ : A → C is called a noncommutative probability space (nc-probability space for
short). If A is a unital algebra and φ is a unital linear functional, i.e., φ(1A) = 1, then
(A,φ) is called a unital nc-probability space.

(ii) Let A be a unital ∗-algebra. A linear functional φ : A → C is called a state if φ(1A) = 1
and φ is positive, i.e., φ(a∗a) ≥ 0 for all a ∈ A. Such a pair (A,φ) is called a unital
∗-probability space.

(iii) Let A be a (possibly non-unital) ∗-algebra. A linear functional φ : A → C is called a
restricted state if the extended linear functional φ̃ : Ã → C with φ̃(1Ã) := 1 is a state
in the sense of (ii). A pair (A,φ) of a ∗-algebra and a restricted state on it is called a
∗-probability space.

(iv) Let A be a unital C∗-algebra. If a linear functional φ on A is a state in the sense of (ii)
above, then the pair (A,φ) is called a unital C∗-probability space. It is known that φ
automatically becomes continuous with norm 1.

In any setting above, an element a ∈ A is called a random variable and φ(a) is called the
expectation of a. In a ∗-probability space, an element a with a∗ = a is called a real random
variable.
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Remark 1.3. (a) On a unital ∗-probability space (A,φ), φ is self-adjoint, i.e., φ(a∗) = φ(a)
holds for all a ∈ A. Moreover, the Cauchy-Schwarz inequality

|φ(a∗b)| ≤
√
φ(a∗a)

√
φ(b∗b)

holds for all a, b ∈ A. These can be proved from the fact that the quadratic function
C ∋ λ 7→ φ((a+ λb)∗(a+ λb)) is nonnegative.

(b) On a ∗-algebra A, the mere positivity φ(a∗a) ≥ 0, a ∈ A does not imply that φ is a
restricted state. For example, let C0[x] be the ∗-algebra of polynomials without constant
terms, equipped with the involution (a1x + a2x

2 + · · · anxn)∗ := a1x + a2x
2 + · · · + anx

n.
Let φ : C0[x] → C be defined linearly by φ(x) := α and φ(xn) := 0 for all n ≥ 2. For any
α ∈ C the positivity condition φ(a∗a) ≥ 0 holds, but φ fails to be a restricted state as
soon as α ̸= 0 because φ̃((λ1+x)∗(λ1+x)) = |λ|2 +2αℜ(λ), which fails to be nonnegative
for some λ ∈ C.

(c) Let A be a unital ∗-algebra and φ : A→ C be a unital linear functional. Then φ is a state
if and only if φ is a restricted state. First, it is obvious that if φ is a restricted state then
it is a state. Conversely, suppose that φ is a state. Let 1Ã denote the unit of Ã and 1A

denote that of A. For the unital extension φ̃ : Ã→ C and a ∈ A we have

φ̃((λ1Ã + a)∗(λ1Ã + a)) = |λ|2 + λφ(a∗) + λφ(a) + φ(a∗a).

This is exactly the same as φ((λ1A + a)∗(λ1A + a)), which is nonnegative.

(d) We could also define non-unital C∗-probability spaces by requiring φ to be a positive
continuous linear functional with norm 1, but we will not need this general setting.

Fundamental examples of noncommutative probability spaces are provided below. The first
three correspond to classical probability theory.

Example 1.4. (a) Let (Ω,F ,P) be a probability space. Let E denote the expectation, i.e.,
the linear functional X 7→

∫
Ω
X(ω)P(dω). Then the pair (L∞(Ω,F ,P),E) is a unital C∗-

probability space with unit χΩ, involution X 7→ X∗ defined by X∗(ω) := X(ω), and the
L∞ norm ∥ · ∥. Alternatively, if we consider the larger space L∞− :=

⋂
1≤p<+∞ Lp(Ω,F ,P),

then (L∞−,E) is a unital ∗-probability space.

(b) Let Ω be a compact topological space and P be a probability measure on (Ω,B(Ω)). The
set C(Ω) of the C-valued continuous functions on Ω is a unital C∗-algebra equipped with
the same unit and involution as above and the supremum norm ∥ · ∥. The pair (C(Ω),E)
is a unital C∗-probability space.

(c) Let C[x] be the polynomial algebra containing the unit. Let (αn)n≥0 be any sequence of
complex numbers. The linear functional φ : C[x] → C defined by φ(xn) := αn, n ∈ N0,
provides a nc-probability space (C[x], φ). Moreover, we introduce an involution on C[x] by
(xn)∗ := xn and extending it by antilinearity. Let µ be a probability measure on R that
has finite moments of all orders. Then the linear function φµ : C[x] → C,

φµ(P (x)) :=

∫
R
P (t)µ(dt)

gives a unital ∗-probability space (C[x], φµ).

(d) Let H be a Hilbert space and ξ ∈ H be a unit vector, i.e., ∥ξ∥ = 1. Let B(H) be the
C∗-algebra of bounded linear operators on H equipped with operator norm and involution
being the adjoint. Let φξ(a) := ⟨ξ, aξ⟩ called the vector state. Then (B(H), φξ) is a unital
C∗-probability space.

(e) Let MN(C) be the unital ∗-algebra of N ×N matrices of complex numbers with involution
being the conjugate transpose. Let Tr be the canonical trace, i.e., Tr(a) is the sum of the
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diagonal entries of a. Then (MN(C), 1
N

Tr) is a unital ∗-probability space. We can also
make it a unital C∗-probability space by naturally identifying MN(C) with B(CN).

(f) We generalize example (e) to random matrices. Let MN(L∞−) be the unital ∗-algebra of
N ×N matrices with entries in L∞− defined in (a). With the natural unit 1 = (δi,j)i,j∈[N ]

and involution a∗ := (X∗
j,i)i,j∈[N ] for a = (Xi,j)i,j∈[N ], the pair (MN(L∞−), 1

N
E◦Tr) becomes

a unital ∗-probability space.

1.2. Distributions of random variables. Now we come to the consideration of distribu-
tions of random variables. For an R-valued random variable X defined on a probability space
(Ω,F ,P), the distribution of X is the probability measure µX on R defined by

µX(B) := P[{ω ∈ Ω : X(ω) ∈ B}], B ∈ B(R),

where B(R) is the set of the Borel subsets of R. By the change-of-variable formula, for any
bounded continuous function f : R → C, we have

E[f(X)] =

∫
R
f(x)µX(dx).

We take this formula as a starting point to define a distribution of a real random variable in
the noncommutative setting.

1.2.1. The case of C∗-probability spaces. Let a be real random variable in a unital C∗-probability
space (A,φ). Recall that the spectrum

Sp(a) := {z ∈ C : z1A − a is not invertible}

is a compact subset and is contained in the interval [−∥a∥, ∥a∥], and a admits continuous
functional calculus, i.e., there is an isometric unital ∗-homomorphism Fa : C(Sp(a)) → A such
that Fa(P ) = P (a) for any polynomial P , where C(Sp(a)) is the C∗-algebra endowed with
supremum norm. The notation f(a) := Fa(f) is used for all f ∈ C(Sp(a)).

Proposition 1.5. Let (A,φ) be a unital C∗-probability space and a ∈ A be a real random
variable. There exists a unique probability measure µa on Sp(a) such that

φ(f(a)) =

∫
Sp(a)

f(x)µa(dx)

for all continuous functions f : Sp(a) → C. The probability measure µa is called the distri-
bution of a. Sometimes we call it the analytic distribution of a to distinguish it from the
algebraic one in Definition 1.7 below.

Proof. This is a consequence of Riesz-Markov-Kakutani’s theorem applied to the continuous
positive linear functional f 7→ φ(f(a)). □

Since µa is supported on the compact set Sp(a), µa is a unique probability measure on R
such that

φ(an) =

∫
R
xnµa(dx), n ∈ N, (1.1)

see Proposition A.3.

Example 1.6. (a) Let a ∈ MN(C) be Hermitian. Then a = udu∗ for some unitary matrix u
and the real diagonal matrix d = diag(λ1, λ2, ..., λN) of eigenvalues of a, so that

1

N
Tr(an) =

1

N
Tr(dn) =

1

N

N∑
i=1

λni =

∫
R
xn µa(dx), n ∈ N,

where µa := 1
N

∑N
i=1 δλi

is called the empirical eigenvalue distribution of a.
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(b) Let (Ω,F ,P) be a probability space. We consider the unital C∗-probability space (B(H), φχΩ
),

where H := L2(Ω,F ,P) and φχΩ
is the vector state. Let X be a bounded real random

variable. Let mX ∈ B(H) denote the multiplication operator f 7→ Xf on H. Then

φχΩ
(mn

X) = ⟨χΩ,m
n
XχΩ⟩ =

∫
Ω

X(ω)n P(dω) =

∫
R
xn µX(dx), n ∈ N,

where µX(·) := P[X ∈ · ] is the distribution of X. Therefore, µmX
coincides with µX .

(c) Suppose that (A,φ) is a unital C∗-probability space and a ∈ A is a real random variable.
If φ is a homomorphism on ⟨a⟩ (the algebra generated by a), then the analytic distribution
µa is the delta measure δφ(a), as the nth moment of µa equals φ(a)n.

1.2.2. The cases of ∗- and nc-probability spaces. We now turn to the setting of a ∗-probability
space (A,φ). Let (Ã, φ̃) be its unital extension. Let a ∈ A be a real random variable. Then
the sequence sn := φ̃(an), n = 0, 1, 2, ... is positive semi-definite, i.e., for every n ∈ N0 and
c0, c1, ..., cn ∈ R we have

n∑
i,j=0

cicjsi+j = φ̃

((
n∑

i=0

cia
i

)∗( n∑
j=0

cja
j

))
≥ 0.

This guarantees the existence of a probability measure µa on R having finite moments of all
orders such that (1.1) holds (Hamburger’s moment problem); see e.g. [3, Theorem 2.1.1] and
[134, Theorem 3.8]. In general, however, the probability measure µa is not unique, see Example
A.2. For this reason, we will call the sequence (φ(an))n∈N itself the distribution of a instead of
µa. More generally, we extend this term to elements of a nc-probability space.

Definition 1.7. Let (A,φ) be a nc-probability space. For any a ∈ A, the sequence (φ(an))n∈N
is called the distribution of a. Each number φ(an) is called the nth moment of a.

Relying on this definition, we can say that a and b have an identical distribution if φ(an) =
φ(bn) for all n ∈ N. More generally, given two nc-probability spaces (A,φ) and (B,ψ), we may
say that a ∈ A and b ∈ B have an identical distribution if φ(an) = ψ(bn) for all n ∈ N.

1.2.3. Spectral measures and analytic distributions. For bounded self-adjoint operators on com-
plex Hilbert spaces, we can show that the analytic distribution is the evaluation of the spectral
measure by a state. Although this fact is not essential in the following, this is a core idea of
noncommutative probability and of quantum physics, and so it is worth noting here. Let us
first recall the concept of spectral measure.

Definition 1.8. Let a be a bounded self-adjoint operator on a complex Hilbert space H.
The spectral measure of a is a function Ea defined on B(Sp(a)) taking values in the set of
orthogonal projections on H, such that

(i) Ea(Sp(a)) = IH ,

(ii) for disjoint sets Bn ∈ B(Sp(a)), n ∈ N, the identity

Ea

(
∞⋃
n=1

Bn

)
=

∞∑
n=1

Ea(Bn)

holds, where the infinite sum converges in the sense of strong operator topology,

(iii) it holds for all ξ ∈ H that

⟨ξ, aξ⟩ =

∫
Sp(a)

x d⟨ξ, Ea(x)ξ⟩,
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where the right-hand side is the integral against the Borel measure B 7→ ⟨ξ, Ea(B)ξ⟩.
This formula is often written more simply as

a =

∫
Sp(a)

xEa(dx)

and is called the spectral decomposition of a.

It is known that a spectral measure exists; the reader is referred to e.g. [133, Theorem 5.1 and
Proposition 5.10] or [50, Theorem IX, 2.2].

The spectral measure offers Borel functional calculus: for any bounded (Borel) measurable
function f : Sp(a) → C we can define f(a) by the spectral integral

f(a) :=

∫
Sp(a)

f(x)Ea(dx). (1.2)

This satisfies several properties e.g., χSp(a)(a) = IH , (fg)(a) = f(a)g(a), and

⟨ξ, f(a)ξ⟩ =

∫
Sp(a)

f(x) d⟨ξ, Ea(x)ξ⟩, ξ ∈ H. (1.3)

One can also interpret that (1.3) is the definition of the spectral integral, i.e., the spectral
integral f(a) in (1.2) is a unique bounded operator such that (1.3) holds; recall the well known
fact that ⟨ξ, bξ⟩ = 0 for all ξ ∈ H implies b = 0 if H is a complex Hilbert space.

Proposition 1.9. Let a be a bounded self-adjoint operator on a Hilbert space H and ξ ∈ H be
a unit vector. Let Ea be the spectral measure of a. Then the analytic distribution of a in the
C∗-probability space (B(H), φξ) is given by µa = φξ ◦ Ea.

Proof. The definition of spectral measure implies that µ := φξ ◦Ea is a probability measure on
R. By Borel functional calculus we have

φξ(a
n) = ⟨ξ, anξ⟩ =

∫
Sp(a)

xn d⟨ξ, Ea(x)ξ⟩ =

∫
Sp(a)

xn µ(dx), n ∈ N0,

showing µ = µa. □

Remark 1.10. The spectral measure exists also for unbounded self-adjoint operators on Hilbert
spaces. Then we can define the distribution of the operator to be the evaluation of the spectral
measure by a state. This is a standard method in noncommutative probability to handle
arbitrary probability measures on the real line.

The analytic distributions in Example 1.6 can be understood via spectral measures.

Example 1.11. In the setting of Example 1.6 (a), we identify MN(C) with B(CN). Let
λ′1, λ

′
2, ..., λ

′
M (1 ≤ M ≤ N) be the eigenvalues of a without counting multiplicities. The

spectrum of a equals the finite set

Sp(a) = {λ′1, ..., λ′M}.

Let Ei be the orthogonal projection from CN onto the eigenspace of the eigenvalue λ′i, i.e.,

Eiξ =

mi∑
j=1

⟨ui,j, ξ⟩ui,j,

where {ui,1, ui,2, ..., ui,mi
} is an orthonormal basis of the eigenspace. We show that

E(B) :=
∑

i : λ′
i∈B

Ei, B ⊆ Sp(a)
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is the spectral measure of a. First, as is well known in linear algebra, the vectors {ui,j : 1 ≤
j ≤ mi, 1 ≤ i ≤ M} form a basis of CN . Since every vector ξ ∈ CN can be expressed as the
linear combination

ξ =
M∑
i=1

mi∑
j=1

⟨ui,j, ξ⟩ui,j,

one can easily see that

E(Sp(a)) =
M∑
i=1

Ei = ICN .

Second, observing ⟨ξ, E(B)ξ⟩ =
∑

i : λ′
i∈B
∑mi

j=1 |⟨ξ, ui,j⟩|2 we see that the Borel measure ⟨ξ, E(·)ξ⟩
can be expressed as ⟨ξ, E(·)ξ⟩ =

∑M
i=1(
∑mi

j=1 |⟨ξ, ui,j⟩|2)δλ′
i
. We thus obtain∫

Sp(a)

x d⟨ξ, E(x)ξ⟩ =
M∑
i=1

(
mi∑
j=1

|⟨ξ, ui,j⟩|2
)
λ′i =

M∑
i=1

mi∑
j=1

⟨ξ, aui,j⟩⟨ui,j, ξ⟩

=
M∑
i=1

mi∑
j=1

⟨a∗ξ, ui,j⟩⟨ui,j, ξ⟩ = ⟨a∗ξ, ξ⟩ = ⟨ξ, aξ⟩,

where we used the basic relations aui,j = λ′iui,j and ⟨ξ, η⟩ =
∑N

k=1⟨ξ, vk⟩⟨vk, η⟩ for any orthonor-
mal basis (vk)k∈[N ]. Therefore we have verified that E is the spectral measure.

Finally, the analytic distribution µa in the C∗-probability space (MN(C), 1
N

Tr) can be recov-
ered as

µa(B) =
1

N
Tr(E(B)) =

1

N

∑
i : λ′

i∈B

Tr(Ei) =
1

N

∑
i : λ′

i∈B

mi =
1

N

N∑
i=1

δλi
(B).

Example 1.12. In the setting of Example 1.6 (b), observe first that the spectrum of mX is
exactly the support S of µX (see Section 4.1 for the definition of support). We show that the
spectral measure of the multiplication operator mX is given by

E(B) := mχB(X), B ∈ B(S).

First, it is obvious that E(S) = IH as P[X ∈ S] = 1. Second, E(B) is an orthogonal projection
as one can easily check E(B) = E(B)2 = E(B)∗. Third, for disjoint Borel subsets Bn ∈ B(S)
and ξ ∈ H we have

E

(
∞⋃
n=1

Bn

)
ξ = χ⋃

n∈N Bn(X)ξ =
∞∑
n=1

χBn(X)ξ =
∞∑
n=1

E(Bn)ξ,

where the second equality holds (in the L2 sense) by the dominated convergence theorem.
Finally, for ξ ∈ H, the measure B 7→ ⟨ξ, E(B)ξ⟩ is given by E[χB(X)|ξ|2] = E[δX(B)|ξ|2]. If
f = χB with B ∈ B(S), then by the definition of integral∫

S

f(x) d⟨ξ, E(x)ξ⟩ = E[χB(X)|ξ|2] = E[f(X)|ξ|2] = ⟨ξ, f(X)ξ⟩.

For a nonnegative bounded Borel measurable function f , we approximate it by simple functions
from below. By the monotone convergence theorem, the same formula

∫
S
f(x) d⟨ξ, E(x)ξ⟩ =

⟨ξ, f(X)ξ⟩ still holds. By linearity, the same holds for any bounded Borel measurable function
f . In particular, selecting f = id we conclude that E is indeed the spectral measure of mX .
Note hat the above arguments actually show that f(mX) = mf(X).

Using the spectral measure, we recover the analytic distribution of mX in Example 1.6 (b)

µmX
(B) = φχΩ

(E(B)) = ⟨χΩ, χB(X)χΩ⟩ = P[X ∈ B],

so that µmX
coincides with the distribution of X in the sense of classical probability.
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1.3. Independence of two subalgebras. On a probability space (Ω,F ,P), the independence
of two σ-subfields G,H ⊆ F is defined by the condition

P(A ∩B) = P(A)P(B), A ∈ G, B ∈ H.
This is also equivalent to the condition that

E[XY ] = E[X]E[Y ] (1.4)

for all X ∈ L∞(Ω,G,P) and Y ∈ L∞(Ω,H,P). The latter condition can be regarded as a
certain relation between the subalgebras L∞(Ω,G,P) and L∞(Ω,H,P) of L∞(Ω,F ,P).

Let us generalize the independence of the form (1.4) to a nc-probability space (A,φ). It is a
natural viewpoint that subalgebras of A should play the role of σ-subfields in probability theory.
On the basis of this viewpoint, let us consider analogues of (1.4). Let B,C be subalgebras of A.
Because random variables are allowed to be noncommuting, focusing only on the expectation
φ(bc), b ∈ B, c ∈ C is not sufficient; it is natural to discuss the more general quantities

φ(b1c1b2 · · · cn−1bn), φ(b1c1b2 · · · cn−1bncn),

φ(c0b1c1b2 · · · cn−1bn), φ(c0b1c1b2 · · · cn−1bncn), bi ∈ B, ci ∈ C,

which we call mixed moments of B and C. To discuss the above four kinds of alternating
words in a unified way, we consider φ(c0b1c1 · · · cn−1bncn) allowing c0 = 1Ã or cn = 1Ã in the

unitized algebra Ã (if A is unital then we can just take c0 = 1A or cn = 1A). Inspired by (1.4),
we consider a “universal rule” for calculating the mixed moments of B and C, and call it an
independence of B and C in noncommutative probability theory.

A direct generalization of the classical stochastic independence (1.4) to a nc-probability space
is as follows.

Definition 1.13. Let (A,φ) be a nc-probability space. Subalgebras B,C ⊆ A are called
tensor independent if

φ(c0b1c1b2c2 · · · bncn) = φ(b1b2 · · · bn)φ(c0c1c2 · · · cn)

holds for all n ≥ 1, b1, b2, . . . , bn ∈ B and c1, c2, · · · , cn−1 ∈ C and c0, cn ∈ C ∪ {1Ã}. In case
n = 1 and c0 = cn = 1Ã we understand φ(c0cn) = 1.

Two subsets S, T ⊆ A are said to be tensor independent if the subalgebras B := ⟨S⟩ and
C := ⟨T ⟩ are tensor independent. If (A,φ) is a ∗-probability space, then two subsets S, T ⊆ A
are called ∗-tensor independent if the ∗-subalgebras B := ⟨b, b∗ : b ∈ S⟩ and C := ⟨c, c∗ : c ∈ T ⟩
are tensor independent.

Example 1.14 (A canonical model for the tensor independence). Let (Ai, φi), i = 1, 2 be
two nc-probability spaces. Let A := A1 ⊗ A2 and φ := φ1 ⊗ φ2. Then the subalgebras
B := A1 ⊗ 1A2 and C := 1A1 ⊗ A2 are tensor independent in (A,φ). To see this, for example
for bi = xi ⊗ 1A2 , i = 1, 2 and ci = 1A2 ⊗ yi, i = 1, 2, 3, we have

c0b1c1b2c2 = (x1x2) ⊗ (y0y1y2)

and hence
φ(c0b1c1b2c2) = φ1(x1x2)φ2(y0y1y2) = φ(b1b2)φ(c0c1c2).

Here we introduce monotone independence as another factorization formula for mixed mo-
ments.

Definition 1.15. Let (A,φ) be a nc-probability space. Subalgebras B,C ⊆ A are called
monotonically independent if

φ(c0b1c1b2c2 · · · bncn) = φ(b1b2 · · · bn)φ(c0)φ(c1)φ(c2) · · ·φ(cn) (1.5)

for all n ≥ 1, b1, b2, . . . , bn ∈ B and c1, c2, · · · , cn−1 ∈ C and c0, cn ∈ C ∪ {1Ã}. Here we
understand φ(1Ã) = 1.

Two subsets S, T ⊆ A are said to be monotonically independent if the subalgebras B := ⟨S⟩
and C := ⟨T ⟩ are monotonically independent. If (A,φ) is a ∗-probability space, then subsets
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S, T ⊆ A are said to be ∗-monotonically independent if the ∗-subalgebras B := ⟨b, b∗ : b ∈ S⟩
and C := ⟨c, c∗ : c ∈ T ⟩ are monotonically independent.

Remark 1.16. (a) Monotone independence has an “asymmetric” nature: B and C being mono-
tonically independent does not imply that C and B are monotonically independent.

(b) If B,C are monotonically independent and (A,φ) is unital, then one can show that B and
⟨1A, C⟩ are also monotonically independent, i.e., (1.5) holds for c0, c1, ..., cn ∈ C ∪ {1A}
too. However, if one takes bi = 1A for some i then (1.5) holds only in trivial cases. Suppose
for example that φ(c0b1c1) = φ(b1)φ(c0)φ(c1) were the case for b1 = 1A. Then we would
have φ(c0c1) = φ(c0)φ(c1) for all c0, c1 ∈ C, i.e., φ would be a homomorphism on C. In
the setting of C∗-probability spaces, this implies that any real random variable c ∈ C has
the trivial distribution δφ(c), see Example 1.6 (c).

(c) Remark (b) suggests that the role of the unit 1A is rather different from classical probability
theory. Here are two more remarks on the unit. In probability theory, a constant random
variable is independent of any other random variable. In monotone probability, it is easy
to see that a and 1A are monotonically independent for any a ∈ A; however, typically
1A and a are not monotonically independent. Also we can observe that the monotone
independence of b and c does not imply that of b+ λ1A and c for λ ∈ C \ {0}.

(d) Suppose (A,φ) is a unital C∗-probability space. If B,C are ∗-subalgebras of A that are
monotonically independent, then we can prove (1.5) for all n ≥ 1, b1, b2, . . . , bn ∈ C∗⟨B⟩ =
B and c0, c1, · · · , cn−1 ∈ C∗⟨1A, C⟩. Moreover, when c0 = cn = 1A, the left- and right-most
letters b1 and bn are allowed to be the unit, i.e., the formula

φ(b1c1b2c2 · · · cn−1bn) = φ(b1b2 · · · bn)φ(c1)φ(c2) · · ·φ(cn−1) (1.6)

holds for all n ≥ 2, b1, bn ∈ C∗⟨1A, B⟩, b2, . . . , bn−1 ∈ C∗⟨B⟩ and c1, c2, · · · , cn−1 ∈
C∗⟨1A, C⟩.

Example 1.17 (A canonical model for monotone independence). Let Hi, i = 1, 2 be two
Hilbert spaces. We fix arbitrary unit vectors ξi in Hi, i = 1, 2. Let H := H1⊗H2 be the tensor
product Hilbert space and ξ := ξ1⊗ξ2 and p ∈ B(H2) be the orthogonal projection onto the one-
dimensional subspace Cξ2. We consider the unital C∗-probability space (A,φ), where A = B(H)
and φ(a) := ⟨ξ, aξ⟩, a ∈ A, and the ∗-subalgebras B := B(H1) ⊗ p and C := IH1 ⊗ B(H2) of
A. Note that B is a ∗-subalgebra because of p2 = p = p∗, and moreover, B,C are both C∗-
subalgebras (i.e., closed with respect to the operator norm) because ∥x ⊗ y∥ = ∥x∥∥y∥ holds
for all x ∈ B(H1) and y ∈ B(H2). Then B and C are monotonically independent in (A,φ). To
see this, for example for bi = b′i ⊗ p, i = 1, 2 and ci = IH1 ⊗ c′i, i = 1, 2, 3, we have

c0b1c1b2c2 = (b′1b
′
2) ⊗ (c′0pc

′
1pc

′
2)

and hence, with notation φi(·) = ⟨ξi, ·ξi⟩Hi
,

φ(c0b1c1b2c2) = φ1(b
′
1b

′
2)φ2(c

′
0pc

′
1pc

′
2).

Note here that, since pξ2 = ξ2, we have

φ2(c
′
0pc

′
1pc

′
2) = φ2(pc

′
0pc

′
1pc

′
2p).

Straightforward calculations yield pc′p = φ2(c
′)p for any c′ ∈ B(H2). Hence, we arrive at

φ2(c
′
0pc

′
1pc

′
2) = φ2(c

′
0)φ2(c

′
1)φ2(c

′
2) = φ(c0)φ(c1)φ(c2)

and finally

φ(c0b1c1b2c2) = φ(b1b2)φ(c0)φ(c1)φ(c2).

Example 1.18. A simpler example can be constructed on a single Hilbert space H equipped
with a unit vector ξ ∈ H. Let p be the orthogonal projection onto Cξ and let φ := ⟨ξ, ·ξ⟩. We
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show that the sets {p} and B(H) are monotonically independent in (B(H), φ). Since the ∗-
algebra generated by p is just Cp, it suffices to compute φ(a1pa2p · · · pan), where a1, a2, ..., an ∈
B(H). Using the relations pap = φ(a)p, pξ = ξ and φ(pn) = 1, n ∈ N, we can see that

φ(a1pa2p · · · pan) = φ(pa1pa2 · · · anp) = φ(a1)φ(a2) · · ·φ(an)φ(p)

as desired.

1.4. Independence of several subalgebras. We extend the definition of tensor and mono-
tone independence to the case of several subalgebras. For the tensor case, the definition comes
from the following natural extension of Example 1.14.

Example 1.19. Let (Ai, φi), i = 1, 2, ..., N be unital nc-probability spaces. Let

A := A1 ⊗ A2 ⊗ · · · ⊗ AN ,

φ := φ1 ⊗ φ2 ⊗ · · · ⊗ φN .

We consider the subalgebras

Bi := 1A1 ⊗ 1A2 ⊗ · · · ⊗ 1Ai−1
⊗ Ai ⊗ 1Ai+1

⊗ · · · ⊗ 1AN

for i = 1, 2, ..., N . Then for any i1, i2, ..., in ∈ [N ] and b1 ∈ Bi1 , b2 ∈ Bi2 , ..., bn ∈ Bin we have

φ(b1b2 · · · bn) = φ

 −→∏
p : ip=1

bp

φ

 −→∏
p : ip=2

bp

 · · ·φ

 −→∏
p : ip=N

bp

 .

The above example can be abstracted to any family of subalgebras of any nc-probability
space as follows.

Definition 1.20. Let (A,φ) be a nc-probability space. A family of subalgebras (Ai)i∈I of A
is called tensor independent if for any i1, i2, . . . , in ∈ I and a1 ∈ Ai1 , a2 ∈ Ai2 , . . . , an ∈ Ain ,
we have

φ(a1a2 · · · an) =
∏
j∈I

φ

 −→∏
p : ip=j

ap

 .

Moreover, a family (Si)i∈I of subsets of A is said to be tensor independent if so is (Ai)i∈I , where
Ai = ⟨Si⟩ is the subalgebra generated by Si. Independence of random variables (xi)i∈I can be
defined by regarding each xi as the set of single element.

Example 1.17 can also be extended to an arbitrary number of subalgebras. Given Hilbert
spaces Hi with unit vectors ξi (1 ≤ i ≤ N), we set

H := H1 ⊗H2 ⊗ · · · ⊗HN ,

ξ := ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξN ,

and A := B(H), φ(a) := ⟨ξ, aξ⟩H , which form a unital C∗-probability space (A,φ). Let pi ∈
B(Hi) be the orthogonal projection onto Cξi. Then we consider the ∗-subalgebras

A1 := B(H1) ⊗ p2 ⊗ p3 ⊗ · · · ⊗ pN ,

A2 := IH1 ⊗ B(H2) ⊗ p3 ⊗ · · · ⊗ pN ,

A3 := IH1 ⊗ IH2 ⊗ B(H3) ⊗ · · · ⊗ pN ,

...

AN := IH1 ⊗ IH2 ⊗ · · · ⊗ IHN−1
⊗ B(HN).

(1.7)

This operator model leads to the following definition; see also Example 1.23.
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Definition 1.21. Let (A,φ) be a nc-probability space and I be a totally ordered set. A family
of subalgebras (Ai)i∈I of A is called monotonically independent if for any i1, i2, . . . , in ∈ I
and a1 ∈ Ai1 , a2 ∈ Ai2 , . . . , an ∈ Ain , we have

φ(a1a2 · · · an) =


φ(ak)φ(a1a2 · · · ak−1ak+1 · · · an) if 2 ≤ k ≤ n− 1, ik−1 < ik > ik+1,

φ(a1)φ(a2a3 · · · an) if i1 > i2,

φ(an)φ(a1a2 · · · an−1) if in−1 < in.

Moreover, a family (Si)i∈I of subsets of A is said to be monotonically independent if so is (Ai)i∈I ,
where Ai = ⟨Si⟩ is the subalgebra generated by Si. If (A,φ) is a ∗-probability space, then a
family (Si)i∈I of subsets of A is said to be ∗-monotonically independent if the ∗-subalgebras Ai

generated by Si are monotonically independent.

Remark 1.22. This is a recursive definition of monotone independence. Applying the definition
repeatedly, the mixed moment φ(a1a2 · · · an) will eventually be of the form

m∏
j=1

φ(ak1(j)ak2(j)...aki(j)(j)),

where k1(j) < k2(j) < · · · < ki(j)(j) for each j and ak1(j), ak2(j), ... belong to a common subalge-
bra Ap(j); see also Example 1.24. Although writing down the general expression is complicated,
we will later do so for I = {1, 2, 3} in the proof of Proposition 2.1.

Example 1.23. The sequence (Ai)
N
i=1 of ∗-subalgebras of B(H) defined in (1.7) is monotonically

independent. To see this, let i1, i2, ..., in ∈ [N ], aj ∈ Aij and suppose k ∈ [n] be such that
ik−1 < ik > ik+1. We can see ak−1akak+1 = φ(ak)ak−1ak+1 because of pixpi = φi(x)pi for any
x ∈ B(Hi), and hence

φ(a1a2 · · · an) = φ(ak)φ(a1a2 · · · ak−1ak+1 · · · an).

The cases i1 > i2 and in−1 < in are handled with a trick: if i1 > i2 then we may insert the
projection p = p1 ⊗ p2 ⊗ · · · ⊗ pN as

φ(a1a2 · · · an) = ⟨ξ, a1a2 · · · anξ⟩ = ⟨pξ, a1a2 · · · anξ⟩ = ⟨ξ, pa1a2 · · · anξ⟩;
the last equality is because of p = p∗. Then we can use the operator identity pa1a2 = φ(a1)pa2
to show

φ(a1a2 · · · an) = φ(a1)φ(a2 · · · an).

The case in−1 < in is similar.

Example 1.24. Suppose that subsets {a, a′}, {b, b′}, {c, c′} are monotonically independent in
(A,φ). Then

φ(ab) = φ(ba) = φ(a)φ(b),

φ(aba′) = φ(aa′)φ(b), φ(bab′) = φ(b)φ(a)φ(b′),

φ(abcb′c′a′) = φ(abcb′a′)φ(c′) = φ(abb′a′)φ(c)φ(c′) = φ(aa′)φ(bb′)φ(c)φ(c′).

The formula for φ(bab′) is already different from the case of tensor independence.

Proposition 1.25. Let (A,φ) be a nc-probability space and I be a totally ordered set. Suppose
that a family of subalgebras (Ai)i∈I of A is monotonically independent. Then the restriction of
φ to the subalgebra ⟨Ai : i ∈ I⟩ is determined by φ|Ai

, i ∈ I.

Proof. This is a consequence of Remark 1.22. □

Remark 1.26. In free probability, unital ∗- or C∗-probability spaces (A,φ) often satisfy the
conditions that

• φ is faithful, i.e., φ(a∗a) = 0 implies a = 0,
• φ is tracial, i.e., φ(ab) = φ(ba) for a, b ∈ A.
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In monotone probability, however, these conditions hold only in rather trivial cases. Let a, b be
monotonically independent real random variables in a unital C∗-probability space (A,φ).

(i) If φ is tracial then either µa = δ0 or µb = δφ(a). Suppose that µa ̸= δ0. We first observe
that φ((ba2)b) = φ(a2)φ(b)2, while φ(b(ba2)) = φ(a2)φ(b2). The traciality of φ therefore
implies φ(b2) = φ(b)2 as φ(a2) > 0. This means that the analytic distribution µb has
vanishing variance, so that µb = δφ(b).

(ii) If φ is faithful then again either µa = δ0 or µb = δφ(b). Since a, b−φ(b)1A are monotonically
independent, we may assume that φ(b) = 0 from the beginning. Because φ((ab)∗(ab)) =
φ(ba2b) = φ(a2)φ(b)2 = 0, the faithfulness of φ implies ab = 0. If µa ̸= δ0 then φ(a2) > 0
and so 0 = φ(a2bn) = φ(a2)φ(bn), i.e., φ(bn) = 0 for all n ∈ N. This implies µb = δ0.

1.5. Additive monotone convolution. For classically independent R-valued random vari-
ables X, Y , the distribution of X + Y is called the convolution of µX and µY and is given
by

(µX ∗ µY )(B) := µX+Y (B) =

∫
R2

χB(s+ t)µX(ds)µY (dt), B ∈ B(R).

It is well known that the exponential moment generating function (essentially equivalent to the
characteristic function) is useful to calculate the convolution. For simplicity, assuming X ∈ L∞,
let

EX(z) := E[ezX ] =
∑
n≥0

E[Xn]

n!
zn, z ∈ C.

Due to the independence we have EX+Y (z) = E[ezXezY ] = E[ezX ]E[ezY ] = EX(z)EY (z).
Here we consider the distribution of x+ y when x and y are monotonically independent real

random variables in a unital C∗-probability space (A,φ). Instead of the exponential moment
generating function, a more useful function is the shifted moment generating function

Mx(z) := zφ((1 − zx)−1) =
∑
n≥0

φ(xn)zn+1, z ∈ C, |z| < 1/∥x∥,

where 1/0 is to be interpreted as +∞.

Theorem 1.27. Let (A,φ) be a unital C∗-probability space. Suppose that x, y ∈ A are mono-
tonically independent. Then for all z ∈ C with |z| < 1/(∥x∥ + ∥y∥) we have |My(z)| < 1/∥x∥
and

Mx+y(z) = Mx(My(z)). (1.8)

Proof. First we check that the functions Mx+y(z) and Mx(My(z)) make sense. The assumption
|z| < 1/(∥x∥ + ∥y∥) implies |z| < 1/∥x + y∥ and |z| < 1/∥y∥ so that Mx+y(z) and My(z) are
well defined. Moreover, one can check |My(z)| < 1/∥x∥ by using the estimate

|My(z)| ≤
∞∑
n=0

|φ(yn)||z|n+1 ≤
∞∑
n=0

∥y∥n|z|n+1 =
|z|

1 − ∥y∥|z|

<

1
∥x∥+∥y∥

1 − ∥y∥ 1
∥x∥+∥y∥

=
1

∥x∥
.

Because x, y are noncommuting in general, the expansion of (x+ y)n contains 2n terms. The
following expression is useful for us:

(x+ y)n =
n∑

ℓ=0

∑
k0,k1,...,kℓ≥0,

k0+k1+···+kℓ=n−ℓ

yk0xyk1x · · ·xykℓ .
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Evaluating this by φ and applying the definition of monotone independence together with
Remark 1.16 (b) yields

φ((x+ y)n) =
n∑

ℓ=0

∑
k0,k1,...,kℓ≥0,

k0+k1+···+kℓ=n−ℓ

φ(xℓ)φ(yk0)φ(yk1) · · ·φ(ykℓ). (1.9)

Then we can proceed as follows. First we perform formal calculations and later discuss analytic
issues:

Mx+y(z) =
∑
n≥0

zn+1

n∑
ℓ=0

∑
k0,k1,...,kℓ≥0,

k0+k1+···+kℓ=n−ℓ

φ(xℓ)φ(yk0)φ(yk1) · · ·φ(ykℓ) (1.10)

=
∑
ℓ≥0

∞∑
n=ℓ

∑
k0,k1,...,kℓ≥0,

k0+k1+···+kℓ=n−ℓ

φ(xℓ)φ(yk0)zk0+1φ(yk1)zk1+1 · · ·φ(ykℓ)zkℓ+1 (1.11)

=
∑
ℓ≥0

∑
k0,k1,...,kℓ≥0

φ(xℓ)φ(yk0)zk0+1φ(yk1)zk1+1 · · ·φ(ykℓ)zkℓ+1 (1.12)

=
∑
ℓ≥0

φ(xℓ)My(z)ℓ+1 (1.13)

= Mx(My(z)). (1.14)

Calculations (1.11)–(1.13) can be justified with Fubini’s theorem because the sum (1.12) is
absolutely convergent:∑

ℓ≥0

∑
k0,k1,...,kℓ≥0

∣∣φ(xℓ)φ(yk0)zk0+1φ(yk1)zk1+1 · · ·φ(ykℓ)zkℓ+1
∣∣

≤
∑
ℓ≥0

∑
k0,k1,...,kℓ≥0

|z|ℓ+1∥x∥ℓ(|z|∥y∥)k0+k1+···+kℓ

=
|z|

1 − |z|∥y∥
∑
ℓ≥0

(
|z|∥x∥

1 − |z|∥y∥

)ℓ

< +∞. □

Suppose that x is a real random variable in a unital C∗-probability space. Since the moment
sequence φ(xn), n = 1, 2, 3, ... is encoded in Mx(z) as the Taylor coefficients, the analytic
distribution µx can be determined from Mx (later we show a more straightforward formula
that recovers µx from Mx called the Stieltjes inversion, see Proposition 4.30). Conversely, Mx

can be computed from µx by the formula

Mx(z) =

∫
Sp(x)

z

1 − zt
µx(dt).

Thus, we can identifyMx with µx. Therefore, formula (1.8) gives a binary operation on the set of
compactly supported probability measures, which is called additive monotone convolution.
Later we extend additive monotone convolution to arbitrary probability measures on R, see
Theorem 5.1.

1.6. Multiplicative monotone convolution. In probability theory, multiplication of inde-
pendent random variables is another natural operation. If X, Y are R-valued random variables
defined on a probability space, then the law µXY is called the multiplicative convolution of µX

and µY and is given by

µXY (B) =

∫
R2

χB(st)µX(ds)µY (dt), B ∈ B(R).

In the particular case where X, Y are both positive, the use of log(XY ) = logX + log Y allows
us to reduce the calculation of multiplicative convolution to the additive convolution.
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Here we will consider the multiplication of monotonically independent random variables. In
the setting of unital C∗-probability space, for real random variables x, y, the product xy is not
self-adjoint in general. To recover the self-adjointness, we consider

√
xy

√
x or

√
yx

√
y assuming

x or y are positive. However, the result turns out to be rather trivial.

Proposition 1.28. Let (A,φ) be a unital C∗-probability space. Let x, y ∈ A be monotonically
independent real random variables. Let α := φ(y).

(i) If x ≥ 0 then µ√
xy

√
x = µαx.

(ii) If y ≥ 0 and α > 0 then µ√
yx

√
y = (1 − β)δ0 + βµαx, where β := φ(

√
y)2/α. If α = 0

then µ√
yx

√
y = δ0.

Proof. (i) First note that C∗⟨x⟩ and C∗⟨y⟩ are monotonically independent, and that
√
x ∈ C∗⟨x⟩.

We can therefore obtain

φ((
√
xy

√
x)n) = φ(

√
xyxyx · · · y

√
x) = φ(

√
xxn−1

√
x)φ(y)n = φ((αx)n).

(ii) If α = φ(y) > 0 then for n ≥ 1 we have

φ((
√
yx

√
y)n) = φ(

√
yxyx · · ·x√y) = φ(xn)φ(

√
y)2φ(y)n−1 = βφ((αx)n).

Note that β ≤ 1 holds by the Cauchy-Schwarz inequality. Moreover, β > 0 holds because
the analytic distribution of y is supported on [0,+∞) and not equal to δ0, so that φ(

√
y) =∫∞

0

√
t µy(dt) > 0. The conclusion follows by the fact∫

R
tn((1 − β)δ0 + βµαx)(dt) = βφ((αx)n), n ≥ 1.

If α = φ(y) = 0 then the Cauchy-Schwarz inequality implies φ(
√
y) = 0, and so φ((

√
yx

√
y)n) =

φ(xn)φ(
√
y)2φ(y)n−1 = 0 for n ≥ 1. □

A more nontrivial distribution of
√
xy

√
x can be obtained by assuming the monotone in-

dependence of x − 1A and y − 1A; recall from Remark 1.16 that this assumption is different
from the monotone independence of x and y. Currently, in the literature, this is taken as the
standard definition of multiplicative monotone convolution although the definition might look
strange. There are several reasons why we assume the independence of x − 1A and y − 1A;
one practical reason is that this is useful in a later application to random matrices, see The-
orem 8.11. Another reason is that this multiplicative monotone convolution appears in free
probability theory in the form of “subordination functions”, see Notes 5.4.

To describe the multiplicative monotone convolution, useful transforms are the following
ψ-transform (also called the moment generating function) and the η-transform

ψx(z) :=
1

z
Mx(z) − 1 = φ(zx(1A − zx)−1) =

∑
n≥1

φ(xn)zn,

ηx(z) :=
ψx(z)

1 + ψx(z)
,

which are holomorphic in a neighborhood of zero.

Theorem 1.29. Let (A,φ) be a unital C∗-probability space. Let x, y ∈ A be real random
variables such that x ≥ 0 and that x− 1A, y − 1A are monotonically independent. Then for all
z ∈ C sufficiently close to zero we have

ηxy(z) = ηyx(z) = η√xy
√
x(z) = ηx(ηy(z)).
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Proof. Let x0 := x−1A. Recall from Remark 1.16 (d) that C∗⟨x0⟩ and C∗⟨y⟩ are monotonically
independent. We first expand (

√
xy

√
x)n as

(
√
xy

√
x)n =

√
xy(x0 + 1A)y(x0 + 1A) · · · (x0 + 1A)y

√
x

=
n−1∑
k=0

∑
j1,j2,...,jk+1≥1

j1+j2+···+jk+1=n

√
xyj1x0y

j2x0 · · ·x0yjk+1
√
x,

where k stands for the number of x0’s selected from (x0 + 1A)’s and ji − 1 is the number of
consecutive 1A’s selected from the (i− 1)th x0 and ith x0. Evaluating the above by φ yields

φ((
√
xy

√
x)n) =

n−1∑
k=0

∑
j1,j2,...,jk+1≥1

j1+j2+···+jk+1=n

φ(
√
xxk0

√
x)φ(yj1)φ(yj2) · · ·φ(yjk+1) (1.15)

=
n−1∑
k=0

∑
j1,j2,...,jk+1≥1

j1+j2+···+jk+1=n

φ(xxk0)φ(yj1)φ(yj2) · · ·φ(yjk+1). (1.16)

When obtaining line (1.15), we applied monotone independence of the form (1.6) thanks to
the fact

√
x ∈ C∗⟨1A, x0⟩. Note also that formula (1.16) holds because x0 and

√
x commute.

Formula (1.16) leads to the following:

ψ√
xy

√
x(z) = φ(z

√
xy

√
x(1A − z

√
xy

√
x)−1) =

∞∑
n=1

znφ((
√
xy

√
x)n)

=
∞∑
n=1

n−1∑
k=0

∑
j1,j2,...,jk+1≥1

j1+j2+···+jk+1=n

znφ(xxk0)φ(yj1)φ(yj2) · · ·φ(yjk+1)

=
∞∑
k=0

∑
j1,j2,...,jk+1≥1

φ(xxk0)φ((zy)j1)φ((zy)j1) · · ·φ((zy)jk+1) (1.17)

=
∞∑
k=0

φ(xxk0)ψy(z)k+1 = φ

(
x

∞∑
k=0

(ψy(z)x0)
k

)
ψy(z)

= φ
(
x(1A − ψy(z)x0)

−1
)
ψy(z) = φ

(
xηy(z)(1A − ηy(z)x)−1

)
= ψx(ηy(z)).

The expression in (1.17) is absolutely convergent for sufficiently small |z|, so that the above
calculations can be justified by Fubini’s theorem. The obtained formula ψ√

xy
√
x(z) = ψx(ηy(z))

is equivalent to the desired η√xy
√
x(z) = ηx(ηy(z)) for small |z|. A slight modification of the

above calculations of φ((
√
xy

√
x)n) shows φ((

√
xy

√
x)n) = φ((xy)n) = φ((yx)n). For example,

(xy)n = xy(x0 + 1A)y(x0 + 1A) · · · (x0 + 1A)y

can be used to show φ((
√
xy

√
x)n) = φ((xy)n). □

Remark 1.30. (a) The attentive reader might have noticed that the assumption x ≥ 0 is un-
necessary to show the formulas ηxy(z) = ηyx(z) = ηx(ηy(z)).

(b) One could also consider
√
yx

√
y by assuming y ≥ 0, which, however, would result in a

more complicated formula; see [65, Section 9] and [66, Theorem 3.18].

Analogously to additive monotone convolution, Theorem 1.29 gives rise to a binary operation
on probability measures with compact support (one is required to be supported on [0,+∞) as it
comes from nonnegative elements x ≥ 0). This operation is called multiplicative monotone
convolution and it can also be generalized to probability measures with unbounded support,
see Theorem 5.5.
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1.7. Notes. Our definition of ∗-probability space in Definition 1.2 is used e.g. by Muraki [119],
Gerhold [70], Gerhold, Hasebe and Ulrich [71] and Lachs [97]. The term “restricted state”
is used in [70]. It is called “strongly positive linear functional” in [97] and simply “state” in
[71]. Unital C∗-probability spaces and W ∗-probability spaces are widely used in free probability
[120, 143]. Hora and Obata’s book [86] uses the setup of unital ∗-probability spaces and calls
them algebraic probability spaces.

Muraki gave an abstract definition of monotone independence in [115] that had been implicit
in earlier works on creation and annihilation operators on monotone Fock spaces [55, 104, 113,
114]. The original definition was slightly different from Definition 1.21. A definition equivalent
to ours was given e.g. by Franz [63]. The operator model (1.7) for monotone independence is
equivalent to the model given by Muraki [115] but the original model appeared more analogous
to the operator model for free independence on the free product Hilbert space.

Rank one perturbations of operators are intensively studied in mathematical physics, see
e.g. [62, 136, 137]. Example 1.18 is connected to such works; the reader is referred to [75, Section
9] for further information. In general, higher-rank perturbations are not directly connected to
monotone independence, but higher-rank perturbations and unitarily invariant random matrices
show monotone independence asymptotically in the large size limit. This will be discussed in
Section 8.

The formula for additive monotone convolution in Theorem 1.27 was given by Muraki [115].
Our proof is different and is adopted from [127, Theorem 3.2] and [83, Proposition 4.1]. The
formula for multiplicative monotone convolution in Theorem 1.29 was given by Bercovici [30,
Theorem 2.2] and Franz [65, Corollary 4.3]. One can also consider the multiplication of unitary
elements that is omitted in this article; the interested reader is referred to [30, 65].

Attempts are being made to unify or establish connections between different notions of in-
dependence. An incomplete list of those related to monotone independence is the following:
Arizmendi, Mendoza and Vazquez-Becerra introduced “BMT independence” by naturally gen-
eralizing the operator models in Examples 1.19 and 1.23 [13]; Cébron, Dahlqvist, Gabriel and
Gilliers found that monotone independence arises naturally from “cyclic-monotone indepen-
dence” [40] and more generally from “cyclic-conditional freeness” [42]; Cébron, Dahlqvist and
Male observed monotone independence in the context of “traffic independence” that captures
asymptotic features of permutation-invariant random matrices [41]; Franz observed that “con-
ditional freeness” of Bożejko, Leinert and Speicher contains monotone independence as a special
case [65]; Jekel and Liu defined “tree independence” building upon the structure of trees [89];
Hasebe constructed “conditionally monotone independence” with respect to two states [78]
and a further generalization with respect to three states [77]; Mingo and Tseng showed a con-
struction of monotone independence within the framework of “infinitesimal freeness” [109];
Skoufranis derived monotone independence from “bi-free independence” of Voiculescu [138];
Wysochanski considered “bm-independence” for subalgebras indexed by partially ordered sets
[150, 151, 152].

2. Universal construction of monotone independence

In probability theory, there is a canonical way to construct independent random variables.
Let (Ωi,Fi, Pi), i ∈ I be a family of probability spaces. We set Ω :=

∏
i∈I Ωi be the product

set, F :=
⊗

i∈I Fi be the product σ-field and P :=
⊗

i∈I Pi be the product measure. Given
random variables Xi : Ωi → C (i ∈ I), we define Yi : Ω → C by

Yi(ω1, ω2, ...) := Xi(ωi).

Then (Yi)i∈I is an independent family of random variables defined in (Ω,F , P ) and the distri-
bution of Yi coincides with the distribution of given Xi.

A natural generalization of the above construction can be given for nc-probability spaces using
the tensor product of algebras, which yields tensor independence. This is exactly Example 1.19,
in which the index set was a finite set I = {1, 2, ..., N}.
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For monotone independence, a much bigger algebra, called the coproduct or the free product
(without identification of units), is useful to define a canonical model of independent subalge-
bras. An advantage of free product algebra is that it has a universality property that allows us
to construct other types of independence on the same algebra just by selecting different linear
functionals, see Notes 2.4.

2.1. Free product of algebras. Let (Ai)i∈I be a family of algebras. Let A be the vector
space over C defined by the algebraic direct sum

A =
⊕

n∈N,i1,...,in∈I,
i1 ̸=i2,i2 ̸=i3,...,in−1 ̸=in

Ai1,i2,...,in ,

where Ai1,i2,...,in := Ai1 ⊗Ai2 ⊗ · · · ⊗Ain . In this vector space, we define a multiplication called
the concatenation: for a1 ⊗ a2 ⊗ · · · ⊗ an ∈ Ai1,i2,...,in and b1 ⊗ b2 ⊗ · · · ⊗ bm ∈ Aj1,j2,...,jm ,

(a1 ⊗ a2 ⊗ · · · ⊗ an)(b1 ⊗ b2 ⊗ · · · ⊗ bm) :={
a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ b1 ⊗ b2 ⊗ · · · ⊗ bm, if in ̸= j1,

a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ (anb1) ⊗ b2 ⊗ · · · ⊗ bm, if in = j1

and then extend this definition to A by bilinearity. With this multiplication, simple tensors
can be interpreted just as the multiplication of letters, so that, for example, we may simply
write a1a2 · · · an for a1 ⊗ a2 ⊗ · · · ⊗ an. This multiplication is associative and A becomes an
algebra, which is denoted by

⊔
i∈I Ai and is called the free product or coproduct (see below).

The algebra A contains each Ai as a direct summand, so that we can naturally interpret each
Ai as a subalgebra of A.

The free product has a universality. Consider a family of algebras (Ai)i∈I . An algebra
A together with a family of homomorphisms fi : Ai → A, i ∈ I, is called a coproduct of
(Ai)i∈I if for any family of homomorphisms gi from Ai into an algebra B, i ∈ I, there exists
a unique homomorphism h : A → B such that h ◦ fi = gi, i ∈ I. A coproduct is unique
up to isomorphisms. In fact, the free product

⊔
i∈I Ai together with the natural embeddings

ιi : Ai →
⊔

i∈I Ai, satisfies the universality and hence is a coproduct.

2.2. Monotone product of nc-probability spaces. Given a family of nc-probability spaces
(Ai, φi)i∈I , where I is a totally ordered set, we set A :=

⊔
i∈I Ai. We aim to define a linear

functional φ on A such that the subalgebras (Ai)i∈I are monotonically independent in (A,φ).
We start from the case I = {1, 2}. The free product is then simpler:

A1 ⊔ A2 =
∞⊕
n=1

(A1 ⊗ A2 ⊗ A1 ⊗ · · ·︸ ︷︷ ︸
length n

) ⊕ (A2 ⊗ A1 ⊗ A2 ⊗ · · ·︸ ︷︷ ︸
length n

)

 .
An advantage of the free product is that we can simply define φ to be the right hand side of (1.5),
i.e., for any i1, i2, ..., in ∈ {1, 2} with i1 ̸= i2, i2 ̸= i3, ..., in−1 ̸= in and any a1a2 · · · an ∈ Ai1,i2,...,in ,
we set

φ(a1a2 · · · an) := φ1

( −→∏
k : ak∈A1

ak

) ∏
k : ak∈A2

φ2(ak). (2.1)

Since the right hand side of (2.1) is a multilinear functional on Ai1 ×Ai2 × · · · ×Ain , it makes
sense as a definition by the universality of tensor product of vector spaces. We denote the above
construction as

(A,φ) = (A1, φ1) ▷ (A2, φ2) = (A1 ⊔ A2, φ1 ▷ φ2)

and call it the monotone product of (A1, φ1) and (A2, φ2).
The monotone product has certain associativity. For three nc-probability spaces (Ai, φi), i =

1, 2, 3, there is a natural isomorphism

Ψ: (A1 ⊔ A2) ⊔ A3 ≃ A1 ⊔ (A2 ⊔ A3).
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The isomorphism is defined by the natural rearrangement of the tensor components so that
the resulting element belongs to the target space. For example, if a1a2a3a4a5 ∈ A2,3,2,1,3, then
a1 ⊗ a2 ⊗ (a3a4) ⊗ a5 is an element of (A1 ⊔A2) ⊔A3, where a3a4 stands for the multiplication
in A1 ⊔ A2, while ⊗ is the multiplication in (A1 ⊔ A2) ⊔ A3. Then

Ψ(a1 ⊗ a2 ⊗ (a3a4) ⊗ a5) := (a1a2a3) ⊗ a4 ⊗ a5 ∈ A1 ⊔ (A2 ⊔ A3).

Omitting parentheses and Ψ, we simply write a1a2 · · · an ∈ (A1 ⊔ A2) ⊔ A3 or a1a2 · · · an ∈
A1⊔(A2⊔A3), which usually does not cause any confusion because the appropriate arrangement
of parentheses is uniquely determined.

Proposition 2.1. For three nc-probability spaces (Ai, φi), i = 1, 2, 3, we have

(φ1 ▷ φ2) ▷ φ3 = (φ1 ▷ (φ2 ▷ φ3)) ◦ Ψ.

Proof. Let i1, i2, ..., in ∈ {1, 2, 3} with i1 ̸= i2, i2 ̸= i3, ..., in−1 ̸= in and a1a2 · · · an ∈ Ai1,i2,...,in .
For a subset J ⊆ {1, 2, 3}, let SJ ⊆ {1, 2, . . . , n} be defined by SJ := {p : ip ∈ J}. Further-
more, we decompose S2,3 into maximal intervals T1, T2, ..., Tr of {1, 2, ..., n}. For example, if
(i1, i2, i3, i4, i5, i6, i7) = (1, 3, 2, 3, 1, 3, 2), then S1 = {1, 5} and S2,3 = {2, 3, 4, 6, 7}, and S2,3 is
decomposed into T1 = {2, 3, 4} and T2 = {6, 7}. By the definition of ▷ we have

(φ1 ▷ (φ2 ▷ φ3))(a1a2 · · · an)

= φ1

(−→∏
p∈S1

ap

)
(φ2 ▷ φ3)

(−→∏
p∈T1

ap

)
· · · (φ2 ▷ φ3)

(−→∏
p∈Tr

ap

)

= φ1

(−→∏
p∈S1

ap

)
φ2

 −→∏
p∈T1,ip=2

ap

 · · ·φ2

 −→∏
p∈Tr,ip=2

ap

 ∏
p∈S3

φ3(ap),

where φ2

(−→∏
p∈Tj ,ip=2 ap

)
is set to be 1 if the product range for p is empty. On the other hand,

we have

((φ1 ▷ φ2) ▷ φ3)(a1a2 · · · an) = (φ1 ▷ φ2)

 −→∏
p∈S1,2

ap

 ∏
p∈S3

φ3(ap).

To compute the factor (φ1 ▷ φ2)
(−→∏

p∈S1,2
ap

)
, we decompose S1,2 into S1 and S ′ := {p ∈ S1,2 :

ip = 2}. Further, we decompose S ′ into maximal intervals of S ′ (not of {1, 2, ..., n}), which are
exactly T1 ∩ S2, T2 ∩ S2, ..., Tr ∩ S2, so we are done. □

With associativity in hand, we generalize the definition of the monotone product to an
arbitrary totally ordered finite set I. We may assume that I = {1, 2, ..., N}. Let (Ai, φi)i∈I be
a family of nc-probability spaces. We can identify

N⊔
i=1

Ai ≃ (· · · (((A1 ⊔ A2) ⊔ A3) ⊔ · · · ) ⊔ AN , (2.2)

where the isomorphism is defined similarly to Ψ; it is just a suitable rearrangement of letters
of words. On the right hand side of (2.2) we can define the linear function

(· · · (((φ1 ▷ φ2) ▷ φ3) ▷ · · · ) ▷ φN , (2.3)

which induces a linear functional φ on
⊔N

i=1Ai via the isomorphism. The associativity guaran-
tees that the definition of φ does not change if we select another way of adding parentheses in
(2.2). This definition of φ means that, when we compute φ(a1a2 · · · an) for a1a2...an ∈ Ai1,i2,...,in ,
i1, i2, ..., in ∈ [N ] with i1 ̸= i2, i2 ̸= i3, ..., in−1 ̸= in, we first factor out∏

p : ip=N

φN(ap),
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and then repeat the same procedure for the rest φ
(−→∏

p : 1≤ip≤N−1 ap

)
with N replaced with

N − 1, and so on until the factor φ1

(−→∏
p : ip=1 ap

)
appears.

Finally, we extend the definition of the monotone product to a possibly infinite totally ordered
set I. For this purpose, it suffices to define φ on each direct summand Ai1,i2,...,in ; then the
definition can be extended by linearity to A :=

⊔
i∈I Ai. This is doable since Ai1,i2,...,in can be

regarded as a subspace of the free product
⊔

j∈J Aj, where J := {i1, i2, ..., in} ⊆ I is a finite
totally ordered set. We denote this construction as

(A,φ) = ▷
i∈I

(Ai, φi) =

(⊔
i∈I

Ai,▷
i∈I
φi

)
and call it the monotone product of (Ai, φi)i∈I . We also call φ the monotone product of
(φi)i∈I .

The associativity of the monotone product can be stated in a more general way as follows.
First, for a family of algebras (Ai)i∈I and a disjoint decomposition I = J ∪K, we denote the
natural isomorphism as

ΦJ,K :
⊔
i∈I

Ai ≃

(⊔
j∈J

Aj

)
⊔

(⊔
k∈K

Ak

)
.

The definition of ΦJ,K is similar to Ψ and is omitted.

Proposition 2.2. Suppose that a totally ordered set I decomposes as I = J ∪K, where J,K
are nonempty disjoint subsets of I such that j < k for all j ∈ J, k ∈ K. For any family of
nc-probability spaces (Ai, φi)i∈I we have

▷
i∈I
φi =

[(
▷
j∈J

φj

)
▷

(
▷
k∈K

φk

)]
◦ ΦJ,K .

Proof. This is a direct consequence of Proposition 2.1. More precisely, it suffices to consider
the case of finite totally ordered set I because the definition of the infinite case is based on
the finite case. Then the desired identity is just a rearrangement of parentheses, which can be
justified by iterative use of Proposition 2.1. □

In our definition (2.3) of the monotone product, we first factored out φip(ap) for all p for
which ip has the largest value among i1, i2, ..., in. Actually, we can factor out φ(ap)’s when ip
is just a local maximum.

Proposition 2.3. Let (Ai, φi)i∈I be a family of nc-probability spaces where I is a totally or-
dered set. Let (A,φ) be the monotone product of (Ai, φi)i∈I . For any i1, i2, ..., in ∈ I and
(a1, a2, ..., an) ∈ Ai1 × Ai2 × · · · × Ain, we have

φ(a1a2 · · · an) =


φiℓ(aℓ)φ(a1 · · · aℓ−1aℓ+1 · · · an) if 2 ≤ ℓ ≤ n− 1, iℓ−1 < iℓ > iℓ+1,

φi1(a1)φ(a2a3 · · · an) if i1 > i2,

φin(an)φ(a1a2 · · · an−1) if in−1 < in.

(2.4)

Proof. We fix 1 ≤ ℓ ≤ n such that iℓ−1 < iℓ > iℓ+1 (when ℓ = 1 or n only one of the inequalities
is considered) and set m := iℓ. We decompose I into J,K, where J := {i ∈ I : i < m} and
K := {i ∈ I : i ≥ m}. There is a natural isomorphism

A ≃

(⊔
j∈J

Aj

)
⊔

(⊔
k∈K

Ak

)
.

The linear functional φ on A induces a linear functional on the right hand side, which is exactly(
▷
j∈J

φj

)
⊔
(
▷
k∈K

φk

)
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by the associativity of the monotone product. This means that

φ(a1a2 · · · an) = φ

 −→∏
p : ip∈J

ap

φ

(−→∏
p∈T1

ap

)
φ

(−→∏
p∈T2

ap

)
· · ·φ

(−→∏
p∈Tr

ap

)
,

where Tj are the maximal intervals of [n] such that minTj > 1 implies iminTj−1 ∈ J and maxTj <
n implies imaxTj+1 ∈ J . By the assumption iℓ−1 < iℓ > iℓ+1, some Tj is the singleton {ℓ}.
Factoring out this φ(aℓ) does not affect the other factorizations, so we get the conclusion. □

Comparing Proposition 2.3 and Definition 1.21, together with the fact that φ and φi coincide
on Ai, yields the following.

Corollary 2.4. Let (Ai, φi)i∈I be a family of nc-probability spaces with I a totally ordered set.
Let (A,φ) be the monotone product of (Ai, φi)i∈I . Then the family of subalgebras (Ai)i∈I is
monotonically independent in (A,φ).

The associativity of monotone product will be later used in the following form.

Corollary 2.5. Let I be a totally ordered set and J,K be its nonempty disjoint subsets such
that I = J ∪K and j < k for all j ∈ J, k ∈ K. Let (A,φ) be a nc-probability space and (Ai)i∈I
be a family of monotonically independent subalgebras of A. Then the two subsets

⋃
j∈J Aj and⋃

k∈K Ak are monotonically independent.

Proof. We want to show that B1 := ⟨Aj : j ∈ J⟩ and B2 := ⟨Ak : k ∈ K⟩ are monotonically

independent. For this, we refer to a universal space. Let (Â, φ̂) be the monotone product
of (Ai, φ|Ai

)i∈I . By Proposition 2.2, the subalgebras
⊔

j∈J AJ and
⊔

k∈K Ai are monotonically

independent in (Â, φ̂). With a slight abuse of notation, we have φ|Ai
= φ̂|Ai

for all i ∈ I. Since

(Ai)i∈I is monotonically independent in both (A,φ) and (Â, φ̂), by Proposition 1.25, we have
φ(b1b2 · · · bn) = φ̂(b1b2 · · · bn) for bp ∈ B1 ∪B2. Therefore,

φ(b1b2 · · · bn) = φ̂(b1b2 · · · bn)

= φ̂

 −→∏
p : bp∈B1

bp

 ∏
p : bp∈B2

φ̂(bp) = φ

 −→∏
p : bp∈B1

bp

 ∏
p : bp∈B2

φ(bp),

showing that B1, B2 are monotonically independent. □

2.3. Monotone product of ∗-probability spaces. If (Ai)i∈I is a family of ∗-algebras, the
free product

⊔
i∈I Ai also becomes a ∗-algebra with involution defined by

(a1a2 · · · an)∗ := a∗na
∗
n−1 · · · a∗1

and extended by antilinearity to the whole algebra. The following proposition shows that
the monotone product preserves restricted states. Only in this section we say that a linear
operator a on a pre-Hilbert space H is adjointable if there is a linear operator a∗ on H such
that ⟨aξ, η⟩ = ⟨ξ, a∗η⟩ for all ξ, η ∈ H. We introduce the notation

L(H) := {a : H → H | linear and adjointable},
which forms a unital ∗-algebra.

Proposition 2.6. Let (Ai, φi)i∈I be a family of ∗-probability spaces where I is a totally ordered
set. Then ▷i∈I(Ai, φi) is also a ∗-probability space.

Proof. Let (A,φ) := ▷i∈I(Ai, φi) and φ̃ be the unital extension of ▷i∈I φi to Ã := C ⊕ A.
What has to be shown is the positivity φ̃(a∗a) ≥ 0 for each a ∈ Ã. As a is a (finite) linear
combination of elements of C and Ai1,i2,...,in , only finitely many Ai’s are involved. Therefore,
we can assume below that I is a finite set and I = {1, 2, 3, ..., N}.
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Let Ãi be the unitization of Ai and φ̃i : Ãi → C be the unital extension of φi, which is
positive. We take a triplet (πi, Hi, ξi) consisting of a ∗-representation πi : Ai → L(Hi), a pre-
Hilbert space Hi, and a unit vector ξi ∈ Hi such that φi(a) = ⟨ξi, aξi⟩ for all a ∈ Ai. Note
that such a triplet exists by restricting the (algebraic) GNS-construction for Ãi onto Ai, see
[86, Theorem 1.19] for the GNS-construction. Let pi : Hi → Cξi be the rank-one projection,
H := H1 ⊗H2 ⊗ · · · ⊗HN , ξ := ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξN as in Example 1.23, and λi : L(Hi) → L(H)
be defined by

λi(xi) := IH1 ⊗ · · · ⊗ IHi−1
⊗ xi ⊗ pi+1 ⊗ · · · ⊗ pN ,

which is a ∗-homomorphism. Then we define a ∗-representation π̃ : Ã→ L(H) by

π̃(1Ã) := IH ,

π̃(a1a2 · · · an) := λi1(πi1(a1))λi2(πi2(a2)) · · ·λin(πin(a)), a1a2 · · · an ∈ Ai1,i2,...,in .

We show the formula

φ̃(a) = ⟨ξ, π̃(a)ξ⟩H , a ∈ Ã. (2.5)

This is obvious for a = 1Ã and for a ∈ Ai. For a = a1a2 · · · an, when computing φ(a1a2 · · · an)
we can use the monotone independence of (Ai)i∈I with respect to φ. On the other hand,
when computing ⟨ξ, π(a1a2 · · · an)ξ⟩ = ⟨ξ, b1b2 · · · bnξ⟩ where bk := λik(πik(ak)), we can also use
monotone independence of Bi := λi(L(Hi)) ⊆ L(H) shown in Example 1.23. This fact and
Proposition 1.25 yield (2.5) on A. Finally, formula (2.5) implies the positivity of φ̃ because

φ̃(a∗a) = ⟨ξ, π̃(a∗a)ξ⟩ = ⟨ξ, π̃(a)∗π̃(a)ξ⟩ = ⟨π̃(a)ξ, π̃(a)ξ⟩ ≥ 0, a ∈ Ã. □

2.4. Notes. The associativity of monotone independence is addressed in [63] in the setting of
∗-probability spaces, in which the proof was based on the operator model in Example 1.23. In
order to handle the monotone product of nc-probability spaces, we adopted a more combina-
torial proof of Proposition 2.1. The proof of positivity in Proposition 2.6 is similar to the case
of free product of states, see e.g. [143, Definition 1.5.4].

Given nc-probability spaces (A1, φ1) and (A2, φ2), there are other four kinds of definitions of
a linear functional on the free product A1⊔A2 that yield “good” independences [118, Definitions
2.2, 2.3]. One can check that they all satisfy the associativity.

(a) The antimonotone product

(φ1 ◁ φ2)(a1a2 · · · an) :=

[ ∏
k : ak∈A1

φ1(ak)

]
φ2

( −→∏
k : ak∈A2

ak

)
,

which is just the flip of the monotone product and is essentially the same.

(b) The tensor product

(φ1 ⊗ φ2)(a1a2 · · · an) := φ1

( −→∏
k : ak∈A1

ak

)
φ2

( −→∏
k : ak∈A2

ak

)
.

(c) The Boolean product

(φ1 ⋄ φ2)(a1a2 · · · an) :=
∏

k : ak∈A1

φ1(ak)
∏

k : ak∈A2

φ2(ak).

(d) The last one is called the free product and its definition is of different flavour. First we
consider the unitizations Ãi := C⊕Ai that naturally embed into Ã := C⊕ (A1 ⊔A2). We
define φ on Ã by requiring that φ(a1a2 · · · an) = 0 whenever (a1, a2, ..., an) ∈ Ãi1 × Ãi2 ×
· · · × Ãin , i1 ̸= i2, i2 ̸= i3, ..., in−1 ̸= in and φ(ak) = 0 for all k ∈ [n]. The free product
φ1 ∗ φ2 on A1 ⊔ A2 is defined as the restriction φ|A1⊔A2 .
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The universal constructions of independence on the free product algebra provide an appro-
priate framework for a classification program of independences. Speicher [140] and then Ben
Ghorbal and Schürmann formulated a “good independence” as an associative product of linear
functionals on the free product algebra with some conditions, and then classified them into ten-
sor, free and Boolean [27]. Muraki dropped one assumption of Ben Ghorbal and Schürmann,
and as a result, the classification list contained two more independences: monotone and anti-
monotone [118]. Muraki [119], Gerhold and Lachs [72] gave further results in this direction. As
a closely related problem, Gerhold, Hasebe, Ulrich axiomatized a “good operator model” that
contains the ones in Examples 1.14 and 1.17, and classified them [71].

3. Monotone cumulants

Cumulants are equivalents of moments and sometimes provide a clearcut description of ran-
dom variables. In particular, (normalized) cumulants up to order four are called mean, vari-
ance, skewness and kurtosis, and are used in statistics. In probability theory, the characteristic
function (or the Fourier transform) is often more powerful than cumulants because cumulants
require that random variables have finite moments, while the characteristic function does not.
However, in noncommutative probability theory, cumulants are quite useful because the theory
substantially builds upon moments. In free probability theory, Voiculescu introduced single-
variate free cumulants [144] and then Speicher defined multivariate free cumulants [139] that
have discovered a wide range of applications so far.

In classical probability theory, (single-variate) cumulants are quantities that satisfy the fol-
lowing axioms.

(C1) There are universal polynomials P̃n(t1, t2, ..., tn−1), n ≥ 1 with P̃1 := 0 such that
Cn(X) = E[Xn] + P̃n(E[X],E[X2], ...,E[Xn−1]) for all n ≥ 1, X ∈ L∞−(Ω,F ,P) and
any probability space (Ω,F ,P). (Polynomiality)

(C2) Cn(λX) = λnCn(X) for all n ≥ 1 and X ∈ L∞−(Ω,F ,P). (Homogeneity)

(C3) IfX, Y ∈ L∞−(Ω,F ,P) are independent then Cn(X+Y ) = Cn(X)+Cn(Y ). (Additivity)

Remark 3.1. In (C1), by “universal” we emphasize that P̃n does not depend on X or the
probability space (Ω,F ,P). Axiom (C1) is equivalent to the following reverted form of moments
in terms of cumulants: there are universal polynomials Q̃n(t1, t2, ..., tn−1), n ≥ 1 with Q̃1 := 0
such that E[Xn] = Cn(X)+Q̃n(C1(X), C2(X), ..., Cn−1(X)) for all n ≥ 1 and X ∈ L∞−(Ω,F ,P)
and any probability space (Ω,F ,P).

We can give a construction of Cn as the coefficients of the logarithm of exponential moment
generating function:

logE[ezX ] = log

(
∞∑
n=0

E[Xn]

n!
zn

)
=

∞∑
n=1

Cn(X)

n!
zn.

Note that under the assumption X ∈ L∞−(Ω,F ,P), the above series might have convergence
radius zero; then the above equalities can be interpreted as formal power series.

Our objective is to discover a monotone counterpart of cumulants, which we denote by
κn. The most natural definition would be to replace the pair (L∞−(Ω,F ,P),E) with a nc-
probability space (A,φ), and replace the independence assumption in (C3) with monotone
independence. However, the third condition would contradict the asymmetry of monotone
independence. More precisely, suppose that x, y are monotonically independent real random
variables in a unital C∗-probability space. Then κn(x + y) = κn(x) + κn(y) does not depend
on whether we assume x, y are monotonically independent or y, x are. However, monotonic
independence of x, y implies Mx+y(z) = Mx(My(z)) and monotonic independence of y, x implies
Mx+y(z) = My+x(z) = My(Mx(z)), and therefore, the distribution of x+ y is typically different
if we switch the independence assumption.
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Here we propose a weaker version of additivity, which we call extensivity because of its
resemblance to the corresponding notion in thermodynamics.

Definition 3.2. A rule that associates with each nc-probability space (A,φ) and random
variable x ∈ A a sequence of complex numbers {κn(x)}n≥1 is called monotone cumulants if

(M1) There are universal polynomials Pn(t1, t2, ..., tn−1), n ≥ 1 with P1 := 0 such that κn(x) =
φ(xn)+Pn(φ(x), φ(x2), ..., φ(xn−1)) for all n ≥ 1, x ∈ A and any (A,φ). (Polynomiality)

(M2) κn(λx) = λnκn(x) for all n ≥ 1, λ ∈ C, x ∈ A and (A,φ). (Homogeneity)

(M3) If N ∈ N and x1, x2, ..., xN are monotonically independent and identically distributed,
then κn(x1 + x2 + · · · + xN) = Nκn(x1). (Extensivity)

Remark 3.3. Similar to Remark 3.1, a recursive argument shows that condition (M1) is equiv-
alent to that there are universal polynomials Qn(t1, t2, ..., tn−1), n ≥ 1 with Q1 := 0 such that

φ(xn) = κn(x) +Qn(κ1(x), κ2(x), ..., κn−1(x)) (3.1)

for all n ≥ 1, x ∈ A and any (A,φ).

3.1. Cumulants from moments of random walk. We begin with showing the uniqueness
of monotone cumulants, which also indicates how to show the existence. Note that the same
reasoning below also applies to showing that classical cumulants {Cn}n≥1 are unique. For that
purpose an elementary lemma on polynomials is needed.

Lemma 3.4. Let P (N) = a0+a1N+a2N
2+· · ·+akNk and Q(N) = b0+b1N+b2N

2+· · ·+bkNk

be two polynomial functions on N with complex coefficients ai, bi. If P (N) = Q(N) for all N ∈ N
then ai = bi for all 0 ≤ i ≤ k.

Remark 3.5. This lemma allows us to naturally extend a polynomial P (N) defined for N ∈ N
to a polynomial P (t) defined for t ∈ R.

The result easily extends to polynomials in several variables. For the case of two variables,
if P (N,M) =

∑k
i,j=1 ai,jN

iM j and Q(N,M) =
∑k

i,j=1 bi,jN
iM j are polynomials with complex

coefficients ai,j, bi,j and P (N,M) = Q(N,M) for allN,M ∈ N then ai,j = bi,j for all 0 ≤ i, j ≤ k.
The proof is just to fix one variable, say M , and apply the lemma for P (·,M) and Q(·,M),

which yields
∑k

j=1 ai,jM
j =

∑k
j=1 bi,jM

j for all M ∈ N and i. Then again applying the lemma
gives the conclusion ai,j = bi,j.

Proof. In fact, a weaker assumption is enough; suppose P (N) = Q(N) holds at distinct positive
integers N1 < N2 < · · · < Nk+1. Then, by setting ci := ai − bi, we have

1 N1 N2
1 · · · Nk

1

1 N2 N2
2 · · · Nk

2
...

. . .
...

1 Nk+1 N2
k+1 · · · Nk

k+1



c0
c1
c2
...
ck

 =


0
0
0
...
0

 .

Since the coefficient matrix has nonzero determinant (called the Vandermonde determinant),
the numbers ci must be zero. □

Proposition 3.6. Monotone cumulants are unique.

Proof. Suppose that (κn)n≥1 are monotone cumulants determined by universal polynomials
(Pn)n≥1. We can see that Pn(t1, t2, ..., tn−1) for n ≥ 2 contains no linear terms or a constant term.

Indeed, if we write Pn(t1, ..., tn−1) =
∑

k1k2,...,kn−1≥0 ck1,k2,...,kn−1t
k1
1 t

k2
2 · · · tkn−1

n−1 , where ck1,k2,...,kn−1

are complex constants independent of (A,φ) and the tuple (k1, k2, ..., kn−1) runs over a finite
subset of Nn−1

0 , then the homogeneity condition reads

λnκn(x) = λnφ(xn) +
∑

k1k2,...,kn−1≥0

ck1,k2,...,kn−1λ
k1+2k2+···+(n−1)kn−1φ(x)k1φ(x2)k2 · · ·φ(xn−1)kn−1 .
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Since this holds for all λ ∈ C and all x ∈ A and all (A,φ), comparing the coefficients of λp

yields ∑
k1k2,...,kn−1≥0

k1+2k2+···+(n−1)kn−1=p

ck1,k2,...,kn−1φ(x)k1φ(x2)k2 · · ·φ(xn−1)kn−1 = 0, p ̸= n.

As the tuple (s1, s2, ..., sn−1) := (φ(x), φ(x2), ..., φ(xn−1)) can take arbitrary vector in Cn−1, we
conclude ck1,k2,...,kn−1 = 0 unless k1 + 2k2 + · · · + (n − 1)kn−1 = n. In particular, the constant
term and linear terms of Pn are all zero. This also implies that the constant and linear terms
of Qn in (3.1) are all zero.

Let us take monotonically independent and identically distributed random variables x :=
x1, x2, ..., xN in some nc-probability space. Then the extensivity condition yields

φ((x1 + x2 + · · · + xN)n) = Nκn(x) +Qn(Nκ1(x), Nκ2(x), ..., Nκn−1(x)).

The right hand side is a polynomial in positive integers N and hence, by Lemma 3.4, their
coefficients are uniquely determined. In particular, since the Qn part has no linear term, κn(x)
is uniquely determined as the coefficient of N of φ((x1 + x2 + · · · + xN)n). □

The above proof also indicates how we can find monotone cumulants: κn(x) should be the
coefficient of N of the nth moment of monotone random walk φ((x1 +x2 + · · ·+xN)n). In order
for this definition to make sense, we need to show φ((x1 + x2 + · · · + xN)n) is a polynomial in
N .

Proposition 3.7. For each n ∈ N there is a universal polynomial Un(s, t1, t2, ..., tn−1) with
U1 := 0 such that Un(0, t1, t2, ..., tn−1) = 0 and

φ((x1 + x2 + · · · + xN)n) = Nφ(xn) + Un(N,φ(x), φ(x2), ..., φ(xn−1)), n,N ≥ 1

for any monotonically independent and identically distributed random variables x1, x2, ..., xN in
any nc-probability space (A,φ).

Proof. The proof is based on induction on n. For n = 1 we have

φ(x1 + x2 + · · · + xN) = Nφ(x1).

Suppose that the statement is the case up to n − 1. We set sk := x1 + x2 + · · · + xk and
s0 := 0. By Corollary 2.5, sN−1 and xN are monotonically independent. According to the
moment calculation (1.9), there exists a universal polynomial Rn of 2n− 1 variables such that

φ(snN) = φ((sN−1 + xN)n)

= φ(snN−1) +Rn(φ(sN−1), φ(s2N−1), ..., φ(sn−1
N−1), φ(xN), φ(x2N), ..., φ(xnN))

= φ(snN−1) +Rn(φ(sN−1), φ(s2N−1), ..., φ(sn−1
N−1), φ(x1), φ(x21), ..., φ(xn1 )).

By the assumption of induction, φ(snN) − φ(snN−1) is a polynomial in N,φ(x), φ(x2), ..., φ(xn),
i.e., it is of the form

φ(snN) − φ(snN−1) =
dn∑
k=0

Vn,k(φ(x), φ(x2), ..., φ(xn))Nk.

Taking the sum over N we obtain

φ(snN) =
dn∑
k=0

Vn,k(φ(x), φ(x2), ..., φ(xn))
N∑

M=1

Mk.

By Faulharbor’s formula,
∑N

M=1M
k is a polynomial in N of degree k + 1 without a constant

term. □



MONOTONE PROBABILITY THEORY 29

Theorem 3.8. Let (A,φ) be a nc-probability space and x ∈ A. We take monotonically inde-
pendent random variables x1 := x, x2, ..., xN . Let κn(x) be the coefficient of N of the polynomial
φ((x1 +x2 + · · ·+xN)n). Then κn, n ∈ N are monotone cumulants, i.e., conditions (M1)–(M3)
hold. Moreover, the polynomial Pn (n ≥ 2) has no constant or linear terms.

Remark 3.9. In the above definition of κn(x), the existence of x1, x2, ..., xN is not discussed. In
general, the existence is hopeless in the same algebra A. Since the value φ((x1+x2+ · · ·+xN)n)
only depends on the moments of x = x1, the other xi’s need not be in the same space A. We
therefore take a larger space (Â, φ̂) by setting Ai := A,φi := φ and

(Â, φ̂) := ▷
i∈N

(Ai, φi).

Then we consider A as a subalgebra of Â by identifying A with A1 ⊆ Â. Also, there are
other natural embeddings of A into Â as ιi : A → Ai ⊆ Â. For each x ∈ A the random
variables xi := ιi(x), i ∈ N are by construction monotonically independent and have the same
distribution as x. Then we can define the monotone cumulant κn(x) to be the coefficient of N
of the polynomial φ̂((x1 + x2 + · · · + xN)n). This is a precise definition.

Proof of Theorem 3.8. Condition (M1) is clear from Proposition 3.7. Condition (M2) holds
because φ((λx1 + λx2 + · · ·+ λxN)n) = λnφ((x1 + x2 + · · ·+ xN)n). In order to show condition
(M3), we take iid sequence (xi)

MN
i=1 , and set yi := xN(i−1)+1 + xN(i−1)+2 + · · · + xNi, i ∈ [M ].

By Corollary 2.5, the sequence (yi)
M
i=1 is monotonically independent. Also, (yi)

M
i=1 is identically

distributed. For each N ∈ N, the coefficient of M of

φ((y1 + y2 + · · · + yM)n)

equals κn(y1), which is κn(x1 + x2 + · · · + xN). On the other hand,

φ((y1 + y2 + · · · + yM)n) = φ((x1 + x2 + · · · + xMN)n)

is a polynomial in MN whose coefficient of MN is κn(x1), and therefore the coefficient of M
is Nκn(x1). Combining the above arguments we conclude (M3). The last assertion on Pn is
already proved in Proposition 3.6. □

Example 3.10. From condition (M1), κ1(x) = φ(x). We compute monotone cumulants κ2, κ3
by finding the polynomials U2, U3 in Proposition 3.7. The method here is more straightforward
than the proof of Proposition 3.7 in the sense that the polynomial Rn is not used.

Formula for U3. It should be kept in mind that φ(xni ) = φ(xn) does not depend on i because
x = x1, x2, x3, ... have an identical distribution. We first compute

φ(s2N) =
N∑

i,j=1

φ(xixj) =
N∑

i,j=1,i ̸=j

φ(xixj) +
N∑
i=1

φ(x2i )

=
N∑

i,j=1,i ̸=j

φ(xi)φ(xj) +
N∑
i=1

φ(x2i ) =
N∑

i,j=1,i ̸=j

φ(x)φ(x) +
N∑
i=1

φ(x2)

= N(N − 1)φ(x)φ(x) +Nφ(x2),

so that U2(N, t) = N(N − 1)t2.
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Formula for U3. We begin with

φ(s3N) =
N∑

i,j,k=1

φ(xixjxk)

=
∑

i,j,k distinct

φ(xixjxk) +
∑
i=j ̸=k

φ(x2ixk) +
∑
i=k ̸=j

φ(xixjxi) +
∑
i ̸=k=j

φ(xix
2
j) +

∑
i=j=k

φ(x3i )

=
∑

i,j,k distinct

φ(xixjxk) +
∑
i=j ̸=k

φ(x2i )φ(xk) +
∑
i=k ̸=j

φ(xixjxi) +
∑
i ̸=k=j

φ(xi)φ(x2j) +
∑
i=j=k

φ(x3i ).

In the above, φ(xixjxk) for distinct integers i, j, k always factorizes into φ(xi)φ(xj)φ(xk); for
example, if i < j > k and i ̸= k then φ(xixjxk) = φ(xixk)φ(xj) = φ(xi)φ(xj)φ(xk) and if
i < j < k then φ(xixjxk) = φ(xixj)φ(xk) = φ(xi)φ(xj)φ(xk). On the other hand, the sum
over i = k ̸= j is more delicate. In order to use monotone independence, we need to further
specify the inequality between i and j. If i < j then φ(xixjxi) = φ(xj)φ(x2i ). If i > j then
φ(xixjxi) = φ(xi)φ(xjxi) = φ(xi)φ(xj)φ(xi). Therefore,∑

i=k ̸=j

φ(xixjxi) =
∑
i<j

φ(xixjxi) +
∑
i>j

φ(xixjxi) =
∑
i<j

φ(x2i )φ(xj) +
∑
i>j

φ(xi)
2φ(xj).

Overall, we arrive at

φ(s3N) = N(N − 1)(N − 2)φ(x)3 +N(N − 1)φ(x2)φ(x) +
N(N − 1)

2
φ(x2)φ(x)

+
N(N − 1)

2
φ(x)3 +N(N − 1)φ(x2)φ(x) +Nφ(x3)

= N(N − 1)

(
N − 3

2

)
φ(x)3 +

5N(N − 1)

2
φ(x2)φ(x) +Nφ(x3).

This means

U3(N, t1, t2) = N(N − 1)

(
N − 3

2

)
t31 +

5N(N − 1)

2
t1t2.

The above method can be generalized to any Un, which provides another proof of Proposition
3.7.

Formulas for κ2, κ3. Finally, the monotone cumulants κ2(x) and κ3(x) are identified with the
coefficients of N of φ(s2N) and of φ(s3N) respectively:

κ2(x) = φ(x2) − φ(x)2, (3.2)

κ3(x) = φ(x3) − 5

2
φ(x2)φ(x) +

3

2
φ(x)3. (3.3)

A recursive formula for computing κn(x) will be provided in Proposition 3.12. A combinatorial
formula for φ(xn) in terms of κℓ(x), 1 ≤ ℓ ≤ n will be given in Theorem 3.23.

Remark 3.11. The nth monotone cumulant κn(x) is determined by the moments of the random
variable x up to order n. Therefore, for any probability measure µ having finite moments up to
order n, we can define κn(µ) := κn(x) by taking a random variable x in a nc-probability space
(A,φ) such that φ(xp) =

∫
R t

p µ(dt), 1 ≤ p ≤ n. We call κn(µ) the nth monotone cumulant
of µ.

3.2. Differential recursion for monotone cumulants. To compute monotone cumulants,
differential recursion is helpful.

Proposition 3.12. Let x be a random variable and x1 := x, x2, x3, ... are monotonically inde-
pendent in a nc-probability space (A,φ). Let sN := x1 + x2 + · · · + xN , s0 := 0. As we have
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seen above, for each n ∈ N the evaluation φ(snN) is a polynomial in N , so it can be extended to
a polynomial in a real variable t ∈ R, which we denote by mn(t) ≡ mn(t;x). Then we have

m′
n(t) =

n−1∑
ℓ=0

(ℓ+ 1)κn−ℓ(x)mℓ(t), n ≥ 1; m0(t) ≡ 1, (3.4)

mn(0) = 0, n ≥ 1. (3.5)

Proof. Note first that mn(0) = 0 comes from Proposition 3.7 showing that φ(snN) has no
constant term on N . Let s′M := xN+1 + xN+2 + · · · + xN+M . By Corollary 2.5, sN and s′M are
monotonically independent. Note that s′M also depends on N as an element of A; however its
distribution only depends on the number M of the summands xi’s, so that we omit explicitly
mentioning the dependence on N . In the obvious formula

mn(N +M) = φ((x1 + x2 + · · · + xN+M)n) = φ((sN + s′M)n),

the right-hand side is exactly the monotone convolution, so we can use the calculation in (1.9):

φ((sN + s′M)n) =
n∑

ℓ=0

∑
k0,k1,...,kℓ≥0,

k0+k1+···+kℓ=n−ℓ

φ(sℓN)φ(sk0M)φ(sk1M) · · ·φ(skℓM). (3.6)

Since each φ(skM) is a polynomial in M without a constant term, the contributions to the
monomial M in the sum (3.6) only come from the tuples (k0, k1, ..., kℓ), 0 ≤ ℓ ≤ n− 1 such that
exactly one of ki’s is nonzero, so that we obtain

φ((sN + s′M)n) =
n−1∑
ℓ=0

(ℓ+ 1)φ(sℓN)φ(sn−ℓ
M ) +R1(M)

= M
n−1∑
ℓ=0

(ℓ+ 1)φ(sℓN)κn−ℓ(x) +R2(M),

where R1(M) and R2(M) are polynomials in M without a constant or linear term. Since all
the terms are polynomials, we can extend the variables N and M to real numbers t and s, so
that

mn(t+ s) =
n−1∑
ℓ=0

(ℓ+ 1)κn−ℓ(x)mℓ(t) +R2(s).

The desired formula follows by taking the derivative d
ds

∣∣
s=0

. □

The differential recursion gives an efficient method for computing κn(x).

Example 3.13. We set n = 1 in (3.5) to obtain m′
1(t) = κ1(x), which integrates to m1(t) =

κ1(x)t. Setting t = 1, we obtain

κ1(x) = m1(1) = φ(x),

which is already known. Formula (3.5) for n = 2 reads

m′
2(t) = κ2(x)m0(t) + 2κ1(x)m1(t) = κ2(x) + 2tκ1(x)2,

which integrates to

m2(t) = κ2(x)t+ κ1(x)2t2.

Setting t = 1 and using κ1(x) = φ(x) we obtain formula (3.2) for κ2. In a similar manner we
obtain formula (3.3) for κ3. If n becomes larger and larger, this recursive method for computing
κn seems more efficient than the one in Example 3.10.

Corollary 3.14. As a polynomial in t, we have deg(mn(t)) ≤ n for all n ∈ N ∪ {0}.
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Proof. Integrating the differential recursion in Proposition 3.12 yields

mn(t) =
n−1∑
ℓ=0

(ℓ+ 1)κn−ℓ(x)

∫ t

0

mℓ(s) ds, n ≥ 1.

Starting from m0(t) ≡ 1, we can show the bound deg(mn(t)) ≤ n by induction. □

3.3. Monotone central limit theorem. In probability theory, a basic form of the central
limit theorem says if (Xi)i≥1 is real-valued i.i.d. random variables such that E[Xi] = 0 and
E[X2

i ] = σ2 > 0, then the distribution of

X1 +X2 + · · · +XN√
Nσ2

converges weakly to N(0, 1) as N → ∞. We consider a similar problem for monotonically
independent random variables.

Theorem 3.15. Let (A,φ) be a unital C∗-probability space and (xi)i≥1 be a sequence of mono-
tonically independent and identically distributed real random variables in A. Suppose that
φ(x1) = 0 and φ(x21) = σ2 > 0. Then, for any n ∈ N

lim
N→∞

φ

((
x1 + x2 + · · · + xN√

Nσ2

)n)
=

∫ √
2

−
√
2

tn

π
√

2 − t2
dt.

In particular, the analytic distribution of (x1 + x2 + · · · + xN)/
√
Nσ2 converges weakly to the

arcsine law with density 1/(π
√

2 − t2),−
√

2 < t <
√

2.

Proof. We first prove the convergence of monotone cumulants of aN := x1+x2+···+xN√
Nσ2

. By using

conditions (M1) and (M2) we have

κn(aN) = (Nσ2)−
n
2 κn(x1 + x2 + · · · + xN) = (Nσ2)−

n
2Nκn(x1).

Recall here that κ1(x1) = φ(x1) = 0 and κ2(x1) = φ(x21) − φ(x1)
2 = σ2. Passing to the limit

yields

κn := lim
N→∞

κn(aN) =

{
1, if n = 2,

0, otherwise.

By the polynomiality φ(anN) = κn(aN) +Qn(κ1(aN), κ2(aN), ..., κn−1(aN)) and taking the limit,
we obtain the convergence

lim
N→∞

φ(anN) = κn +Qn(κ1, κ2, ..., κn−1), n ≥ 1.

Now, we come to use the differential recursion. Let mn(t; aN) be the polynomial constructed
for x := aN as in Proposition 3.12. From Example 3.13, we have m1(t; aN) = φ(aN)t = 0.
Since mn(t; aN) is a polynomial in t and φ(akN), 1 ≤ k ≤ n, the limit

mn(t) := lim
N→∞

mn(t; aN)

exists. Since deg(mn(t; aN)) ≤ n and the coefficient of each monomial tk (1 ≤ k ≤ n) of
mn(t; aN) converges, the limit function mn(t) is also a polynomial with degree ≤ n and the
convergence is uniform on each finite interval of R. By taking the limit in the integrated form
of Proposition 3.12, we obtain

mn(t) = lim
N→∞

mn(t; aN) = lim
N→∞

n−1∑
ℓ=0

(ℓ+ 1)κn−ℓ(aN)

∫ t

0

mℓ(s; aN) ds =

∫ t

0

(n− 1)mn−2(s) ds.

Since m0(t) = 1 and m1(t) = 0 for all t ∈ R, this can be easily solved by iterated integrals as

m2k(t) =
(2k − 1)!!

k!
tk, m2k−1(t) = 0, k ≥ 1.
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As mn(1; aN) = φ(anN), we have thus obtained

lim
N→∞

φ(anN) = mn(1) =

{
(2k−1)!!

k!
, if n = 2k, k ∈ N

0, if n is odd.
(3.7)

This limit is exactly the moment sequence of the arcsine law, which has compact support
and hence its moment sequence is determinate (Proposition A.3). The weak convergence is a
consequence of Proposition A.6. □

3.4. Poisson’s law of small numbers. The second limit theorem to be discussed is an ana-
logue of Poisson’s law of small numbers. In probability theory, the simplest formulation is as
follows: for each N ∈ N, suppose that XN,1, XN,2, ..., XN,N are independent random variables
that have the identical distribution

P[XN,k = 0] = 1 − λ

N
, P[XN,k = 1] =

λ

N
, 1 ≤ k ≤ N (3.8)

for some fixed λ > 0. Then the distribution of XN,1 + XN,2 + · · · + XN,N converges to the
Poisson distribution with rate λ:

e−λ

∞∑
n=0

λn

n!
δn.

Theorem 3.16. Let λ > 0. For each N ∈ N, let (xN,i)
N
i=1 be monotonically independent and

identically distributed real random variables in a unital C∗-probability space (A,φ) such that

µxN,i
=

(
1 − λ

N

)
δ0 +

λ

N
δ1, 1 ≤ i ≤ N.

Then there exists a probability measure ρλ whose monotone cumulants are all equal to λ such
that

lim
N→∞

φ((xN,1 + xN,2 + · · · + xN,N)n) =

∫
R
tn ρλ(dt), n ∈ N.

Remark 3.17. We will study ρλ further in Example 5.22, where ρλ turns out to have compact
support. Therefore, the analytic distribution of xN,1 + xN,2 + · · · + xN,N weakly converges to
ρλ. The measure ρλ will be called the monotone Poisson distribution with parameter
λ > 0.

Proof of Theorem 3.16. Let aN := xN,1 + xN,2 + · · · + xN,N . Since (xN,i)
N
i=1 is iid, we have

κn(aN) = Nκn(xN,1).

Observe here that φ(xnN,1) = λ/N . From condition (M1), since Pn has no constant or linear
terms,

Nκn(xN,1) = Nφ(xnN,1) +NPn(φ(xN,1), φ(x2N,1), ..., φ(xn−1
N,1 )) = λ+ o(1).

Therefore we conclude that

lim
N→∞

κn(aN) = λ.

This in turn implies

lim
N→∞

φ(anN) = λ+Qn(λ, λ, ..., λ). (3.9)

Because for each N the sequence φ(anN), n = 0, 1, 2, ... is positive semi-definite, the limit se-
quence is also positive semi-definite. This guarantees that the limit (3.9) is a moment sequence
of some probability measure on R. □
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3.5. Monotone set partitions and monotone cumulants. Cumulants are known to be
intimately connected to set partitions. Let S be a finite set. A decomposition of S into
nonempty disjoint subsets is called a set partition of S. A set partition is denoted as ρ =
{B1, B2, . . . , Bk}, where Bi’s are the nonempty disjoint subsets of S such that S = B1∪· · ·∪Bk.
Each Bi is called a block of the set partition ρ. The number k of the blocks of ρ is denoted
by |ρ|. Let P(S) stand for the set of all set partitions of S. For the special case S = [n], we
denote P(n) := P([n]). For example P(2) has two elements {{1, 2}} and {{1}, {2}} and P(3)
has five elements {{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}, {{1}, {2}, {3}}.

Let (αn)n≥1 be a sequence of complex numbers. For each set partition ρ = {B1, B2, . . . , Bk}
of S, we define

αρ := α|B1|α|B2| · · ·α|Bk|.

With this notation, the following formula holds.

Proposition 3.18. For a random variable X ∈ L∞−(Ω,F , P ), we have

E[Xn] =
∑

ρ∈P(n)

Cρ(X), n ∈ N. (3.10)

Proof. Although we do not need this formula later, the proof is sketched for the reader’s conve-
nience. We can see that, given a sequence of positive integers (i1, i2, ..., ik) with i1 + 2i2 + · · ·+
kik = n, the number of ρ ∈ P(n) that has i1 blocks of cardinality one, i2 blocks of cardinality
two, ..., ik blocks of cardinality k, equals(

n

i1

)(
n− i1

2i2

)(
n− i1 − 2i2

3i3

)
· · ·
(
n− i1 − 2i2 − · · · − (k − 1)ik−1

kik

) k∏
p=1

(pip)!

(p!)ip(ip!)

=
n!

i1!i2! · · · ik!(1!)i1(2!)i2 · · · (k!)ik
, (3.11)

so that the coefficient of C1(X)i1C2(X)i2 · · ·Ck(X)ik in (3.10) is exactly (3.11). On the other
hand, recall that the definition of cumulants is given by

E[ezX ] =
∑
n≥0

E[Xn]

n!
zn = exp

(∑
n≥1

Cn(X)

n!
zn

)
= eC1(X)ze

C2(X)
2!

z2e
C3(X)

3!
z3 · · · (3.12)

in the sense of formal power series. The coefficient of C1(X)i1C2(X)i2 · · ·Ck(X)ik in (3.12) is
easily seen to be the number (3.11) divided by n!, as desired. □

Example 3.19. For n = 1, 2, 3, (3.10) reads

E[X] = C1(X), (3.13)

E[X2] = C2(X) + C1(X)2, (3.14)

E[X3] = C3(X) + 3C2(X)C1(X) + C1(X)3. (3.15)

Our goal is to discover a similar formula for monotone cumulants. It turns out that an
ordered set partition provides a suitable framework. An ordered set partition of a finite set
S is a sequence π = (B1, B2, ..., Bk), where {B1, B2, ..., Bk} is a set partition, i.e., B1, B2, ..., Bk

are nonempty disjoint subsets of S such that S is the union of them. We can also consider
that π is the set partition {B1, B2, ..., Bk} equipped with the linear order on its blocks B1 ≤
B2 ≤ · · · ≤ Bk. In this way, an equivalent definition is that an ordered set partition is a pair
π = (ρ,≤) of a set partition ρ ∈ P(S) and a linear (or total) order on ρ. We set the notations
|π| := |ρ| that is the length of the sequence π, and π := ρ. Let OP(S) be the set of the ordered
set partitions of S. With a slight abuse of notation, we will write Bi ∈ π, which more precisely
means Bi ∈ π.

Let T be a totally ordered finite set. A set partition ρ ∈ P(T ) is said to have a crossing if
there are two blocks B1, B2 ∈ ρ and elements a, b ∈ B1 and b, c ∈ B2 such that a < c < b < d.
A set partition that has no crossings is called a noncrossing set partition.
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Figure 1. The diagram of π = (B1, B2, . . . , B6) ∈ OP(12) where B1 = {6, 9},
B2 = {2, 3}, B3 = {11, 12}, B4 = {7, 8}, B5 = {4}, and B6 = {1, 5, 10}. This
is not a monotone set partition because e.g. B6 covers B1. For example, the
permuted one π̃ = (B6, B2, B5, B1, B4, B3) is a monotone set partition.

We consider a partial order on each ρ ∈ P(T ) defined by a covering relation. For nonempty
subsets B1, B2 ⊆ T , we say B1 covers B2, denoted as B1 ⪯ B2, if minB1 ≤ i ≤ maxB1 for all
i ∈ B2. On a set partition of T , the relation ⪯ becomes a partial order.

Definition 3.20. Let T be a totally ordered finite set. An ordered set partition π = (ρ,≤) of
T is called a monotone set partition if

(i) ρ is a noncrossing set partition,

(ii) if B,B′ ∈ ρ satisfies B ⪯ B′ then B ≤ B′.

The set of monotone set partitions of T is denoted by M(T ). For notational simplicity, we set
M(n) := M([n])

The monotone set partitions M(T ) can be generated from the following recursion.

Proposition 3.21. Let T be a totally ordered finite set. There exists a canonical bijection

β : M(T ) →
⋃
I

M(T \ I),

where I runs over the set of nonempty intervals of T , the complement T \ I is endowed with the
linear order induced by T , and M(∅) := {∅}. The bijection is given by β : (ρ,≤) 7→ ρ\{Bmax} ∈
M(T \Bmax), where Bmax is the largest block of ρ with respect to ≤.

Proof. Observe first that Bmax is a nonempty interval of T since Bmax does not cover any other
element and ρ is noncrossing. It is straightforward that ρ \ {Bmax} is a monotone set partition
of T \ Bmax. Conversely, the mapping

⋃
I M(T \ I) ∋ (I, π′) = (I, (ρ′,≤′)) 7→ (ρ′ ∪ {I},≤)

where ≤ is the extension of ≤′ such that I is larger than any block of ρ′, also gives a monotone
set partition of T , and this is the inverse mapping. □

Proposition 3.22. Let T be a totally ordered finite set. The cardinality of M(T ) is (|T |+1)!
2

.

Proof. We may assume that T = [n]. Let tn := |M(n)|, n ∈ N and t0 := 1. The previous
bijection yields tn =

∑
I tn−|I|. For each 1 ≤ k ≤ n, there are n − k + 1 intervals I such that

|I| = k. This yields

tn =
n∑

k=1

(n− k + 1)tn−k =
n−1∑
p=0

(p+ 1)tp, n ≥ 1; t0 = 1.

Computing tn−tn−1 yields tn = (n+1)tn−1, so an induction argument shows the desired formula
tn = (n+ 1)!/2 for n ∈ N. □

Given a sequence (αn)n≥1 of complex numbers and π = (B1, B2, . . . , Bk) ∈ OP(S), we define

απ := α|B1|α|B2| · · ·α|Bk|.

Equivalently, we set απ := αρ for π = (ρ,≤).
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Theorem 3.23. On any nc-probability space (A,φ) and for any x ∈ A, we have

φ(xn) =
∑

π∈M(n)

1

|π|!
κπ(x), n ∈ N. (3.16)

Remark 3.24. For the classical cumulants (Cn)n≥1, the moment-cumulant formula (3.10) can
be written in the equivalent form

E[Xn] =
∑

π∈OP(n)

1

|π|!
Cπ(X), n ∈ N, X ∈ L∞−, (3.17)

since for each ρ ∈ P(n) there are |ρ|! number of π ∈ OP(n) such that π = ρ, corresponding to
the permutations of the blocks. Comparing with formula (3.17) somehow justifies the naturality
of the factor 1

|π|! in (3.16).

Proof of Theorem 3.23. Let x1 := x, x2, x3, ... be monotonically independent, identically dis-
tributed sequence, possibly in a larger nc-probability space, which we still denote by (A,φ) for
simplicity. Recall from Proposition 3.12 that mn(t) = mn(t;x) is a polynomial in t ∈ R that
coincides with φ((x1 + x2 + · · · + xt)

n) at t ∈ N. We prove a generalized formula

mn(t) =
∑

π∈M(n)

t|π|

|π|!
κπ(x), n ∈ N (3.18)

which coincides with (3.16) for t = 1. We extend (3.18) to n = 0 by interpreting M(0) := {∅},
|∅| := 0, 0! := 1 and κ∅(x) := 1, so that the following calculations make sense.

Formula (3.18) is obviously the case for n = 0. Suppose that the formula holds up to n− 1.
Then, using the differential recursion in Proposition 3.12, we proceed as

mn(t) =
n−1∑
ℓ=0

(ℓ+ 1)κn−ℓ(x)

∫ t

0

mℓ(s) ds

=
n−1∑
ℓ=0

(ℓ+ 1)κn−ℓ(x)
∑

π∈M(ℓ)

1

|π|!
κπ(x)

∫ t

0

s|π| ds

=
n−1∑
ℓ=0

(ℓ+ 1)
∑

π∈M(ℓ)

t|π|+1

(|π| + 1)!
κn−ℓ(x)κπ(x)

=
n∑

p=1

(n− p+ 1)
∑

π∈M(n−p)

t|π|+1

(|π| + 1)!
κp(x)κπ(x). (3.19)

Since there are n− p+ 1 intervals I ⊆ [n] of size p, (3.19) can be written in the form∑
∅≠I⊆[n]
interval

∑
π∈M([n]\I)

t|π|+1

(|π| + 1)!
κ|I|(x)κπ(x). (3.20)

The last formula can be well described by the bijection β in Proposition 3.21: the ordered
set partition σ := β(I, π) runs over all elements of M(n) exactly once as (I, π) runs over the
summation range of (3.20), and it holds that |π|+ 1 = |σ| and κ|I|(x)κπ(x) = κσ(x). Therefore,
the last expression (3.20) is exactly the desired (3.18). □

The monotone CLT says that the monotone cumulant sequence (0, 1, 0, 0, 0, ...) corresponds to
the moment sequence (3.7) of the arcsine law. This fact and Theorem 3.23 yield the cardinality
of the set of monotone pair partitions

M2(2n) := {π ∈ M(2n) : every block of π has cardinality two}.

Corollary 3.25. The cardinality of M2(2n) is (2n− 1)!!.
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The above proof of the moment-cumulant formula in Theorem 3.23 does not clarify well why
the monotone set partitions appear. In fact, monotone set partitions have a more intrinsic
meaning: they naturally appear when characterizing a “tensor-like” factorization of mixed
moments.

Definition 3.26. Let I be a totally ordered set and i1, i2, ..., in ∈ I. Let ker(i1, i2, ..., in) be
the ordered set partition of [n], called the kernel, defined as follows: let Aj := {p ∈ [n] : ip =
j}, j ∈ I and we collect all the nonempty sets Aj1 , Aj2,, ..., Ajr , j1 < j2 < · · · < jr, and define
ker(i1, i2, ..., in) := (Aj1 , Aj2 , ..., Ajr).

Example 3.27. Let I = N. Then ker(3, 5, 2, 1, 5, 3, 5) is given by ({4}, {3}, {1, 6}, {2, 5, 7}).

Proposition 3.28. Let I be a totally ordered set and i1, i2, ..., in ∈ I. Then ker(i1, i2, ..., in) ∈
M(n) if and only if the factorization

φ(a1a2 · · · an) =
∏

B∈ker(i1,i2,...,in)

φ

(−→∏
p∈B

ap

)
(3.21)

holds for any random variables a1 ∈ Ai1 , a2 ∈ Ai2 , . . . , an ∈ Ain and any monotonically inde-
pendent subalgebras (Ai)i∈I in any nc-probability space (A,φ).

Remark 3.29. The factorization (3.21) is exactly the formula that always holds irrespective of
ker(i1, ..., in) provided (Ai)i∈I were tensor independent. This proposition therefore characterizes
the arrangements of random variables such that the factorization coincides with the case of
tensor independence.

Proof. Let us check the statement through examples. In the following, (Ai)
∞
i=1 are monotonically

independent subalgebras in a nc-probability space (A,φ), i = (i1, i2, ..., in) ∈ Nn and a1 ∈
Ai1 , ..., an ∈ Ain .

Case 1: i = (i1, i2, ..., i8) = (2, 4, 4, 4, 3, 2, 1, 1). Then the kernel

π1 := ker(i) = ({7, 8}, {1, 6}, {5}, {2, 3, 4})

is a monotone set partition. We first focus on the largest block {2, 3, 4} and obtain

φ(a1a2 · · · a8) = φ(a1(a2a3a4)a5a6a7a8) = φ(a2a3a4)φ(a1a5a6a7a8)

because i1 < i2 = i3 = i4 > i5 and a2a3a4 ∈ Ai2 . The remaining sequence (i1, i5, i6, i7, i8)
associates the kernel ordered set partition ({7, 8}, {1, 6}, {5}), which is also a monotone set
partition. Since now i1 < i5 > i6 we have

φ(a1a5a6a7a8) = φ(a5)φ(a1a6a7a8),

and finally we arrive at

φ(a1a2 · · · a8) = φ(a2a3a4)φ(a5)φ(a1a6)φ(a7a8) =
∏
B∈π1

φ

(−→∏
p∈B

ap

)
.

In general, when the kernel is a monotone set partition, we can first factor out the expectation
of elements corresponding to the largest block of the kernel, and then by Proposition 3.21 the
remaining blocks still form a monotone set partition. Then we can repeat the same procedure
to get the tensor-like factorization.

Case 2: i = (2, 1, 2, 1). The associated kernel π2 := ker(2, 1, 2, 1) = ({2, 4}, {1, 3}) is not a
monotone set partition because π2 has a crossing. By the definition of monotone independence
we get

φ(a1a2a3a4) = φ(a1)φ(a2a3a4),

so that the block {1, 3} “splits” into the singletons {1} and {3}. This shows the tensor-like
factorization does not hold.
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Case 3: i = (2, 1, 1, 2). Then π3 := ker(2, 1, 1, 2) = ({2, 3}, {1, 4}). In this case π3 is noncrossing
but the total order on π3 is not compatible with the covering relation, so that π3 is not a
monotone set partition. It holds that

φ(a1a2a3a4) = φ(a1)φ(a2a3a4),

so that the block {1, 4} again splits.

In general, as soon as ker(i) is not a monotone set partition, there always exists a block that
splits, so that the tensor-like factorization fails. □

3.6. Notes. The monotone cumulants were defined by Hasebe and Saigo [83], and we basically
followed this original paper with more detailed arguments. More general multivariate monotone
cumulants are introduced in [82]. The proof of Theorem 3.23 followed [82]. The original
definition of monotone cumulants was inspired by “umbral calculus” in combinatorics, in which
“umbrae” correspond to i.i.d. copies of random variables, and a “dot operation” corresponds
to the sum of i.i.d. random variables. The definition of monotone cumulants builds upon a Lie
theoretic approach, which was already exploited by Voiculescu in the definition of free cumulants
[144]. The Lie theoretic aspect of cumulants has been further pursued in the literature from
Hopf-algebraic viewpoints, see e.g. [8, 57, 81, 106].

The proof of Theorem 3.15 (the monotone CLT) and Theorem 3.16 (the monotone Poisson’s
law of small numbers) more or less followed the lines of [83], being different from the proof of
the original article [116]. Hora, Obata [86, Theorem 8.23] and Saigo [129] proved the monotone
CLT allowing some non-identically distributed random variables. Wang analytically proved
the monotone CLT by only assuming the finite second moment [147]. Arizmendi, Salazar and
Wang provided a Berry-Esseen type result [14]. As for limit theorems other than the central
one, Wang and Wendler showed a law of large numbers [148] using a martingale technique;
Wang obtained a limit theorem of stable type [146]; Anshelevich and Williams established a
rather general limit theorem converging to monotonically infinitely divisible distributions [6];
Franz, Hasebe and Schleißinger studied monotone convolutions of infinitesimal triangular arrays
that allow non-identical probability measures [67]. These results can be seen as nontrivial limit
theorems for iterated compositions of holomorphic self-maps and some of them have connections
to ergodic theory.

The monotone set partitions first appeared in [117] in the form of Proposition 3.28. Lie
theoretic approaches can make it clearer how Proposition 3.28 leads to the appearance of
monotone set partitions in the moment-cumulant formula in Theorem 3.23, see [81, 106].

4. Cauchy transform

In this section we collect results on the Cauchy transform of probability measures and its
relatives. Using these results we extend monotone convolutions to probability measures with
unbounded support and analyze them in later sections.

4.1. Measures. Let X be a topological space and B(X) be the set of Borel subsets of X, i.e.,
B(X) ⊆ 2X is the smallest σ-field that contains all open subsets of X. A Borel measure is a
function µ : B(X) → [0,+∞] such that

• µ(∅) = 0,

• µ

(
∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn) whenever B1, B2, B3, ... are disjoint Borel subsets of X.

A Borel measure µ on X is called finite if the total mass µ(X) is finite. The set of the finite
Borel measures on X is denoted by Mfin(X). We say that a Borel measure is locally finite if
every point of X has an open neighborhood with finite mass. The support of a Borel measure
µ is the smallest closed subset B of X such that µ(X \ B) = 0, and the support is denoted as
supp(µ) if it exists. Note that the support of a Borel measure always exists if X is a separable
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metric space [56, Problem 3, Section 7.1]. Also, we say that a Borel measure µ is supported on
B if µ(X\B) = 0. A complex Borel measure is a function of the form µ = µ1−µ2+i(µ3−µ4),
where µk are Borel measures. The domain of µ is {B ∈ B(X) : µk(B) < +∞, k = 1, 2, 3, 4}.

Definition 4.1. Let X be a topological space. A sequence (τn)n≥1 in Mfin(X) is said to weakly
converge to τ ∈ Mfin(X) if for any bounded continuous function f : X → R one has

lim
n→∞

∫
X

f(x)τn(dx) =

∫
X

f(x)τ(dx).

There is a simple characterization of weak convergence, which is quite useful when combined
with tightness.

Lemma 4.2. Let X be a topological space. Let τ, τn ∈ Mfin(X) (n ∈ N). Then the weak conver-
gence τ = limn→∞ τn holds if and only if any subsequence of (τn)n≥1 has a further subsequence
that weakly converges to τ .

Proof. The “only if” part is obvious. For the “if” part, suppose to the contrary that τn does
not converge to τ ; then there exist a bounded continuous function f : X → R, ε > 0 and
a subsequence (τn(j))j≥1 such that |

∫
fdτn(j) −

∫
fdτ | ≥ ε for all j. This contradicts the

assumption that (τn(j)) has a further subsequence that converges to τ. □

Definition 4.3. Let X be a topological space and M ⊆ Mfin(X).

(i) M is said to be tight if for any ε > 0 there exists a compact subset K ⊆ X such that
µ(X \K) < ε for all µ ∈ M.

(ii) M is said to be relatively compact if any sequence in M has a further subsequence
that is weakly convergent in Mfin(X).

Remark 4.4. The above definition of relative compactness coincides with the standard definition
in topology theory when Mfin(X) is metrizable, which is the case if X is separable; see e.g. [35,
Theorem 5, Appendix III].

Of course if X is a compact space, the whole set Mfin(X) is tight.

Theorem 4.5 (Prokhorov’s theorem). Let X be a complete separable metric space and M be
a subset of Mfin(X). Then M is relatively compact if and only if M is tight and {τ(X) : τ ∈
M} ⊆ [0,∞) is bounded.

Proof. For the case of probability measures, the reader is referred to [35, Theorems 6.1 and 6.2].
For finite Borel measures, dividing the measures by their total masses reduces the problem to
probability measures. □

Remark 4.6. Actually we will use Theorem 4.5 only for X = R or circles in the plane. Then
this theorem is a direct consequence of Helly’s selection theorem, see e.g. [93, Theorem 13.33].

In the definition of weak convergence, we can take a smaller set of test functions provided
that the total mass converges and the topological space is good enough. For the proof of the
following result the reader is referred to [93, Theorem 13.16].

Proposition 4.7. Let X be a locally compact, complete separable metric space and τn, τ (n =
1, 2, 3, ...) be finite Borel measures on X such that limn→∞ τn(X) = τ(X). Then τn converges
weakly to τ if and only if

lim
n→∞

∫
X

f(x)τn(dx) =

∫
X

f(x)τ(dx)

holds for any continuous function f with compact support.

The definition of B(X) does not specify how to determine whether a given subset of X is
a Borel subset or not. In measure theory and probability theory, one often sees such subsets,
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e.g. Lebesgue measurable subsets or elements of the direct product of σ-fields. When discussing
such subsets, a standard technique is to consider a class of subsets rather than individual
subsets. The following classes are helpful.

Definition 4.8. Let Ω be a set and F be a nonempty subset of 2Ω.

(i) F is called a π-system if A,B ∈ F implies A ∩B ∈ F .

(ii) F is called a λ-system if the following conditions are satisfied:

• Ω ∈ F ;

• if A,B ∈ F and A ⊆ B then B \ A ∈ F ;

• if An ∈ F (n ∈ N) and A1 ⊆ A2 ⊆ A3 ⊆ · · · then
⋃

n∈NAn ∈ F .

(iii) F is called an algebra if the following conditions are satisfied:

• if Ω ∈ F ;

• if A,B ∈ F then A ∪B ∈ F ;

• if A ∈ F then Ω \ A ∈ F .

(iv) F is called a monotone class if the following conditions are satisfied:

• if An ∈ F (n ∈ N) and A1 ⊆ A2 ⊆ A3 ⊆ · · · then
⋃

n∈NAn ∈ F ;

• if An ∈ F (n ∈ N) and A1 ⊇ A2 ⊇ A3 ⊇ · · · then
⋂

n∈NAn ∈ F .

The following π-λ theorem and monotone class theorem are standard methods to prove
statements concerning Borel subsets or other classes of subsets; the reader is referred to [93,
Theorem 1.19] and [56, Theorem 4.4.2] for the proofs, respectively.

Theorem 4.9 (π-λ theorem). Let Ω be a set. Let P be a π-system and L be a λ-system of
subsets of Ω such that P ⊆ L. Then σ(P) ⊆ L.
Theorem 4.10 (Monotone class theorem). Let Ω be a set. Let A be an algebra and M be a
monotone class of subsets of Ω such that A ⊆ M. Then σ(A) ⊆ M.

A typical application of π-λ theorem is the following.

Proposition 4.11. Let τ1, τ2 be locally finite Borel measures on R such that τ1(I) = τ2(I) for
all open intervals I of finite length. Then τ1 = τ2.

Proof. The goal is to show τ1(B) = τ2(B) for all B ∈ B(R). Since

τi(B) = lim
N→∞

τi(B ∩ (−N,N)), i = 1, 2,

it suffices to show τ1(B) = τ2(B) for bounded Borel subsets B. We therefore fix N ∈ N. Let us
consider the set I ⊆ 2(−N,N) consisting of the empty set and the open subintervals of (−N,N),
and

L := {B ∈ B((−N,N)) : τ1(B) = τ2(B)}.
We can see that I is a π-system, L is a λ-system and, by assumption, I is contained in L.
By the π-λ theorem, σ(I) is contained in L, the former of which is known to be equal to
B((−N,N)). □

Remark 4.12. We can also use the monotone class theorem. Observe first that the above L is
also a monotone class. Instead of I we consider the algebra A ⊆ 2(−N,N) consisting of the empty
set and finite disjoint unions of the intervals of the forms (ai, bi] (−N ≤ ai < bi ≤ N); note that
(ai, N ] is to be interpreted as (ai, N). By taking limits we can see that each (ai, bi] belongs to
L, and therefore A ⊆ L. By the monotone class theorem, L contains σ(A) = B((−N,N)).

Sometimes, finding an appropriate algebra is harder than finding a π-system, and therefore
π-λ theorem is more useful. Later in Theorem 6.11 we also see the opposite situation where
the the second condition of the λ-system is hard to check, and thus monotone class theorem is
more useful.
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4.2. Holomorphic functions. Let D denote the unit disk {z ∈ C : |z| < 1} and C+ the

complex upper half-plane {z ∈ C : ℑ(z) > 0}. We consider R̂ := R∪ {∞} as a compact subset
of the Riemann sphere C ∪ {∞}.

Definition 4.13. Let X be a topological space. Let f, fn : X → C (n ∈ N) be functions. We
say that fn converges to f locally uniformly if each point of X has a neighborhood on
which fn converges to f uniformly. We say that fn converges to f uniformly on compacta
if fn converges to f uniformly on each compact subset of X. If X is an open subset of C then
these two notions coincide.

The same idea of Lemma 4.2 works to the uniform convergence on compacta.

Lemma 4.14. Let X be a topological space and let f, fn : X → C (n ∈ N). Then fn converges
to f uniformly on compacta if and only if any subsequence of (fn)n≥1 has a further subsequence
that converges to f uniformly on compacta.

When proving the convergence of a sequence of holomorphic functions, the following criterion
is useful.

Theorem 4.15 (Vitali). Let D ⊆ C be a domain. Let fn : D → C (n = 1, 2, 3, ...) be holomor-
phic functions that are uniformly bounded on each compact subset of D. Suppose that there is
a sequence of distinct points (zk)k≥1 ⊆ D such that limk→∞ zk ∈ D and limn→∞ fn(zk) exists in
C at all k ∈ N. Then fn converges to a holomorphic function locally uniformly on D.

Proof. By Montel’s theorem, (fn) has a subsequence that converges locally uniformly to a
holomorphic function f on D.

Let us apply Lemma 4.14. Take any subsequence (fn(k))k≥1. Again by Montel’s theorem,
it has a further subsequence (fn(k(j)))j≥1 that converges to a holomorphic function g locally
uniformly on D. By the assumption that limn→∞ fn(zk) ∈ C exists, we conclude that f(zk) =
g(zk) for all k ∈ N. The identity theorem forces f and g to coincide. Therefore, (fn(k(j)))j≥1

converges to f locally uniformly. Lemma 4.14 yields that the whole sequence (fn)n≥1 converges
to f on D. □

Here we note a useful criterion that allows us to differentiate a holomorphic function under
the integral sign. This fact will be used below without being mentioned.

Proposition 4.16. Let (T,F , µ) be a measure space. Let D be an open subset of C. Let
f : D × T → C be a function such that

• for a.e. t ∈ T the function f(·, t) is holomorphic on D,

• for each z ∈ D the function f(z, ·) is µ-integrable,

• there is a µ-integrable function g : T → [0,∞) such that |f(z, t)| ≤ g(t) for all z ∈ D, t ∈
T .

Then the function F (z) :=
∫
T
f(z, t)µ(dt) is holomorphic on D and F (n)(z) =

∫
T
∂nz f(z, t)µ(dt)

for all n ∈ N. Note that the assumptions above imply that ∂nz f(z, ·) is µ-integrable for any z ∈ D
and n ∈ N0.

Proof. Let C be a circle z0 + reiθ, 0 ≤ θ ≤ 2π sufficiently small so that C and its interior are
contained in D. By Cauchy’s integral formula we have

∂zf(z, t) =
1

2πi

∫
C

f(w, t)

(w − z)2
dw.

This yields the estimate

|∂zf(z, t)| ≤ 1

2π

∫
C

g(t)

|w − z|2
|dw| ≤ 4g(t)

r
, |z − z0| <

r

2
. (4.1)
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Writing f(z, t) = u(x, y, t) + iv(x, y, t) and F (z) = U(x, y) + iV (x, y) with notation z = x+ iy,
the above estimate implies that the four functions |∂xu|, |∂yu|, |∂xv|, |∂yv| are all bounded by
4g(t)/r. Therefore, the usual criterion for the interchange of differentiation and integration
yields that U(x, y), V (x, y) are differentiable under the integral sign with respect to both x and
y. Also we can check that U, V are C1 functions by the dominated convergence theorem. This
argument implies that the C1 functions U, V satisfy the Cauchy-Riemann equations and hence
F is holomorphic and the desired formula F ′(z) =

∫
T
∂zf(z, t)µ(dt) holds.

For the higher-order derivatives, as we have established (4.1), the function ∂zf also satisfies
the assumptions of the proposition, so that we can obtain the result for the second derivative.
Repeating the above arguments we obtain the desired formula for higher-order derivatives. □

We introduce classes of holomorphic functions.

Definition 4.17. A holomorphic function H : D → {z ∈ C : ℜ(z) ≥ 0} is called a Herglotz
function. A holomorphic function N : C+ → C+ ∪ R is called a Nevanlinna function.

Nevanlinna functions play central roles below. Upon fixing a conformal bijection ψ : D → C+,
we have the bijection N 7→ −iN ◦ ψ between the sets of Nevanlinna functions and Herglotz
functions. Sometimes Herglotz functions make arguments clearer so we work with them instead.

Definition 4.18. For a function f : C+ → C we say that f has a nontangential limit
ζ ∈ C ∪ {∞} at ∞ if for any γ > 0 we have

lim
z∈▽γ

|z|→∞

f(z) = ζ, (4.2)

where ▽γ is the sector domain

▽γ := {z ∈ C+ : γ|ℜ(z)| < ℑ(z)}.
The nontangential limit of f at ∞ is written as ∢ limz→∞ f(z) if it exists.

There is a conformal bijection of C+ that maps ∞ to a ∈ R. This allows us to define a
nontangential limit at a: f has a nontangential limit ζ ∈ C ∪ {∞} at a ∈ R if for any γ > 0

lim
z∈a+▽γ
z→a

f(z) = ζ,

and we write ζ = ∢ limz→a f(z).

In general, even if (4.2) exists for some γ > 0, the limit might not exist for smaller γ’s.
A remarkable fact is that such never happens for a large class of holomorphic functions: if
(4.2) exists for some γ > 0, the limit exists for any γ > 0. This is a consequence of Lindelöf’s
theorem. Although this theorem is not essential below, we quote a version of Lindelöf’s theorem
for Nevanlinna functions as it helps to better understand some results. For the proof we refer
the reader to [39, Theorem 1.5.7] or [44, Theorem 2.3]. A stronger version can be found in [44,
Theorem 2.20].

Theorem 4.19 (Lindelöf). Let N be a Nevanlinna function. If there exists a continuous map

γ : [0, 1) → C+ such that limt→1 γ(t) = ∞ and ζ := limt→1N(γ(t)) ∈ C+ ∪ R̂ exists, then the
nontangential limit of N at ∞ exists and equals ζ.

4.3. Nevanlinna functions. We collect various properties of Nevanlinna functions. We first
demonstrate an integral formula for Nevanlinna functions. For this it is convenient to work
with Herglotz functions first.

Lemma 4.20 (Poisson integral formula). Let f : D → C be a holomorphic function. For every
R ∈ (0, 1) it holds that

f(z) =
1

2π

∫ π

−π

ℜ
(
Reiϕ + z

Reiϕ − z

)
f(Reiϕ) dϕ, |z| < R. (4.3)
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Proof. Let z = reiθ with 0 ≤ r < R. By Cauchy’s integral formula

f(z) =
1

2πi

∫
|w|=R

f(w)

w − z
dw. (4.4)

Let z∗ := R2

r
eiθ called the reflection of z with respect to the circle {w : |w| = R}. Since |z∗| > R,

Cauchy’s integral theorem yields

0 =
1

2πi

∫
|w|=R

f(w)

w − z∗
dw. (4.5)

Combining (4.4) and (4.5) gives

f(z) =
1

2πi

∫
|w|=R

f(w)

(
1

w − z
− 1

w − z∗

)
dw.

With notation w = Reiϕ we obtain

1

w − z
− 1

w − z∗
=

R2 − r2

Reiϕ(R2 − 2rR cos(θ − ϕ) + r2)
=

1

Reiϕ
ℜ
(
Reiϕ + z

Reiϕ − z

)
.

The conclusion follows by observing dw = iReiϕdϕ. □

Proposition 4.21. For a Herglotz function f there exist b ∈ R and a finite Borel measure σ
on T such that

f(z) = ib+

∫
T

ζ + z

ζ − z
σ(dζ), z ∈ D. (4.6)

Proof. Let 0 < R < 1 and g be a holomorphic function defined by

g(z) =
1

2π

∫ π

−π

Reiϕ + z

Reiϕ − z
ℜ[f(Reiϕ)] dϕ, |z| < R.

Since f has a representation in Lemma 4.20 we have ℜ[g(z)] = ℜ[f(z)] for |z| < R. It is a well
known consequence of the Cauchy–Riemann relations that a holomorphic function on a domain
with a constant real part must be constant, which implies in our situation that f(z) = g(z)+ ib
for some constant b ∈ R. Therefore,

f(Rz) = ib+
1

2π

∫ π

−π

eiϕ + z

eiϕ − z
ℜ[f(Reiϕ)] dϕ = ib+

∫
T

w + z

w − z
σR(dw), z ∈ D, (4.7)

where σR is the finite Borel measure on T defined by σR(dϕ) := 1
2π
ℜ[f(Reiϕ)]dϕ. Selecting z = 0

in (4.7) we obtain σR(T) = ℜ[f(0)], which implies that the family {σR(T) | 0 < R < 1} ⊆ [0,∞)
is bounded. Since T is compact, the family {σR | 0 < R < 1} is tight. By Theorem 4.5, there
exists a sequence {Rn}n≥1 with Rn ↑ 1 and a finite Borel measure σ such that σ = limn→∞ σRn

weakly. Setting R = Rn in (4.7) and letting n→ ∞ amounts to the desired (4.6). □

Remark 4.22. The number b ∈ R and the finite Borel measure σ are unique. We will prove this
in the next theorem for the equivalent setting of Nevanlinna functions.

Theorem 4.23 (Nevanlinna formula). For a Nevanlinna function N , there exist a ≥ 0, b ∈ R
and a finite Borel measure τ on R such that

N(z) = az − b+

∫
R

1 + tz

t− z
τ(dt) = −b+

∫
R̂

1 + tz

t− z
τ̂(dt), (4.8)

where τ̂ is the finite Borel measure on R̂ defined by τ̂ |R = τ and τ̂({∞}) = a, and (1+tz)/(t−z)

is set to be z at t = ∞ ∈ R̂. The triplet (a, b, τ) is uniquely determined as follows.

(i) a = ∢ lim
z→∞

N(z)

z
.

(ii) b = −ℜ[N(i)].
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(iii) The Borel measure ρ(dt) = (1 + t2)τ(dt) satisfies for each −∞ < α < β <∞

ρ((α, β)) +
1

2
(ρ({α}) + ρ({β})) =

1

π
lim
y→0+

∫ β

α

ℑ[N(x+ iy)] dx, (4.9)

ρ({α}) = lim
y→0+

(−iy)N(α + iy), (4.10)

which will be referred to as the Stieltjes inversion formula.

Remark 4.24. The pointwise limit (at each x) of ℑ[N(x + iy)] as y → 0+ will provide further
information about ρ, e.g., about the Lebesgue decomposition of ρ, see [133, Appendix F].

Proof. The function

ψ(z) =
−iz + 1

z − i

is a homeomorphism from D onto C+ ∪ R̂ with inverse

ψ−1(z) =
iz + 1

z + i
.

By Proposition 4.21 the function −iN ◦ ψ has a representation

−iN(ψ(w)) = ib+

∫ π

−π

eiϕ + w

eiϕ − w
σ(dϕ) = ib+

∫
R̂

ψ−1(t) + w

ψ−1(t) − w
τ̂(dt), w ∈ D, (4.11)

where τ̂ = σ ◦ ψ−1|R̂ is the push-forward measure. The variable z = ψ(w) satisfies

ψ−1(t) + ψ−1(z)

ψ−1(t) − ψ−1(z)
= −i(1 + tz)

t− z
,

which transforms (4.11) into the desired (4.8).

(ii) is immediate.

(i) It suffices to show ∢ limz→∞R(z)/z = 0, where R(z) :=
∫
R

1+tz
t−z

τ(dt). Let t ∈ R, γ > 0,
z = x+ iy ∈ ▽γ with y ≥ 1. Then∣∣∣∣ 1 + tz

z(t− z)

∣∣∣∣ =

∣∣∣∣ 1

z(t− z)
+

z

t− z
+ 1

∣∣∣∣ ≤ 1 +

∣∣∣∣ z

t− z

∣∣∣∣ (1 +
1

|z|2

)
≤ 1 + 2

∣∣∣∣ z

t− z

∣∣∣∣ .
Since ∣∣∣∣ z

z − t

∣∣∣∣ =

√
x2 + y2

(x− t)2 + y2
≤

√
γ−2y2 + y2

y2
=
√

1 + γ−2, (4.12)

the function
∣∣∣ 1+tz
z(t−z)

∣∣∣ can be uniformly bounded by a constant independent of (t, z). By the

dominated convergence theorem, limz→∞,z∈▽γ R(z)/z = 0.

(iii) First observe that

1 + tz

t− z
=

(
1

t− z
− t

1 + t2

)
(1 + t2), (4.13)

which is sometimes useful. Now this formula immediately implies

ℑ[N(x+ iy)] = ay +

∫
R

y

(x− t)2 + y2
ρ(dt)

= ay +

∫
(α−1,β+1)

y

(x− t)2 + y2
ρ(dt)︸ ︷︷ ︸

=:I1(x,y)

+

∫
(−∞,α−1]∪[β+1,∞)

y

(x− t)2 + y2
ρ(dt)︸ ︷︷ ︸

=:I2(x,y)

.
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Since I2 is continuous on [α, β]×[0,∞) and vanishes on y = 0, we have limy→0+
∫
(α,β)

I2(x, y) dx =

0. Concerning I1, we use Tonelli’s theorem to interchange the integrals

lim
y→0+

∫
(α,β)

I1(x, y) dx = lim
y→0+

∫
(α−1,β+1)

ρ(dt)

∫
(α,β)

y

(x− t)2 + y2
dx

= lim
y→0+

∫
(α−1,β+1)

(
arctan

β − t

y
− arctan

α− t

y

)
ρ(dt).

Since

lim
y→0+

(
arctan

β − t

y
− arctan

α− t

y

)
=


0, t ∈ (−∞, α) ∪ (β,∞),

π, t ∈ (α, β),
π
2
, t = α, β,

the desired (4.9) follows by the dominated convergence theorem.
As for (4.10), due to the calculations

iyN(α + iy) = aiy(α + iy) − iyb+ iy

∫
R

[
1

t− (α + iy)
− t

1 + t2

]
ρ(dt)

= o(1) − ρ({α}) +

∫
R\{α}

iy

[
(t− α) + iy

(t− α)2 + y2
− t

1 + t2

]
ρ(dt),

it remains to show that the integral converges to zero as y → 0+. We split the integral region
R \ {α} into J1 := {t ∈ R : 0 < |t− α| < 1} and J2 := {t ∈ R : |t− α| ≥ 1}. The integral over
J1 tends to zero by the dominated convergence theorem because ρ(J1) < +∞ and for every
y ∈ (0, 1), t ∈ J1 we have

y

∣∣∣∣ (t− α) + iy

(t− α)2 + y2
− t

1 + t2

∣∣∣∣ ≤ y|t− α| + y2

(t− α)2 + y2
+

|t|y
1 + t2

≤
1
2
(y2 + (t− α)2) + y2

(t− α)2 + y2
+

t2 + y2

2(1 + t2)
≤ 2.

The integral over J2 also converges to zero by the dominated convergence because there is a
constant C > 0 such that for all t ∈ J2 and y ∈ (0, 1)

y

∣∣∣∣ (t− α) + iy

(t− α)2 + y2
− t

1 + t2

∣∣∣∣ ≤ C

1 + t2
. □

Finally, we verify the uniqueness of τ . Suppose that (a, b, τ ′) is another triplet. By the
Stieltjes inversion formula, the measure ρ′(dt) := (1+ t2)τ ′(dt) satisfies ρ′(I) = ρ(I) for all open
intervals I of finite length. Proposition 4.11 yields ρ′ = ρ, and therefore, τ ′ = τ .

In many examples the Stieltjes inversion formula is used in the following form.

Corollary 4.25. Let N be a Nevanlinna function with triplet (a, b, τ). If N extends to a
continuous function Ñ : C+ ∪ [α, β] → C+ ∪ R for some −∞ < α < β < ∞, then the measure
τ |[α,β] is Lebesgue absolutely continuous and its density is given by

1

π(1 + t2)
ℑ[Ñ(t)], t ∈ [α, β].

Here we characterize the convergence of Nevanlinna functions.

Proposition 4.26. Let Nn, n = 1, 2, 3, . . . be Nevanlinna functions with representations

Nn(z) = −bn +

∫
R̂

1 + tz

t− z
τ̂n(dt).

The following statements are equivalent.

(1) Nn converges to a function N locally uniformly on C+.
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(2) There is a sequence of distinct points (zk)k≥1 that converges to a point z∞ ∈ C+, and
lim
n→∞

Nn(zk) exists in C at all k ∈ N.

(3) the sequence (bn)n≥1 converges to some b ∈ R and (τ̂n)n≥1 weakly converges to some

finite Borel measure τ̂ on R̂.
Moreover, if the above equivalent conditions hold, then the limit function N is the Nevanlinna
function given by

N(z) = −b+

∫
R̂

1 + tz

t− z
τ̂(dt).

Proof. (1) =⇒ (2) is obvious.

(2) =⇒ (3). By performing an affine transformation z 7→ pz+ q (p > 0, q ∈ R), we may assume

that z1 = i. Since Nn(i) = −bn + iτ̂n(R̂), the sequence (bn)n≥1 converges to b ∈ R and the total

mass (τ̂n(R̂))n≥1 converges to a finite nonnegative number. By the compactness of R̂ and by
Theorem 4.5, the sequence (τ̂n)n≥1 has a weakly convergent subsequence (τ̂n′), whose limit is
denoted by τ̂ . Let N be the Nevanlinna function determined by the pair (b, τ̂). The definition
of weak convergence implies that for each z ∈ C+

Nn′(z) = −bn′ +

∫
R̂

1 + tz

t− z
τ̂n′(dt) → −b+

∫
R̂

1 + tz

t− z
τ̂(dt) = N(z) as n′ → ∞. (4.14)

We now take any subsequence (τ̂n(j))j≥1 of (τ̂n)n∈N. By the same reasoning as above, it has a

further subsequence (τ̂n(j(k)))k≥1 that converges to a finite Borel measure τ̃ . Denoting by Ñ the

Nevanlinna function corresponding to (b, τ̃), we obtain Nn(j(k))(z) → Ñ(z) in the same way as

(4.14). Therefore, for any k ∈ N, we have N(zk) = limn→∞Nn(zk) = Ñ(zk). By the identity
theorem we have N = Ñ on C+ and hence, by the uniqueness of the Nevanlinna formula, τ̃ = τ̂ .
Lemma 4.2 implies the convergence of the whose sequence τ̂n → τ̂ as n→ ∞.

(3) =⇒ (1) The pointwise convergence Nn(z) → N(z) follows by the definition of weak conver-

gence as R̂ ∋ t 7→ 1+tz
t−z

∈ C+ is bounded and continuous. Moreover, for each compact subset

K ⊆ C+, the function (t, z) 7→ (1 + tz)/(t − z) is bounded on R̂ ×K, and so Nn is uniformly
bounded on K. By Vitali’s theorem (Theorem 4.15), the convergence Nn → N holds locally
uniformly. □

Remark 4.27. Be aware that even if a sequence of Nevanlinna functions converges, the triplets
in (4.8) might fail to converge to that of the limit function. Take for example the triplet
(0, 0, δn), n ∈ N. Then

Nn(z) :=
1 + zn

n− z
→ N(z) := z

while the limit function has triplet (1, 0, 0). By contrast, the pair (b, τ̂) works perfectly with

respect to the convergence. In the above example, as finite Borel measures on R̂, the convergence
δn → δ∞ holds.

Here is a technical lemma on Nevanlinna functions to be used in later sections.

Lemma 4.28. Let I be an open interval of R and N : I × C+ → C+ ∪ R be a function such
that

• for each z ∈ C+, the map t 7→ N(t, z) is continuous,

• for each t ∈ I, the map z 7→ N(t, z) is a Nevanlinna function.

Then ∂kN
∂zk

is continuous on I × C+ for every k ∈ N0.

Proof. For each t ∈ I we have the formula

N(t, z) = atz − bt +

∫
R

1 + xz

x− z
τt(dx).
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Since −bt + i[at + τt(R)] = ℜ[N(t, i)] is a continuous function of t ∈ I, the functions t 7→
bt, at, τt(R) ∈ R are all bounded on a compact subinterval J ⊆ I. This implies that N(t, z) is
uniformly bounded on J ×K for any compact K ⊆ C+.

We fix a point (t, z) ∈ I × C+ and take a sequence (tn, zn), n ∈ N, converging to (t, z). We
choose a compact interval J ⊆ I containing t, tn and a compact subset K ⊆ C+ containing
z, zn, and further take a smooth simple closed curve C that surrounds K. By Cauchy’s integral
formula, we have

∂kN

∂zk
(tn, zn) =

1

2πik!

∫
C

N(tn, w)

(w − zn)k+1
dw.

As N(tn, w) is uniformly bounded, the dominated convergence theorem allows us to conclude
∂kzN(tn, zn) → ∂kzN(t, z). □

4.4. Cauchy transform and its relatives. Let x be a real random variable in a unital
C∗-probability space (A,φ). In Theorem 1.27 we encountered the shifted moment generating
function Mx(z) that can be written as

Mx(z) =
∞∑
n=0

φ(xn)zn+1 =

∫
R

z

1 − zt
µx(dt).

Replacing the variable z with 1/z gives a function called the Cauchy transform, which is widely
used in noncommutative probability. In this section we also introduce some other related
functions.

Definition 4.29. Let µ be a finite Borel measure on R. The function

Gµ(z) =

∫
R

1

z − t
µ(dt), z ∈ C+

is called the Cauchy transform of µ; sometimes it is called the Stieltjes transform or Borel
transform. The function Fµ(z) := 1/Gµ(z) is called the reciprocal Cauchy transform of µ.

Proposition 4.30. For a finite Borel measure µ on R and −∞ < α < β <∞, one has

µ((α, β)) +
1

2
(µ({α}) + µ({β})) = − 1

π
lim
y→0+

∫ β

α

ℑ[Gµ(x+ iy)] dx,

µ({α}) = lim
y→0+

iyGµ(α + iy).

In particular, the map µ 7→ Gµ is injective.

Proof. The formula

−Gµ(z) = −b+

∫
R

1 + tz

t− z
· µ(dt)

1 + t2
, b := −

∫
R

t

1 + t2
µ(dt),

gives a Nevanlinna formula for −Gµ and allows us to apply Theorem 4.23(iii). The injectivity
follows from the uniqueness part of the measure τ in Theorem 4.23. □

The following is a consequence of Corollary 4.25.

Corollary 4.31. For a finite Borel measure µ on R and −∞ < α < β < ∞, suppose that
Gµ extends to a continuous function G̃µ : C+ ∪ [α, β] → (−C+) ∪ R. Then µ|[α,β] is Lebesgue

absolutely continuous and its density is given by − 1
π
ℑ[G̃µ(t)], t ∈ [α, β].

The Cauchy transform is characterized as follows.

Proposition 4.32. Let G : C+ → (−C+) ∪ R be a holomorphic function. Then the following
statements are equivalent.

(1) G = Gµ for some probability measure µ.

(2) limy→∞ iyG(iy) = 1.
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(3) ∢ limz→∞ zG(z) = 1.

Proof. (1) =⇒ (3). By (4.12) and the dominated convergence theorem

zGµ(z) =

∫
R

z

z − t
µ(dt) → 1, z → ∞, z ∈ ▽γ.

(3) =⇒ (2) is obvious.

(2) =⇒ (1). From the Nevanlinna formula for −G we have

G(z) = −az + b+

∫
R

1 + tz

z − t
τ(dt),

where a ≥ 0, b ∈ R and a finite Borel measure τ on R. Moreover,

ℜ[iyG(iy)] = ay2 +

∫
R

y2

y2 + t2
(1 + t2) τ(dt).

From assumption (2) it must hold that a = 0, and from y2

y2+t2
↑ 1 (y ↑ ∞) the monotone

convergence theorem yields

1 = lim
y→∞

ℜ[iyG(iy)] =

∫
R
(1 + t2) τ(dt).

Therefore, the measure µ(dt) = (1 + t2)τ(dt) is a probability measure on R. The function G
can be expressed in the form

G(z) = b+

∫
R

(
1

z − t
+

t

1 + t2

)
µ(dt) = Gµ(z) + b+

∫
R

t

1 + t2
µ(dt),

which, together with assumption (2), implies b+
∫
R

t
1+t2

µ(dt) = 0 and hence G = Gµ. □

Proposition 4.33. Let µ, µn, n ∈ N be probability measures on R. The following are equivalent.
(1) µn → µ weakly;

(2) Gµn converges to Gµ locally uniformly on C+;

(3) there exists a sequence of distinct points (zk)∞k=1 ⊂ C+ such that lim
k→∞

zk exists in C+,

and lim
n→∞

Gµn(zk) = Gµ(zk) for every k ∈ N.

Proof. (2) ⇐⇒ (3) follows from Proposition 4.26 (1) and (2).

(1) =⇒ (3) is obvious from the definition of weak convergence.

(2) =⇒ (1). We extend µn to a probability measure µ̂n on R̂ by setting µ̂n({∞}) := 0. Since

{µ̂n(R̂) = 1}n≥1 is bounded, by Theorem 4.5, there is a subsequence (µ̂n(j))j≥1 that converges

weakly to a probability measure µ̂ on R̂. Since R ∋ t 7→ 1/(z− t) can be regarded as a bounded

continuous function on R̂ vanishing at infinity, we have

Gµn(z) =

∫
R̂

1

z − t
µ̂n(dt) →

∫
R̂

1

z − t
µ̂(dt) =

∫
R

1

z − t
µ̂(dt) = Gµ̂|R(z), z ∈ C+.

By assumption (2), the limit function Gµ̂|R must be Gµ(z). Since the Cauchy transform de-
termines the underlying finite Borel measure on R uniquely (see Proposition 4.30), we have

µ̂|R = µ. Recalling that µ is a probability measure on R and µ̂ is a probability measure on R̂,
we must have µ̂({∞}) = 0. The weak convergence µ̂n(j) → µ̂ implies∫

R
f(x)µn(j)(dx) →

∫
R
f(x)µ(dx) (4.15)

for any continuous function f on R with compact support since such an f can be regarded as a

continuous function on R̂. By Proposition 4.7, the convergence (4.15) implies that µn(j) weakly
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converges to µ on R. By Lemma 4.2, the weak convergence of the whole sequence µn → µ holds
as one can apply the above arguments to any subsequence of (µn) instead of (µn) itself. □

Proposition 4.34. Let N be a Nevanlinna function. The following are equivalent.

(1) N = Fµ for some probability measure µ on R.

(2) lim
y→∞

N(iy)

iy
= 1.

(3) ∢ lim
z→∞

N(z)

z
= 1.

(4) There are b ∈ R and a finite Borel measure τ on R such that

N(z) = z − b+

∫
R

1 + tz

t− z
τ(dt). (4.16)

The probability measure µ is unique.

Proof. The equivalence (1) ⇐⇒ (2) ⇐⇒ (3) follows from Proposition 4.32 applied to G := 1/N .
Theorem 4.23 implies the equivalence (3) ⇐⇒ (4). The uniqueness is a consequence of the
injectivity of µ 7→ Gµ addressed in Proposition 4.30. □

Remark 4.35. For a probability measure µ the following inequality holds:

ℑ[Fµ(z)] ≥ ℑ(z), z ∈ C+, (4.17)

and the equality holds at some z ∈ C+ if and only if µ is a delta measure. The latter statement
holds because the equality holds if and only if τ = 0.

A uniform version of Proposition 4.34(2) or (3) for a family of probability measures charac-
terizes the tightness.

Proposition 4.36. Let P be a family of probability measures on R. Then the following are
equivalent.

(1) P is tight.

(2) ∢ lim
z→∞

sup
µ∈P

∣∣∣∣Fµ(z)

z
− 1

∣∣∣∣ = 0.

(3) lim
y→∞

sup
µ∈P

∣∣∣∣Fµ(iy)

iy
− 1

∣∣∣∣ = 0.

Proof. Observe first that (2) and (3) are respectively equivalent to:

(2′) ∢ lim
z→∞

sup
µ∈P

|zGµ(z) − 1| = 0,

(3′) lim
y→∞

sup
µ∈P

|iyGµ(iy) − 1| = 0.

(2′) =⇒ (3′) is obvious.

(3′) =⇒ (1) follows from the estimates for y > 0:

−ℜ[iyGµ(iy) − 1] =

∫
R

t2

t2 + y2
µ(dt) ≥

∫
|t|>y

t2

t2 + y2
µ(dt) ≥ 1

2
µ(R \ [−y, y]).

(1) =⇒ (2′). We fix γ > 0 for the nontangential domain. By the tightness assumption, for
every ε > 0 there is T > 0 such that

µ(R \ [−T, T ]) ≤ ε

1 +
√

1 + γ−2
, µ ∈ P .
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Combining the above inequality and (4.12), for all µ ∈ P and z ∈ ▽γ we have

|zGµ(z) − 1| =

∣∣∣∣∫
R

(
z

z − t
− 1

)
µ(dt)

∣∣∣∣
≤
∫
[−T,T ]

∣∣∣∣ t

z − t

∣∣∣∣µ(dt) + (
√

1 + γ−2 + 1)µ(R \ [−T, T ])

≤
∫
[−T,T ]

|t|
ℑ(z)

µ(dt) + ε ≤ T

ℑ(z)
+ ε.

Therefore, we obtain sup
µ∈P,z∈▽γ ,ℑ(z)>T/ε

|zGµ(z) − 1| < 2ε. □

Finally we introduce and characterize transforms useful to study multiplicative monotone
convolution.

Definition 4.37. Let µ be a probability measure on R. The function

ψµ(z) :=

∫
R

zt

1 − zt
µ(dt), z ∈ C+

is called the ψ-transform of µ (or the moment generating function of µ) and

ηµ(z) :=
ψµ(z)

1 + ψµ(z)
, z ∈ C+

is called the η-transform of µ.

We can check by straightforward calculations that ψµ(z) = zGµ(1/z)−1, where Gµ is defined

on the lower half-plane −C+ by the same formula in Definition 4.29, i.e., Gµ(z) := Gµ(z), and
also

ηµ(z) = 1 − zFµ

(
1

z

)
, (4.18)

where Fµ := 1/Gµ on −C+.

Proposition 4.38. For any probability measure µ on R such that µ ̸= δ0, the following hold.

(i) ηµ is a holomorphic map from C+ into C \ [0,+∞).

(ii) arg z ≤ arg ηµ(z) ≤ arg z + π, i.e., ηµ(z)/z ∈ C+ ∪ R, for all z ∈ C+.

(iii) ∢ limz→0 ηµ(z) = 0.

Conversely, if a holomorphic map η : C+ → C \ [0,+∞) satisfies arg z ≤ arg η(z) ≤ arg z + π
and ∢ limz→0 η(z) = 0, then there is a unique probability measure µ on R such that µ ̸= δ0 and
η = ηµ.

Proof. The holomorphicity is immediate from (4.18). Inequality (4.17) implies 1/z−Fµ(1/z) ∈
(C+ ∪ R) \ {0}, which in turn yields ηµ(C+) ⊆ C \ [0,+∞) and condition (ii). Condition (iii)
is equivalent to Proposition 4.34 (3) for N = Fµ.

For the last converse statement, we can see that the function N(z) := z[1 − η(1/z)] is a
Nevanlinna function and satisfies limy→+∞N(iy)/(iy) = 1. Therefore, by Proposition 4.34
there is a unique probability measure µ on R such that N(z) = Fµ(z). Since η is assumed not
to take 0, the value N(z) never equals z and so µ ̸= δ0. We thus obtain

ηµ(z) = 1 − zN

(
1

z

)
= η(z). □
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4.5. Support and moments of probability measures. From the Cauchy transform one
can extract information about support and moments of the underlying probability measures.
As a general symbol, for a finite Borel measure τ on R and n ∈ N0, if

∫
R |t|

n τ(dt) < +∞ we
set

mn(τ) :=

∫
R
tn τ(dt)

and call it the nth moment of τ . Note that Hölder’s inequality implies∫
R
|x|kτ(dx) ≤ τ(R)1−

k
ℓ

[∫
R
|x|ℓτ(dx)

] k
ℓ

, 0 < k < ℓ < +∞, (4.19)

so if the absolute ℓth moment is finite, then the lower order moments all exist.

Proposition 4.39. Let µ be a probability measure on R, C a closed subset of R, and −∞ <
α < β <∞.

(i) µ(C) = 1 holds if and only if Gµ has an analytic continuation G̃µ on C \ C such that

G̃µ(z) = G̃µ(z).

(ii) If µ([α, β]) = 1 then G̃µ on C \ [α, β] considered above has the Laurent series expansion

G̃µ(z) =
∑
n≥0

mn(µ)

zn+1
, z ∈ C, |z| > max{|α|, |β|}.

(iii) If µ([α, β]) = 1 then Fµ has an analytic continuation F̃µ on C \ [α, β] such that F̃µ(z) =

F̃µ(z) and there exist real numbers b1, b2, ... such that

F̃µ(z) = z −
∑
n≥1

bn
zn−1

, z ∈ C, |z| > max{|α|, |β|}.

(iv) Suppose that Fµ has an analytic continuation F̃µ on C \ [α, β] such that F̃µ(z) = F̃µ(z).
Then supp(µ) ∩ (β,+∞) contains at most one point. An atom exists in (β,+∞) if
and only if F̃ν has a zero on (β,+∞), in which case µ has an atom at the zero of F̃ .
Similarly, supp(µ)∩ (−∞, α) contains at most one point and an atom exists in (−∞, α)
if and only if F̃ν has a zero on (−∞, α).

Proof. (i) Suppose that µ(C) = 1. Then the integral formula

G̃µ(z) =

∫
C

1

z − t
µ(dt) (4.20)

gives an analytic continuation of Gµ to C \ C with G̃µ(z) = G̃µ(z). Conversely, if Gµ has an

analytic continuation G̃µ on C\C with G̃µ(z) = G̃µ(z), then the latter condition implies G̃µ(x)
takes real values for x ∈ R \ C. For each interval [a, b] ⊆ R \ C, by the Stieltjes inversion
formula in Corollary 4.31 we have µ([a, b]) = 0. This implies µ(R \ C) = 0.

(ii) The Laurent series expansion can be obtained from formula (4.20) and the fact that the
series

1

z − t
=
∑
n≥0

tn

zn+1

converges uniformly over t ∈ [α, β] and z ∈ {w ∈ C : |w| ≥ ε+ max{|α|, |β|}} for each ε > 0.

(iii) Since G̃µ in (4.20) has no zeros in C \ [α, β], its reciprocal F̃µ := G̃µ is the desired analytic
continuation. For the series expansion, we take a Nevanlinna formula for Fµ

Fµ(z) = z − b+

∫
R

1 + tz

t− z
τ(dt), z ∈ C+. (4.21)
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Since the extension F̃µ takes real values on R\ [α, β], the Stieltjes inversion (see Corollary 4.25)
implies τ is supported on [α, β]. Hence, the analytic continuation is given by

F̃µ(z) = z − b+

∫
[α,β]

1 + tz

t− z
τ(dt), z ∈ C \ [α, β]. (4.22)

The remaining argument is similar to (ii) thanks to formula (4.13); the coefficients bn are given
by b1 = b+

∫
[α,β]

t τ(dt) and bn =
∫
[α,β]

tn−2(1 + t2) τ(dt), n ≥ 2.

(iv) As discussed in (iii), the assumption implies that Fµ has an analytic extension F̃µ of the
form (4.22). One can see that

F̃ ′
µ(x) = 1 +

∫
[α,β]

1 + t2

(t− x)2
τ(dt) ≥ 1, x ∈ R \ [α, β], (4.23)

so that F̃µ is strictly increasing on R \ [α, β] and limx→±∞ F̃ν(x) = ±∞. In particular, F̃ν has

at most one zero in each interval (−∞, α) and (β,+∞). If F̃ν has a zero γ ∈ (β,+∞) then
G̃µ := 1/F̃µ is analytic in (β,+∞) \ {γ} taking real values there, and

q := lim
y→0

iyGµ(γ + iy) = lim
y→0

iy

F̃µ(γ + iy) − F̃µ(γ)
=

1

F̃ ′
µ(γ)

∈ (0, 1].

Therefore, µ assigns the mass q to the point γ and µ((β,+∞) \ {γ}) = 0. By contrast, if F̃µ

has no zeros on (β,+∞) then G̃µ = 1/F̃µ is analytic in C \ (−∞, β] taking real values, so that
µ is supported on (−∞, β]. A similar analysis is valid on the interval (−∞, α). □

A particular class is the set of probability measures on the nonnegative real line. This class
admits characterizations by means of the reciprocal Cauchy transform and η-transform.

Proposition 4.40. Let µ be a probability measure on R. Let (b, τ) be the pair appearing for
N = Fµ in (4.16). The following are equivalent.

(1) µ is supported on [0,+∞).

(2) Fµ has an analytic continuation F̃µ defined on C \ [0,+∞) such that F̃µ(z) = F̃µ(z) and

limx↑0 F̃µ(x) ∈ (−∞, 0].

(3) τ is supported on (0,+∞) and
∫∞
0
t−1 τ(dt) ≤ b.

Proof. (1) =⇒ (2). The existence of analytic continuation F̃µ can be proved in a similar way

to the proof of Proposition 4.39 (iii); it is given by F̃µ = 1/G̃µ, where

G̃µ(z) =

∫
[0,+∞)

1

z − t
µ(dt), z ∈ C \ [0,+∞).

Obviously, G̃µ(x) < 0 for all x < 0, so that F̃µ(x) < 0. Since F̃µ is (strictly) increasing on

(−∞, 0) we obtain F̃µ(0−) ∈ (−∞, 0].

(2) =⇒ (3). Let (b, τ) be the pair in (4.16) for N = Fµ. By the Stieltjes inversion formula, τ is
supported on [0,+∞). Then the Nevanlinna formula (4.16) naturally gives the expression for
F̃µ. We write

F̃µ(z) = z − b+

∫
[0,1)

1 + zt

t− z
τ(dt)︸ ︷︷ ︸

=:I1(z)

+

∫
[1,+∞)

1 + zt

t− z
τ(dt)︸ ︷︷ ︸

=:I2(z)

, z ∈ C \ [0,+∞). (4.24)

Since the function (−1, 0) ∋ x 7→ (1 + xt)/(t− x) is increasing and positive for all t ∈ [0, 1), we
can use the monotone convergence theorem to conclude that I1(x) ↑

∫
[0,1)

t−1 τ(dt) as x → 0−.

On the other hand, for I2 we can use the dominated convergence theorem to deduce I2(x) →∫
[1,+∞)

t−1 τ(dt) as x→ 0− because |(1 + tx)/(t− x)| ≤ (1 + t)/t for all t ≥ 1 and −1 < x < 0.
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By the assumption F̃µ(0−) ≤ 0, we must have
∫
[0,1)

t−1 τ(dt) < +∞; in particular, τ({0}) = 0.

The condition F̃µ(0−) ≤ 0 now reads
∫∞
0
t−1 τ(dt) ≤ b.

(3) =⇒ (1). Repeating the above arguments we have that F̃µ in (4.24) satisfies F̃µ(0−) =

−b+
∫∞
0
t−1 τ(dt) ≤ 0. Since F̃µ is increasing on (−∞, 0), it is negative and so the holomorphic

function G̃µ := 1/F̃µ on C \ [0,+∞) satisfies the condition of Proposition 4.39 (i). □

The η-transform of a probability measure on [0,+∞) analytically extends to C\ [0,+∞) due
to (4.18). The following proposition gives a useful characterization of η-transforms.

Proposition 4.41. Let η : C \ [0,+∞) → C be a holomorphic function. There is a probability
measure µ ̸= δ0 on [0,+∞) such that η = ηµ on C+ if and only if

(a) η(z) = η(z) on C \ [0,+∞),

(b) η is a self-map of C \ [0,+∞) and arg z ≤ arg ηµ(z) < π on C+,

(c) For any θ ∈ (0, π) we have

lim
z→0

θ<arg z<2π−θ

η(z) = 0.

Moreover, if the above conditions hold then η has the following formula

η(z) = b′z +

∫
(0,+∞)

z

1 − tz
· 1 + t2

t
τ(dt), z ∈ C \ [0,+∞), (4.25)

where b′ ≥ 0 and τ is a finite Borel measure on (0,∞) such that
∫∞
0
t−1 τ(dt) < +∞.

Proof. Suppose that η|C+ = ηµ for some probability measure µ ̸= δ0 on [0,+∞). From Propo-
sition 4.40 (2) and (4.18), η is given by

η(z) = 1 − zF̃µ

(
1

z

)
.

This implies condition (a). Before proving condition (b) we first establish (4.25): combining
formula (4.24) and Proposition 4.40 (3) we have

η(z) =

(
b−

∫ ∞

0

1

t
τ(dt)

)
z +

∫ ∞

0

(
z(z + t)

1 − zt
+
z

t

)
τ(dt),

which is formula (4.25) with b′ := b −
∫∞
0
t−1 τ(dt). As one of b′ and τ is nonzero, formula

(4.25) obviously yields that η(x) < 0 for all x < 0. In addition, as z/(1 − tz) ∈ C+ for all
z ∈ C+ and t > 0, we have η(z) ∈ C+. Combining the fact η(z) ∈ C+ and the inequality
arg z ≤ η(z) ≤ arg z + π known in Proposition 4.38 we conclude condition (b). Condition (c)
is equivalent to

lim
|z|→∞

θ<arg z<2π−θ

F̃µ(z)

z
= 1, (4.26)

which can be shown as in Theorem 4.23 (i). More precisely, the bound (4.12) actually holds
for all z ∈ C with θ < arg z < 2π − θ and t ≥ 0 with θ := arctan γ, because |z/(z − t)| ≤ 1 for
ℜ(z) < 0. The remaining proof is the same as Theorem 4.23 (i).

For the converse, suppose that η satisfies conditions (a)–(c). Let F (z) := z[1 − η(1/z)], z ∈
C\[0,+∞), which is expected to be the reciprocal Cauchy transform of the desired µ. Condition

(a) implies F is holomorphic with F (z) = F (z). Condition (b) implies F |C+ is a Nevanlinna
function. Condition (c) implies F (z)/z → 1 as z → ∞, z ∈ ▽γ for any γ > 0. Therefore, by
Proposition 4.34 there is a probability measure µ on R such that F = Fµ on C+. Moreover,
condition (b) implies η takes negative values on (−∞, 0), so that F takes also negative values
there. By Proposition 4.40, µ is supported on [0,+∞). □
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Remark 4.42. The limit of a function f : C\ [0,+∞) → C as z → 0 satisfying arg z ∈ (θ, 2π−θ)
could be called the nontangential limit of f at 0. This is because the domain C \ [0,+∞) is
conformally equivalent to C+ by the mapping z 7→

√
z, and then the domain {z : arg z ∈

(θ, 2π − θ)} is mapped exactly onto the sector ▽tan(θ/2).
Accordingly, there is an alternative proof of (4.26) based on Lindelöf’s theorem: observing

that the function F̃µ(z)/z maps C\[0,+∞) into C\(−∞, 0] that is also conformally equivalent to
C+ (see Proposition 4.40 (2)), one can use Lindelöf’s theorem to extend the known nontangential
limit from the upper half-plane in Theorem 4.23 (i) to (4.26).

We turn our attention to the existence of finite moments.

Proposition 4.43. Let µ be a probability measure on R and let n ∈ N. Let τ be the finite Borel
measure in (4.16) for N = Fµ. Then the following conditions are equivalent.

(1)

∫
R
t2n µ(dt) < +∞.

(2) There exist a1, a2, ..., a2n ∈ R such that

Gµ(z) =
1

z
+
a1
z2

+
a2
z3

+ · · · +
a2n
z2n+1

+ o(|z|−(2n+1)) (4.27)

for z = iy as y → +∞.

(3)

∫
R
t2n τ(dt) < +∞.

(4) There exist b1, b2, · · · , b2n ∈ R such that

Fµ(z) = z − b1 −
b2
z
− · · · − b2n

z2n−1
+ o(|z|−(2n−1)) (4.28)

for z = iy as y → +∞.

If the above equivalent conditions are satisfied then the expansions (4.27) and (4.28) hold as
z → ∞ nontangentially, i.e., the remainder term o(|z|−(2n+1)) in (4.27) is a function r(z) that
satisfies ∢ limz→∞ z2n+1r(z) = 0, and similar for (4.28). Moreover, it holds that

aℓ = mℓ(µ), 1 ≤ ℓ ≤ 2n, (4.29)

bℓ =

∫
R
tℓ−2(1 + t2)τ(dt), 2 ≤ ℓ ≤ 2n, (4.30)

b1 = a1 = m1(µ), (4.31)

b2 = a2 − a21 = Var(µ). (4.32)

Proof. (1) =⇒ (2). The assumption implies that
∫
R |t|

ℓµ(dt) <∞ for 1 ≤ ℓ ≤ 2n. Observe that
the identity

1

z − t
=

2n∑
ℓ=0

tℓ

zℓ+1
+

t2n+1

z2n+1(z − t)
(4.33)

holds, which is integrated into

Gµ(z) =
2n∑
ℓ=0

mℓ(µ)

zℓ+1
+

1

z2n+1

∫
R

t2n+1

z − t
µ(dt)︸ ︷︷ ︸

=:Rn(z)

. (4.34)

By the dominated convergence theorem we can show Rn(iy) = o(y−2n−1) as y → +∞.

(2) =⇒ (1). We only consider the case n = 2 which should well clarify how the general n can
be dealt with. Keeping in mind that a1/(iy)2 is real, we observe that

y3ℑ
[
Gµ(z) − 1

z
− a1
z2

]
= y3ℑ

[
Gµ(z) − 1

z

]
=

∫
R

y2t2

y2 + t2
µ(dt), z = iy.



MONOTONE PROBABILITY THEORY 55

By the assumption, the left-hand side above is bounded as y → ∞. By the monotone conver-
gence theorem we get ∫

R
t2 µ(dt) < +∞.

This implies that
∫
|t|µ(dt) is also finite; see (4.19). By the established implication (1) =⇒ (2)

for n = 1, we have

Gµ(z) =
1

z
+
m1(µ)

z2
+
m2(µ)

z3
+ o(|z|−3).

Since the asymptotic expansion is unique, we have a1 = m1(µ) and a2 = m2(µ). Next, we take

the imaginary part of the expansion Gµ(z) = 1
z

+ m1(µ)
z2

+ m2(µ)
z3

+ a3
z4

+ a4
z5

+ o(|z|−5). Integrating
(4.33) with n = 1 yields

y5ℑ
[
Gµ(z) − 1

z
− m1(µ)

z3
− m2(µ)

z3
− a3
z4

]
= −

∫
R

y2t4

y2 + t2
µ(dt), z = iy.

This must be bounded as y → +∞, and hence, by the monotone convergence theorem,∫
R
t4 µ(dt) < +∞

as desired. We have already verified (4.29) in the course of the proof above.

(3) ⇐⇒ (4). The proof is very similar to the equivalence of (1) and (2). In the course of the
proof, formula (4.30) naturally appears. Note that formula (4.13) is helpful.

(2) ⇐⇒ (4) is an easy consequence of the relation Gµ(z) = 1/Fµ(z) and the geometric series

expansion 1/(1 − ζ) = ζ + ζ2 + · · · . For example in case n = 1, assuming Gµ(z) = 1
z

+ m1(µ)
z2

+
m2(µ)
z3

+ o(z−3) we have

Fµ(z) =
1

1
z

+ m1(µ)
z2

+ m2(µ)
z3

+ o(z−3)
=

z

1 + m1(µ)
z

+ m2(µ)
z2

+ o(z−2)

= z

[
1 −

(
m1(µ)

z
+
m2(µ)

z2
+ o(z−2)

)
+

(
m1(µ)

z
+ o(z−1)

)2

+ o(z−2)

]

= z −m1(µ) − m2(µ) −m1(µ)2

z
+ o(z−1), z = iy, y → +∞.

This also verifies (4.31) and (4.32).

(4.27) and (4.28) as the nontangential limits. As for (4.27), assuming (1) and fixing γ > 0,
let us prove z2n+1Rn(z) → 0 as z → ∞, z ∈ ▽γ. It suffices to find a bound of the form
1/|z− t| ≤ C/(1 + |t|) with a constant C independent of z ∈ ▽γ ∩{ℑz > 1}. For t ∈ [−1, 1] we
can simply find an upper bound 1/|z − t| ≤ 1/ℑ(z) ≤ 1 ≤ 2/(1 + |t|). For |t| ≥ 1 we consider
z = x+ iy ∈ ▽γ with y > 1, and proceed as

|z − t|2 = (x− t)2 + y2 ≥ x2 − 2xt+ t2 + γ2x2

= (1 + γ2)

(
x− t

1 + γ2

)2

+
1

1 + γ−2
t2 ≥ 1

1 + γ−2
t2,

so that
1

|z − t|
≤
√

1 + γ−2

|t|
≤ 2

√
1 + γ−2

1 + |t|
.

Of course (4.28) can be similarly proved. □

Remark 4.44. (a) The coefficients bn are called the Boolean cumulants of µ that are central
notions in “Boolean probability theory”, another type of noncommutative probability. For
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this reason the minus signs are put in formula (4.28). The interested reader is referred to
[141].

(b) The assumption that the coefficients a1, a2, ... are real is crucial. Indeed, for the Cauchy
distribution (4.36) the Cauchy transform (4.35) has a convergent series expansion

Gµ(z) =
∑
n≥0

(a− ib)n

zn+1
, z ∈ C+, |z| >

√
a2 + b2.

However, the second moment is infinity.

(c) The last part of the proof ∢ limz→∞ z2n+1Rn(z) = 0 has an alternative proof based on
Lindelöf’s theorem. For this we decompose z2n+1Rn = S+

n − S−
n , where

S+
n (z) =

∫
[0,∞)

t2n+1

z − t
µ(dt), S−

n (z) =

∫
(−∞,0]

−t2n+1

z − t
µ(dt).

Because −S±
n (z) are holomorphic mappings from C+ into C+ ∪ R and S±

n (iy) → 0 as
already proved, Lindelöf’s theorem implies ∢ limz→∞ S±

n (z) = 0.

4.6. Methods to compute Cauchy transforms. In some situations, we first obtain an
explicit formula for the Cauchy transform before knowing the underlying probability measure,
e.g. when we solve a functional equation or a differential equation satisfied by the Cauchy
transform. In such a situation, we can compute the measure by the Stieltjes inversion formula.
The next two examples naturally appear from the study of monotone convolution semigroups
and infinitely divisible distributions, see Example 5.18.

Example 4.45. Let us consider the function

G(z) =
1

z − a+ ib
(4.35)

where a ∈ R, b > 0 are constants. Since G is a holomorphic function from C+ into −C+, and
limz→∞ zG(z) = 1, G = Gµ for some probability measure µ on R. Moreover, G extends to
a continuous function G : C+ ∪ R → C+, so that by Corollary 4.31, µ is Lebesgue absolutely
continuous on R, and

dµ

dt
= − 1

π
ℑ
[

1

t− a+ ib

]
=

b

π[(t− a)2 + b2]
. (4.36)

This is the Cauchy distribution. Thus, we have verified that the Cauchy transform of the
Cauchy distribution µ is given by (4.35).

Example 4.46. Let r > 0. The function

G(z) :=
1√

z2 − 2r

where
√
w is defined on C \ [0,∞) by

√
w = |w|1/2e(i/2) argw, 0 < argw < 2π. Then G is a

holomorphic function from C+ into −C+. One can check that iyG(iy) → 1, so that G is the
Cauchy transform of a probability measure µ. The function G extends to a continuous function
on C+ ∪ (R \ {±

√
2r}), so that by Corollary 4.31, the underlying probability measure µ is

Lebesgue absolutely continuous on R \ {±
√

2r} and the density is given by

− 1

π
lim
ε→0+

ℑ[G(t+ iε)] =
1

π
√

2r − t2
χ(−

√
2r,

√
2r)(t). (4.37)

Since G(z) diverges as z → ±
√

2r, one has to check whether µ has an atom at these points or
not. Because we have an estimate |G(z)| ≤ C|z∓

√
2r|−1/2 as z → ±

√
2r, we have µ({±

√
2r}) =

limε→0+ iεG(±
√

2r + iε) = 0. Hence, µ is Lebesgue absolutely continuous on R, supported on
(−

√
2r,

√
2r) and dµ/dt is given by (4.37). Another way to check the absence of atoms is to

show that (4.37) has total mass 1 by directly computing the integral.
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The other direction, computing the Cauchy transform of a given probability measure, is
usually harder. For example if we do not know formula (4.35) but want to compute Gµ for the
Cauchy distribution µ, we need to calculate the integral∫

R

1

z − t
· b

π[(t− a)2 + b2]
dt.

In this case, the residue theorem allows us to perform the calculations.
When µ has compact support and the moments are explicit, we can sometimes find a closed

formula for

Gµ(z) =
∞∑
n=0

1

zn+1

∫
R
tn µ(dt)

for large |z|, and then perform the analytic continuation to C+. As an example, one can
calculate the Cauchy transform of the semicircle distribution of mean 0 and variance r > 0∫ 2

√
r

−2
√
r

1

z − t
·
√

4r − t2

2πr
dt =

z −
√
z2 − 4r

2r
, r > 0, z ∈ C+, (4.38)

see [120, Lemma 2.21].
The pushforward of a symmetric distribution around the origin by the map t 7→ t2 can be

calculated from the original Cauchy transform.

Proposition 4.47. Let ν be a probability measure on R that is symmetric around 0, i.e.,
ν(B) = ν(−B) holds for all B ∈ B(R). Let µ be the pushforward of ν by the map t 7→ t2. Then
we have zG̃µ(z2) = Gν(z) on C+, where G̃µ is the analytic continuation of Gµ to C \ [0,+∞)
given in Proposition 4.39.

Proof. The desired formula follows from the straightforward calculations

G̃µ(z2) =

∫
R

1

z2 − t2
ν(dt) =

1

2z

∫
R

(
1

z − t
+

1

z + t

)
ν(dt) =

1

z
Gν(z). □

Example 4.48. Let µ be the Marchenko–Pastur distribution

µ(dt) =
1

2πr

√
4r − t

t
χ(0,4r)(t) dt, r > 0,

which is the pushforward of the semicircle distribution ν(dt) =
√
4r−t2

2πr
dt by the map t 7→ t2.

Using (4.38) and Proposition 4.47 one obtains

Gµ(z) =
1√
z
·
√
z −

√
z − 4r

2r
=
z −

√
z2 − 4rz

2rz
, z ∈ C+.

Yet another way is to establish a differential equation for the Cauchy transform by integration
by parts.

Example 4.49. Let us consider G(z) := GN(0,1)(z) =
∫
R

1
z−t

1√
2π
e−t2/2 dt. By integration by

parts we have

G′(z) = −
∫
R

1

(z − t)2
· 1√

2π
e−t2/2 dt =

∫
R

1

z − t
· 1√

2π
(e−t2/2)′ dt

=

∫
R

1

z − t
· 1√

2π
(z − t− z)e−t2/2 dt = 1 − zG(z).

First we solve the homogeneous equation H ′(z) = −zH(z), which has a general solution

H(z) = C1e
−z2/2.

Next we replace the constant C1 with a function and set G(z) := f(z)e−z2/2. The equation
G′(z) = 1 − zG(z) yields

f ′(z) = ez
2/2,
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so that

f(z) = C2 +

∫
Lz

ew
2/2 dw,

where C2 is a constant and the line integral is performed over the half-line Lz := {z + iy :
−∞ < y < 0} started at ∞ and terminated at z. To determine the constant C2, let us consider

G(iy) = ey
2/2

[
C2 + i

∫ y

−∞
e−t2/2 dt

]
.

Since G is a Cauchy transform we must have G(iy) → 0 as y → +∞. This forces C2 = −
√

2πi,
so that we obtain

GN(0,1)(z) = e−z2/2

[
−
√

2πi+

∫
Lz

ew
2/2 dw

]
, z ∈ C+.

4.7. Notes. The proof of the Nevanlinna formula in Theorem 4.23 is based on the expositions
by Akhiezer and Glazman [4, Section 59] and Bhatia [33, Chapter V.4]. The characterization
of weak convergence in Proposition 4.33 is an extension of Maassen’s result [105, Theorem 2.5].
The part of Proposition 4.36 that a tight family of probability measures satisfies the convergence
∢ limz→∞ Fµ(z)/z = 1 uniformly over µ was proved by Bercovici and Voiculescu in the remark
following [31, Proposition 5.1].

The characterization of η-transform in Proposition 4.38 is adopted from [9, Proposition 3.2]
and [10, Proposition 2.4]. The characterization of probability measures on [0,+∞) in terms of ηµ
in Proposition 4.41 was given by Belinschi and Bercovici [19, Proposition 2.2] for the purpose
of studying multiplicative free convolution. The characterization of probability measures on
[0,+∞) in terms of Fµ in Proposition 4.40 is adopted from [76, Proposition 2.5]. Concerning
the characterization of finite even moments, the equivalence (1) ⇐⇒ (2) in Proposition 4.43 is
due to [3, Theorem 3.2.1]. Some of the results in this section can also be found in the book of
Mingo and Speicher [108].

5. Analysis of monotone convolution

Let x, y be monotonically independent real random variables in a unital C∗-probability space.
The reciprocal Cauchy transform of µx and the shifted moment generating function of x are
connected as

Fµx(z) = 1/Mx(1/z).

Accordingly, Theorem 1.27 can be written in the form Fµx+y(z) = Fµx(Fµy(z)). From the
complex-analytic perspective, we can extend the additive monotone convolution to any proba-
bility measures on R.

Theorem 5.1. Let µ, ν be probability measures on R. Then there exists a unique probability
measure λ on R such that

Fλ(z) = Fµ(Fν(z)), z ∈ C+.

The measure λ is denoted by µ▷ ν and is called the (additive) monotone convolution of
µ and ν.

Proof. Note that ℑ[Fν(z)] ≥ ℑz > 0 and in particular Fν(C+) ⊆ C+. The function N(z) :=
Fµ(Fν(z)) is therefore a Nevanlinna function. According to Proposition 4.34, it suffices to prove
limy→∞N(iy)/(iy) = 1. Proposition 4.34 guarantees that Fν(iy) = iy(1 + o(1)) as y → ∞.
From this one can see that for any fixed γ > 0 there exists y0 > 0 such that Fν(iy) ∈ ▽γ for

all y > y0. Therefore, by Proposition 4.34 (3), it holds that Fµ(Fν(iy))

Fν(iy)
→ 1 and hence

N(iy)

iy
=
Fµ(Fν(iy))

Fν(iy)
· Fν(iy)

iy
→ 1. □

Proposition 5.2. Let µ, µn, ν, νn (n ∈ N) be probability measures on R such that µn → µ and
νn → ν weakly. Then µn ▷ νn → µ▷ ν weakly.
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Proof. By Proposition 4.33, it suffices to show the pointwise convergence Fµn(Fνn(z)) → Fµ(Fν(z))
on C+. For this we fix z ∈ C+, set wn := Fνn(z), w := Fν(z) and begin with

|Fµn(wn) − Fµ(w)| ≤ |Fµn(wn) − Fµ(wn)| + |Fµ(wn) − Fµ(w)|.
The second term clearly converges to 0 because wn → w. The first term also converges to zero
since the convergence Fµn → Fµ is locally uniform. □

Example 5.3. The measure µ ▷ δa is the translation of µ by a. Indeed, the fact Fδa(z) =
1/Gδa(z) = z − a yields

Gµ▷δa(z) = Gµ(Fδa(z)) = Gµ(z − a) =

∫
R

1

z − (t+ a)
µ(dt), (5.1)

showing that µ▷ δa is the pushforward of µ by the map t 7→ t+ a.
On the other hand, the measure δa ▷ µ is not a translation of µ for generic a ∈ R and

µ. For example, if µ is the arcsine law 1/(π
√

2r − t2)χ(−
√
2r,

√
2r)(t) dt in Example 4.46, then

Fµ(z) =
√
z2 − 2r and so F (z) := Fδa▷µ(z) =

√
z2 − 2r−a. Observe first that F has an analytic

extension to C \ [−
√

2r,
√

2r], which we denote by the same symbol F . If a > 0, then F has
a zero at x =

√
a2 + 2r, while F has no zero on (−∞,−

√
2r) as F (−x) = −

√
x2 − 2r − a < 0

for x >
√

2r. In view of Proposition 4.39 (iv) and its proof, δa ▷ µ has an atom at
√
a2 + 2r

and its weight is 1/F ′(
√
a2 + 2r) = a/

√
a2 + 2r. By the Stieltjes inversion formula δa ▷ µ has

a Lebesgue absolutely continuous part on [−
√

2r,
√

2r] with density

−1

π
ℑ 1√

(t+ i0)2 − 2r − a
=

−1

π
ℑ 1

i
√

2r − t2 − a
=

√
2r − t2

π(a2 + 2r − t2)
.

By symmetry, a similar result holds for a < 0, and consequently, we obtain

δa ▷ µ =
|a|√
a2 + 2r

δsign(a)
√
a2+2r +

√
2r − t2

π(a2 + 2r − t2)
χ(−

√
2r,

√
2r)(t) dt, a ∈ R, r > 0.

Example 5.4. Let µr be the Marchenko–Pastur distribution with scale parameter r > 0 in
Example 4.48. For a ∈ R we have

Fδa▷µr(z) =
z − 2a+

√
(z − 2r)2 − 4r2

2
.

In particular, δ2r ▷ µr is the semicircle distribution with mean 2r and variance r2:

(δ2r ▷ µr)(dt) =
1

2πr2

√
4r2 − (t− 2r)2 χ[0,4r](t) dt;

see (4.38) and (5.1).

In a similar vein, we can define multiplicative monotone convolution by extending the formula
η√xy

√
x(z) = ηx(ηy(z)) in Theorem 1.29.

Theorem 5.5. Let µ, ν be probability measures on [0,+∞) and on R, respectively. Suppose
that ν ̸= δ0. Let η̃µ denote the analytic continuation of ηµ to C\ [0,+∞) as given in Proposition
4.41. Then there exists a unique probability measure λ on R such that

ηλ(z) = η̃µ(ην(z)), z ∈ C+.

The measure λ is denoted by µ ⟳ ν and is called the multiplicative monotone convolution
of µ and ν. We also define µ ⟳ δ0 := δ0.

Proof. If µ = δ0 then ηλ = 0 and so λ = δ0. We therefore assume µ ̸= δ0. Note that the
property ην(C+) ⊆ C \ [0,+∞) in Proposition 4.38 implies that the composition η̃µ ◦ ην is
well defined and is holomorphic on C+. Moreover, if arg ην(z) ∈ [arg z, π] then, by Proposition
4.41, π ≥ arg η̃µ(ην(z)) ≥ arg ην(z) ≥ arg z. If arg ην(z) ∈ (π, arg z + π] then by the symmetry

η̃µ(z) = η̃µ(z) we deduce that π ≤ arg η̃µ(ην(z)) ≤ arg ην(z) ≤ arg z + π. In any case the
inequality arg z ≤ arg ηλ(z) ≤ arg z + π holds on C+, and so condition (ii) in Proposition 4.38



60 TAKAHIRO HASEBE

holds. It remains to check condition (iii) in Proposition 4.38. As z → 0, z ∈ ▽γ, ην(z) converges
to 0, and moreover, the inequality arg z ≤ arg ην(z) ≤ arg z + π implies arg ην(z) ∈ (θ, 2π − θ)
for some θ ∈ (0, π). Therefore, using Proposition 4.40 (c) yields η̃µ(ην(z)) → 0.

The uniqueness of λ is a consequence of the uniqueness result in Proposition 4.34 and the
relation ηλ(z) = 1 − zFλ(1/z) noted in (4.18). □

Although ηδ0(z) ≡ 0 is not contained in the domain of η̃µ, the above exceptional definition
µ ⟳ δ0 := δ0 is natural because multiplicative monotone convolution comes from the distribution
of

√
xy

√
x and ν = δ0 corresponds to y = 0. This definition can also be justified from the

perspective of continuity.

Proposition 5.6. Let µ, µn (n ∈ N) be probability measures on [0,+∞) and ν, νn (n ∈ N) be
probability measures on R such that µn → µ and νn → ν weakly. Then µn ⟳ νn → µ ⟳ ν
weakly.

Proof. Observe first that the weak convergence of measures is equivalent to the locally uniform
convergence of η-transforms due to (4.18) and Proposition 4.33.

In case ν ̸= δ0, the proof is the same as Proposition 5.2 because ην(z) belongs to C \ [0,+∞)
that is the domain of η̃µn and η̃µ.

The case ν = δ0 needs to be handled separately. In this case, we first extend Proposition
4.36 as follows: for a tight family P of probability measures on [0,+∞), it holds that

lim
z→∞

θ<arg z<2π−θ

sup
µ′∈P

∣∣∣∣∣ F̃µ′(z)

z
− 1

∣∣∣∣∣ = 0 (5.2)

for each θ ∈ (0, π). The proof is almost the same; the required modification is that inequality
(4.12) holds for all z with arg z ∈ (θ, 2π − θ) and all t ≥ 0 where θ := arctan γ and that
|t/(z − t)| can be bounded by t/|z| for ℜ(z) < 0 instead of t/ℑ(z).

In our situation, since the weakly convergent family {µn : n ∈ N} is tight, (5.2) yields

lim
z→0

θ<arg z<2π−θ

sup
n∈N

|η̃µn(z)| = 0.

This estimate and the fact that ηνn(z) → 0 and arg z ≤ arg ηνn(z) ≤ arg z+π (if νn ̸= δ0) imply
that η̃µn(ηνn(z)) → 0 as n → ∞ for each z ∈ C+. This further implies the weak convergence
µn ⟳ νn → δ0 by Proposition 4.33. □

Example 5.7. In a similar way to Example 5.3, µ ⟳ δb is the dilation of µ by b ∈ R, i.e., the
pushforward of the measure µ by the map x 7→ bx. On the other hand, δa ⟳ ν is different from
the dilation for generic a > 0 and ν.

In the rest of this section and also in Sections 6 and 7, we focus on additive monotone
convolution and simply call it monotone convolution. In many cases similar results can be
obtained for multiplicative monotone convolution but are omitted. We come back to multi-
plicative monotone convolution in Section 8 to explore the eigenvalues of perturbed random
matrices.

5.1. Support and moments for monotone convolution. We study support and moments
of monotone (additive) convolution of probability measures.

Definition 5.8. Let S, T be topological spaces. A Borel kernel from S to T is a function
τ : S × B(T ) → [0,+∞] such that

• B 7→ τ(s, B) is a Borel measure for every s ∈ S,

• s 7→ τ(s, B) is measurable for every B ∈ B(T ).

If each τ(s, ·) is a probability measure on T , we call τ a probability kernel (from S to T ).
If S = T we simply say τ is a Borel kernel on S.
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The following fact is well known in the theory of Markov processes.

Lemma 5.9. Let R, S, T be topological spaces. Let ρ be a Borel measure on S, σ be a Borel
kernel from R to S and τ be a Borel kernel from S to T . Then the compositions

(ρτ)(B) :=

∫
S

ρ(ds)τ(s, B), B ∈ B(T ), (5.3)

(στ)(r, B) :=

∫
S

σ(r, ds)τ(s, B), r ∈ R, B ∈ B(T ) (5.4)

define a Borel measure on T and a Borel kernel from R to T , respectively. Moreover, for every
measurable function f : S → [0,+∞],∫

T

f(t) (ρτ)(dt) =

∫
S

[∫
T

f(t)τ(s, dt)

]
ρ(ds), (5.5)∫

T

f(t) (στ)(r, dt) =

∫
S

[∫
T

f(t)τ(s, dt)

]
σ(r, ds), r ∈ R. (5.6)

Remark 5.10. In mathematics, it is more common to write an integrand in front of a measure;
however, when discussing composition, the notation such as (5.3) and (5.4) is more convenient;
see also Section 7.2.

Proof. Since στ is more general, we only discuss στ . The σ-additivity of στ for the second com-
ponent follows from the monotone convergence theorem. For the measurability r 7→ (στ)(r, B),
we return to the definition of integration and take a sequence of nonnegative simple functions
fn(s) ↑ τ(s, B) of the form fn(s) =

∑mn

i=1 an,iχAn,i
(s). Then the function r 7→

∫
S
fn(s)σ(r, ds) =∑mn

i=1 an,iσ(r, An,i) is measurable. Therefore its limit
∫
S
σ(r, ds)τ(s, B) is also a measurable

function of r.
Formula (5.6) is obvious for linear combinations of indicator functions, and then extends to

general f ’s by the monotone convergence theorem. □

Lemma 5.11. Let S be a topological space. Let (τs)s∈S be a family of finite Borel measures on
R. Then τ(s, B) := τs(B) is a Borel kernel from S to R if and only if s 7→ Gτs(z) is measurable
for every z ∈ C+.

Proof. If τ is a Borel kernel, then the definition of integral (i.e., approximating the integrand
1/(z−x) by simple functions) implies the measurability of s 7→ Gτs(z). Conversely, if s 7→ Gτs(z)
is measurable then the Stieltjes inversion formula (Proposition 4.30) implies that s 7→ τs(I) is
measurable for each finite open interval I. By taking the limit, the same holds for infinite
intervals I. Since each τ(s, ·) is a finite measure, the set

L := {B ∈ B(R) : s 7→ τ(s, B) is measurable}

is a λ-system and contains the π-system I of all open intervals of R. By the π-λ theorem
(Theorem 4.9), L contains σ(I) that coincides with B(R). Therefore, s 7→ τ(s, B) is measurable
for any B ∈ B(R). □

Proposition 5.12. Let µ, ν be probability measures on R. For x ∈ R we define

ν̃(x, dy) := (δx ▷ ν)(dy).

Then ν̃(·, ·) is a probability kernel on R and the identity µ▷ ν = µν̃ holds, i.e.,

(µ▷ ν)(B) =

∫
R
µ(dx)ν̃(x,B), B ∈ B(R). (5.7)

Proof. Since x 7→ Gν̃(x,·)(z) = Gδx(Fν(z)) = 1
Fν(z)−x

is measurable in x, Lemma 5.11 ensures that

ν̃(·, ·) is a probability kernel. Denote by λ the right-hand side of (5.7), which is a probability
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measure. For z ∈ C+, we apply (5.5) to f(y) := 1/(z− y) (by decomposing f as f = g+− g− +
i(h+ − h−)) to obtain

Gλ(z) =

∫
R

1

z − y
λ(dy) =

∫
R

[∫
R

1

z − y
ν̃(x, dy)

]
µ(dx)

=

∫
R

1

Fν̃(x,·)(z)
µ(dx) =

∫
R

1

Fν(z) − x
µ(dx)

= Gµ(Fν(z)),

so that Fλ = Fµ ◦ Fν . □

The probability kernel in Proposition 5.12 is helpful for studying monotone convolution, in
particular to see how a property of µ▷ ν is inherited to µ and ν. Below we study the support
and moments of monotone convolution. Another remarkable aspect is a connection of this
probability kernel to a certain Markov process, which will be explored in Section 7.2.

Proposition 5.13. Let µ, ν be probability measures on R. Then µ▷ ν has compact support if
and only if both µ, ν have compact support. Moreover, if µ▷ ν is supported on [−R,R] then Fν

extends analytically to C \ [−R,R] with Fν(z) = Fν(z).

Proof. If µ and ν have compact support, then there are monotonically independent real random
variables x and y in a unital C∗-probability space such that the distributions of x and y are µ
and ν, respectively. Since the distribution of x+y coincides with µ▷ν, it has compact support.

Suppose that µ▷ ν has compact support. Let ν̃ be the probability kernel defined in Propo-
sition 5.12. There exists some B = {x ∈ R : |x| > R} such that

0 = (µ▷ ν)(B) =

∫
R
µ(dx)ν̃(x,B),

and so ν̃(x,B) = 0 for µ-a.e. x ∈ R. Pick such an x ∈ R that ν̃(x,B) = 0. Then Fν̃(x,·) has

an analytic continuation to C \ [−R,R] such that Fν̃(x,·)(z) = Fν̃(x,·)(z), and the same holds for
Fν(z) = Fν̃(x,·)(z) + x. By Proposition 4.39, ν is supported on some compact interval.

To show that µ is compactly supported, it suffices by symmetry to show that the support of
µ is bounded from above. We use the expansion in Proposition 4.39 (with the same symbol Fµ

for simplicity)

Fν(z) = z −
∞∑
n=1

bn
zn−1

, |z| > R,

which implies Fν(z) = z + O(1) as z → ∞. Hence, there is c > 0 such that for all y ∈ R with
y ≥ R+ 1 one has y− c < Fν(y) < y+ c. Since F ′

ν(y) ≥ 1 on (R,+∞) (see (4.23)), this implies
that for each x with x ≥ R + c+ 1 the function Fν̃(x,·)(y) = Fν(y) − x has a unique zero yx on
(x− c, x+ c). This means that ν̃(x, ·) has an atom at yx, so that ν̃(x, (x− c, x+ c)) > 0. Since
for x ≥ R + c + 1 we have (x − c, x + c) ⊆ B, so that ν̃(x,B) > 0. However, ν̃(x,B) = 0 for
µ-a.e. x, i.e., there is an S ∈ B(R) such that µ(S) = 1 and ν̃(x,B) = 0 for all x ∈ S. Therefore,
S ∩ (R + c+ 1,+∞) = ∅, showing that the support of µ is bounded from above. □

We extend the combinatorial formula (1.9) for the moments of the sum x+y to the monotone
convolution of probability measures.

Proposition 5.14. Let µ and ν be probability measures on R and let n ∈ N. Then the 2nth
moment

∫
R t

2n (µ ▷ ν)(dt) is finite if and only if both
∫
R t

2n µ(dt) and
∫
R t

2n ν(dt) are finite.
Moreover, if all these 2nth moments are finite, then we have, for all 1 ≤ p ≤ 2n,

mp(µ▷ ν) =

p∑
ℓ=0

∑
k0,k1,...,kℓ≥0,

k0+k1+···+kℓ=p−ℓ

mℓ(µ)mk0(ν)mk1(ν) · · ·mkℓ(ν); (5.8)
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in particular,

m1(µ▷ ν) = m1(µ) +m1(ν), (5.9)

Var(µ▷ ν) = Var(µ) + Var(ν). (5.10)

Proof. First we assume that
∫
R t

2n (µ ▷ ν)(dt) is finite. By Proposition 5.12 and Lemma 5.9,
we obtain, with notation ν̃(x, ·) = (δx ▷ ν)(·),∫

R
t2n (µ▷ ν)(dt) =

∫
R

[∫
R
t2n ν̃(x, dt)

]
µ(dx),

which implies
∫
R t

2n ν̃(x, dt) < +∞ for µ-a.e. x. We choose such an x. According to Proposition
4.43, Fν̃(x,·)(z) has an expansion of the form (4.28), and the same applies to Fν(z) = Fν̃(x,·)(z)+x.
Thus we obtain

∫
R t

2n ν(dt) < +∞. For the finiteness of
∫
R t

2n µ(dt) we use an asymptotic
expansion of the inverse function of Fν . Because we do not use this part later and the proof is
rather long, the proof is postponed to Appendix.

Next we assume that
∫
R t

2n µ(dt) and
∫
R t

2n ν(dt) are finite. As discussed in the proof of
Theorem 5.1, for any fixed γ > 0 we have Fν(iy) ∈ ▽γ for all sufficiently large y. By (4.28) on
the domain ▽γ, we obtain

Fµ(Fν(iy)) = Fν(iy) − b1 − b2Gν(iy) − · · · − b2nGν(iy)2n−1 + o(|Fν(iy)|−(2n−1)). (5.11)

The remainder term above can be written in the form o(y−(2n−1)) because

(iy)2n−1o(|Fν(iy)|−(2n−1)) =

(
y

Fν(iy)

)2n−1

· Fν(iy)2n−1o(|Fν(iy)|−(2n−1)) → 0

as y → ∞. Expanding Gν(iy) and Fν(iy) in the forms (4.27) and (4.28) respectively, substi-
tuting them into (5.11) and recollecting the terms shows that for some reals c1, · · · , c2n

Fµ(Fν(z)) = z − c1 −
c2
z
− · · · − c2n

z2n−1
+ o(|z|−(2n−1))

for z = iy as y → +∞. Again Proposition 4.43 guarantees that the 2nth moment of µ ▷ ν is
finite.

Finally, formula (5.8) is obtained by expanding the right hand side ofGµ▷ν(z) = Gµ(1/Gν(z)),
which is just tracing the calculations (1.10)–(1.14) backwards, where the infinite sum is to be
replaced with truncated finite sum with remainder terms and φ(xℓ), φ(yk) are to be replaced
with mℓ(µ),mk(ν), respectively. □

5.2. Convolution semigroups. In probability theory, time-homogeneous random walk is the
sum of independent, identically distributed random variables (Xn)n≥1:

Sn := X1 +X2 + · · · +Xn; S0 := 0.

The distribution µn of Sn is the n-fold convolution µ ∗µ ∗ · · · ∗µ, where µ is the distribution of
X1. Obviously, we have µm ∗ µn = µm+n and µ0 = δ0. A continuous-time analogue of random
walk is called a Lévy process, which is characterized by a convolution semigroup (µt)t≥0, i.e.,
µt, t ≥ 0, are probability measures on R such that µs+t = µs ∗ µt, s, t ≥ 0, µ0 = δ0 and t 7→ µt

is weakly continuous.
We consider a monotone analogue of Lévy processes. The process itself will be explored

later in Section 7. Here we investigate the distributional properties of monotone convolution
semigroups with complex-analytic methods.

Definition 5.15. A family (µt)t≥0 of probability measures on R, indexed by nonnegative reals
t, is called a monotone convolution semigroup if

(i) t 7→ µt is weakly continuous, i.e., for every bounded continuous function f on R, the
function t 7→

∫
R f(x)µt(dx) is continuous.

(ii) µs+t = µs ▷ µt for all s, t ≥ 0,
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(iii) µ0 = δ0, where δ0 is the delta measure at 0.

Theorem 5.16. Let (µt)t≥0 be a monotone convolution semigroup. Let Ft be the reciprocal
Cauchy transform of µt. Then the limit

A(z) := lim
t→0+

Ft(z) − z

t
(5.12)

exists locally uniformly on C+ and it holds that

(i) A is a Nevanlinna function and ∢ limz→∞A(z)/z = 0,

(ii)
d

dt
Ft(z) = A(Ft(z)), t ≥ 0, z ∈ C+.

Conversely, given a function A satisfying (i) above then equation (ii) has a unique solution
(Ft)t≥0, which consists of the reciprocal Cauchy transforms of a monotone convolution semigroup
(µt)t≥0.
The function A is called the infinitesimal generator of (Ft) and also of (µt).

Proof. According to Proposition 4.33, the weak continuity t 7→ µt ensures the continuity t 7→ Ft

with respect to the locally uniform convergence. The existence of the limit (5.12) is part of the
Berkson–Porta’s work (see the original paper [32, Theorem 1.1] or [39, Theorem 10.1.4]). The
inequality ℑ[Fµt(z)] ≥ ℑz, which follows by (4.16), implies A is a Nevanlinna function. Taking
the derivative Fs+t(z) = Fs(Ft(z)) with respect to s at s = 0 we get the differential equation
(ii). It remains to show ∢ limz→∞A(z)/z = 0. To begin with, integrating equation (ii) yields

Ft(z) = z +

∫ t

0

A(Fs(z)) ds, z ∈ C+. (5.13)

Let a := ∢ limz→∞A(z)/z. Since s 7→ µs is weakly continuous, for a fixed t > 0, the family
{µs : 0 ≤ s ≤ t} is tight. By Proposition 4.36, sups∈[0,t] |Fs(iy) − iy| = o(y) as y → ∞. This in
particular implies that for any γ > 0, there is y0 > 0 such that Fs(iy) ∈ ▽γ for all y > y0 and
s ∈ [0, t]. Therefore,

sup
s∈[0,t]

∣∣∣∣A(Fs(iy))

iy
− a

∣∣∣∣ = sup
s∈[0,t]

∣∣∣∣A(Fs(iy))

Fs(iy)
· Fs(iy)

iy
− a

∣∣∣∣→ 0 as y → ∞.

Dividing (5.13) by z = iy and using the obtained uniform convergence, we obtain

Ft(iy)

iy
= 1 +

∫ t

0

A(Fs(iy))

iy
ds→ 1 + ta as y → ∞.

Since Ft(iy)
iy

→ 1, a must be zero.

Conversely, if A is a function satisfying (i), then [32, Section 2] guarantees that the equation
in (ii) has a unique solution (Ft)t≥0 consisting of holomorphic self-maps of C+ such that Fs+t =
Fs ◦ Ft. To show Ft is the reciprocal Cauchy transform of a probability measure, it suffices to
show Ft(iy)/(iy) → 1. Let us use the PDE ∂

∂t
Ft(z) = A(z) ∂

∂z
Ft(z) that arises by taking the

derivative d/ds|s=0 of the relation Ft+s(z) = Ft(Fs(z)). The integrated form reads

Ft(z)

z
= 1 +

A(z)

z

∫ t

0

∂Fs

∂z
(z) ds. (5.14)

By the assumption on A we know that A(iy)/(iy) → 0 as y → +∞. To estimate the integral
part, let us write the Nevanlinna formula

Fs(z) = asz − bs +

∫
R

1 + xz

x− z
τs(dx).
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Using the continuous function f(s) := ℑ[Fs(i)] = as + τs(R) we obtain the bound∣∣∣∣∂Fs

∂z
(iy)

∣∣∣∣ =

∣∣∣∣as +

∫
R

1 + x2

(x− iy)2
τs(dx)

∣∣∣∣
≤ as +

∫
R

1 + x2

x2 + y2
τs(dx) ≤ as + τs(R) = f(s), s ≥ 0, y ≥ 1. (5.15)

Combining this estimate and (5.14) yields∣∣∣∣Ft(iy)

iy
− 1

∣∣∣∣ ≤ ∣∣∣∣A(iy)

iy

∣∣∣∣ ∫ t

0

f(s) ds→ 0 as y → +∞,

thereby Ft = Fµt for some probability measure µt on R. The continuity of t 7→ Ft(z), the
semigroup relation Fs+t = Fs ◦ Ft, and the initial condition F0 = id imply that (µt)t≥0 is a
monotone convolution semigroup. □

Remark 5.17. When proving a = 0 in the first part of the above proof, we could also use formula
(5.14) instead of (5.13).

The Nevanlinna formula for A(z) in Theorem 5.16 is of the form

A(z) = −γ +

∫
R

1 + xz

x− z
σ(dx), (5.16)

where γ ∈ R and σ is a finite Borel measure on R. In this case we write A(z) = A(γ,σ)(z). This
integral formula is referred to as the monotone Lévy–Khintchine representation of (µt)t≥0.

Example 5.18. In the following cases of A, we can explicitly solve the complex ODE in
Theorem 5.16(ii). The function wβ below is defined on C\ [0,+∞) as |w|βeiβ argw in such a way
that argw ∈ (0, 2π).

(a) Let A(z) = Aa,0(z) = −a with a ∈ R. Then Ft(z) = z − at and µt = δat.

(b) Let A(z) = −a+ ib with a ∈ R and b > 0. Then Ft(z) = z − (a− ib)t and

µt(dx) =
1

π
· bt

(x− at)2 + (bt)2
dx, x ∈ R, t > 0,

see Example 4.45. Note that the measure σ for A can be computed from the Stieltjes
inversion (see Theorem 4.23) and we obtain σ(dx) = b[π(1 + x2)]−1 dx.

(c) Let A(z) = A0,rδ0(z) = − r
z

with r > 0. Then Ft(z) =
√
z2 − 2rt. The measure µt is the

arcsine law

µt(dx) =
1

π
√

2rt− x2
dx, |x| <

√
2rt,

see Example 4.46.

(d) Let A(z) = eiραπz1−α, where α ∈ (0, 2] and ρ ∈ [0, 1] ∩ [1 − 1/α, 1/α]. Then Ft is given
by Ft(z) = (zα + teiραπ)1/α. The corresponding distribution µt is called a monotone sta-
ble distribution. This monotone convolution semigroup is characterized by the condition
Dc(µt) = µcαt for all c, t > 0, where Dc(ν) is the push-forward of ν by the mapping x 7→ cx.
See [84] and references therein for further information.

In what follows, we characterize the monotone convolution semigroups having compact sup-
port and finite moments of even orders. We also clarify the connection between convolution
semigroups and monotone cumulants defined in Remark 3.11.

Proposition 5.19. Let (µt)t≥0 be a monotone convolution semigroup with infinitesimal gener-
ator A(γ,σ). The following are equivalent:

(1) µt has compact support at every t ≥ 0;

(2) µt has compact support at some t > 0;
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(3) σ has compact support.

If the above conditions are fulfilled then there are constants C1, C2 > 0 such that µt is supported
on [−C1 − C2t, C1 + C2t] for all t ≥ 0.

Proof. (1) =⇒ (2) is obvious.

(2) =⇒ (3). Suppose that µt0 is supported on a compact interval [−R,R] for some t0 > 0
and R > 0. For each t ∈ (0, t0), µt is also compactly supported according to Proposition 5.13
applied to µt0 = µt0−t ▷ µt. Moreover, the same proposition shows Ft := Fµt has an analytic

continuation to C\ [−R,R] with Ft(z) = Ft(z), and the same holds for the Nevanlinna function
At(z) := [Ft(z) − z]/t, t > 0. This implies a Nevanlinna formula

At(z) = −γt +

∫
[−R,R]

1 + xz

x− z
σt(dx).

According to Theorem 5.16, the function At(z) converges to A(z) on C+ as t → 0+, so that
ℑ[At(i)] = σt([−R,R]) converges to a finite nonnegative number. In particular, the family
{σt([−R,R]) : 0 < t < t0} is bounded. This implies that {At : t ∈ (0, t0)} is uniformly bounded
on each compact subset of C \ [−R,R]. By Vitali’s theorem (Theorem 4.15), At converges to
a holomorphic function Ã locally uniformly on C \ [−R,R] as t → 0+. The function Ã is an
analytic continuation of A(γ,σ) to C\ [−R,R], taking real values on R\ [−R,R]. By the Stieltjes
inversion formula, we have σ(R \ [−R,R]) = 0.

(3) =⇒ (1). Suppose that σ is supported on [−R,R]. Let ρ(dx) := (1 + x2)σ(dx). Then we
can write

A(z) = A(γ,σ)(z) = −a+

∫
[−R,R]

1

x− z
ρ(dx), (5.17)

where a := γ +
∫
R x σ(dx). Denote by Ã the analytic continuation of A to C \ [−R,R] given by

the right hand side of (5.17).
The idea is to solve the differential equation d

dt
F̃t(z) = Ã(F̃t(z)), F̃0(z) = z by the usual

Picard iteration method, and show that the solution is holomorphic on C \ [−Rt, Rt] for some

Rt > 0 with F̃t(z) = F̃t(z). Beware that the existence of unique solution (F̃t)t≥0 is already
known for z ∈ C \ R in Theorem 5.16, but for z ∈ R \ [−R,R] a solution does not globally
exists in general, as F̃t(z) might hit +R or −R in finite time.

Observe first that there exists C > 0 such that

|Ã(z)| ≤ C for all z ∈ C, |z| > R + 1. (5.18)

Let F n
t (z), n = 0, 1, 2, ..., be recursively defined by

F n
t (z) = z +

∫ t

0

Ã(F n−1
s (z)) ds, F 0

t (z) := z.

All F n
t are well defined holomorphic functions on |z| > R + Ct + 2. To see this, it suffices to

show that |F n
t (z)| ≥ R + 2 for all n ∈ N, t ≥ 0 and |z| ≥ R + Ct + 2. Indeed, supposing the

claim is the case for F n−1
t (z), we have for all t ≥ 0 and |z| ≥ R + Ct+ 2

|F n
t (z)| ≥ |z| −

∫ t

0

|Ã(F n−1
s (z))| ds ≥ R + Ct+ 2 − Ct = R + 2

as desired.
We can then easily show that |F n

t (z)| ≤ |z| + Ct. Since (F n
t (z))n≥1 is known to converge

whenever z ∈ C\R (one can also show this directly by Picard’s iteration; a more general setting
is treated in Theorem 6.11(i)), by Vitali’s theorem, for each fixed t ≥ 0, the functions F n

t

converge locally uniformly to a holomorphic function F̃t on |z| > R+Ct+2 with F̃t(z) = F̃t(z).
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By the dominated convergence theorem, we obtain

F̃t(z) = z +

∫ t

0

Ã(F̃s(z)) ds, F̃0(z) = z.

Therefore, we have constructed an analytic continuation F̃t of Ft on the domain C\ [−R−Ct−
2, R + Ct+ 2]. By Proposition 4.39, every µt has compact support.

Moreover, the proof of (3) =⇒ (1) shows that µt is supported on [−R− Ct− 2, R+ Ct+ 2]
because F̃t(z) satisfies |F̃t(z)| ≥ R + 2 for all |z| ≥ R + Ct + 2 and hence F̃t has no zeros on
R \ [−R− Ct− 2, R + Ct+ 2]; see Proposition 4.39 (iv). □

Remark 5.20. The above proof (2) =⇒ (3) actually shows that if µt is supported on [−Rt, Rt] (t >
0) then σ is supported on

⋂
t>0[−Rt, Rt].

Proposition 5.21. Let (µt)t≥0 be a monotone convolution semigroup with infinitesimal gen-
erator A(γ,σ). If σ is supported on a compact interval [−R,R], then A has a convergent series
expansion

A(z) = −
∞∑
n=1

αn

zn−1
, |z| > R, (5.19)

and the nth monotone cumulant of µt coincides with tαn for all t ≥ 0 and n ∈ N.

Proof. Observe that

A(z) = −γ +

∫
R

(
1 + x2

x− z
− t

)
σ(dx) = −a−

∑
n≥0

1

zn+1

∫
R
xn(1 + x2)σ(dx),

where a := γ +
∫
R x σ(dx), so that the sequence (αn)n≥1 in (5.19) is given by

α1 := a; αn :=

∫
R
xn−2(1 + x2)σ(dx), n ≥ 2.

Taking the derivative of Ft+s(z) = Ft(Fs(z)) with respect to s at 0 yields the first order PDE

∂

∂t
Ft(z) = A(z)

∂

∂z
Ft(z),

which is equivalent to ∂
∂t
Gt(z) = A(z) ∂

∂z
Gt(z) and so its integrated form

Gt(z) =
1

z
+ A(z)

∫ t

0

∂

∂z
Gs(z) ds, t ≥ 0. (5.20)

As a result of Lemma 4.28, the map (s, z) 7→ ∂
∂z
Gs(z) is continuous, so that we may interchange

the integral and ∂
∂z

in (5.20). Let mn(t) be the nth moment of µt. In view of Proposition 5.19,
for each T > 0, the series

Gt(z) =
∑
n≥0

mn(t)

zn+1

converges uniformly on [0, T ] × {z : |z| > C1 + C2T + 1}. This shows that t 7→ mn(t) =
1

2πi

∫
|z|=R

znGt(z) dz is continuous on [0, T ], where R := C1 + C2T + 1. The above arguments

allow us to perform series expansions of functions in (5.20) to obtain∑
n≥0

mn(t)

zn+1
=

1

z
+

(
∞∑
n=1

−αn

zn−1

)(
∞∑
n=0

−(n+ 1)

zn+2

∫ t

0

mn(s) ds

)
.

Comparing the coefficient of 1
zn+1 and by Cauchy’s product formula, we obtain m0(t) = 1,

mn(0) = 0 for n ∈ N and

m′
n(t) =

n−1∑
ℓ=0

(ℓ+ 1)αn−ℓmℓ(t), n ≥ 1, t ≥ 0. (5.21)
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πi+ R

−1◦ Ω

Figure 2. The range h(C+)

This is exactly the recursion for mn(t) in Proposition 3.12, so that mn(t) = mn(t) and αn is
the nth monotone cumulant of µ1.

The above argument around (5.21) works for the rescaled monotone convolution semigroup
µ̃t := µst, t ≥ 0, where s > 0 is fixed. Then m̃n(t) := mn(st) is the nth moment of µ̃t and the
recursion (5.21) implies

d

dt
m̃n(t) =

n−1∑
ℓ=0

(ℓ+ 1)sαn−ℓm̃ℓ(t), n ≥ 1, t ≥ 0.

showing that (sαn)n≥1 is the sequence of monotone cumulants of µ̃1 = µs. □

Example 5.22 (Monotone Poisson distribution). Let A(z) = −1 + 1
1−z

= −
∑

n≥1
1

zn−1 . From
Propositions 5.19 and 5.21, the corresponding monotone convolution semigroup (µt)t≥0 consists
of compactly supported measures and κn(µt) = t. Therefore µt has the same moment sequence
as ρt in Theorem 3.16. Since µt has compact support, we conclude µt = ρt by Proposition A.3.

By the standard technique to solve the ODE, the solution (Ft)t≥0 to the ODE in Theorem
5.16 (ii) is given by the implicit formula h(Ft(z)) = h(z) + t, where

h(z) = C +

∫ z

i

dw

A(w)
= log z − z,

where log z is the principal branch and the arbitrary constant C is suitably selected. Since
h′(z) = 1/A(z) has negative imaginary part on C+, by Lemma B.1 h is injective. We determine
the range h(C+). This is basically determined by h(R) (see discussions below). The function
h on (0, 1] is strictly increasing with range (−∞,−1] and h on [1,+∞) is strictly decreasing
with the same range (−∞,−1]. The function h on (−∞, 0) is injective with range iπ+R. This
shows that h(C+) is the region Ω := {z ∈ C : ℑ(z) < π} \ (−∞,−1] (see Figure 2). Indeed,
considering the behavior h(w) = −w+ o(w) as w → ∞, every point z ∈ Ω has rotation number
1 with respect to the closed simple curve

h(w), w ∈ [−R,−1/R] ∪ {(1/R)e−iθ : −π ≤ θ ≤ 0} ∪ [1/R,R] ∪ {Reiθ : 0 ≤ θ ≤ π}
for sufficiently large R > 1, so that z ∈ h(C+) by the argument principle. We can easily see
from ℑ log z < π that h(C+) ⊆ {z ∈ C : ℑ(z) < π}. We can also see that any x ∈ (−∞,−1]
does not belong to h(C+); indeed, if z = reiθ ∈ C+ and h(z) ∈ R then the condition ℑ[h(z)] = 0
implies r = θ/ sin θ. Then the function

f(θ) := ℜ[h(reiθ)] = log
θ

sin θ
− θ cos θ

sin θ

has the positive derivative f ′(θ) = [(θ − sin θ cos θ)2 + sin4 θ]/[θ sin2 θ], so that f(θ) > f(+0) =
−1.

Note that Ω is invariant under the positive shifts z 7→ z + t, which is actually a direct
consequence of h(Ft(z)) = h(z) + t. Then the formula Ft(z) = h−1(h(z) + t) is well defined.
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Since h is analytic and injective on (−∞, 0), the function Ft extends to (−∞, 0), which is
analytic and takes values in (−∞, 0). This implies that µt is supported on [0,+∞). This fact
can also be deduced from Theorem 3.16 because the weak convergence limit of measures on
[0,+∞) is supported on [0,+∞) as well.

Since h−1 has singularity at −1, let βt be the unique solution x > 1 to h(x) + t = −1 and
αt the unique solution 0 < x < 1 to h(x) + t = −1. Then Ft has an analytic extension to
(0, αt) ∪ (βt,+∞) taking values in (0,+∞) \ {1}. Therefore, µt is supported on {0} ∪ [αt, βt].
We can actually show that Ft extends to a continuous function on C+ ∪R. For x ∈ (αt, βt) we
can see that h(x) + t ∈ Ω, so that Ft(x) ∈ C+. If x = αt or x = βt then Ft(x) = 1. This implies
by the Stieltjes inversion that µt has a continuous density function pt(x) on [αt, βt], positive on
(αt, βt) and vanishing at the edges.

Finally, let us study Ft at 0. From Ft(z) = h−1(h(z) + t) we see that limx→0− Ft(x) = 0.
The exponential form of h(Ft(z)) = h(z) + t reads Ft(z)e−Ft(z) = ze−z+t. This has a unique
analytic solution Ft(z) at 0 having a convergent power series Ft(z) = etz + O(z2), z → 0 with
real coefficients. Therefore, Ft is analytic at 0 and Gµt(z) = e−t/z + O(1/z2), z → 0, showing
that µt({0}) = e−t. Altogether, we have

µt = ρt = e−tδ0 + pt(x)χ[αt,βt](x) dx,

where pt is continuous on [αt, βt], positive in the interior and vanishing at the edges. In fact,
p(x) can be expressed with the Lambert W function as

pt(x) =
1

π
ℑ 1

W−1(−xe−x+t)
dx;

see the original article [116] and [25] for further information.

Theorem 5.23. Let (µt)t≥0 be a monotone convolution semigroup, A = A(γ,σ) be its infinitesi-
mal generator, and n ∈ N. The following statements are equivalent:

(1)

∫
R
x2n µt(dx) < +∞ for some t > 0;

(2)

∫
R
x2n µt(dx) < +∞ for all t > 0;

(3)

∫
R
x2n σ(dx) < +∞.

Moreover, if the above conditions are satisfied then for all t ≥ 0

κ1(µt) = m1(µt) = t

(
γ +

∫
R
x σ(dx)

)
,

κp(µt) = t

∫
R
xp−2(1 + x2)σ(dx), 2 ≤ p ≤ 2n.

Proof. Throughout the proof we use the simplified symbols Ft := Fµt , Gt := Gµt , and also
mp(t) :=

∫
R x

p µt(dx) whenever
∫
R |x|

p µt(dx) < +∞.

(1) =⇒ (2) is a direct consequence of Proposition 5.14 and of the semigroup relation µt =
µt−s ▷ µs, 0 ≤ s ≤ t; note that we do not need the part

∫
R x

2n (µ ▷ ν)(dx) < +∞ =⇒∫
R x

2n µ(dx) < +∞, whose proof has been postponed to Appendix.

(2) =⇒ (3). First observe that t 7→ mp(t) is measurable for any 1 ≤ p ≤ 2n.

Step 1 to (2) =⇒ (3). We first show that t 7→ mp(t) is locally integrable with respect to the
Lebesgue measure. For this purpose, we will show more strongly that mp(t) is a polynomial in
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t. The starting point is the formula in Proposition 5.14:

mp(t+ s) = mp(t) +mp(s) +

p−1∑
ℓ=1

∑
k0,k1,...,kℓ≥0

k0+k1+···+kℓ=p−ℓ

mℓ(t)mk0(s) · · ·mkℓ(s) (5.22)

for 1 ≤ p ≤ 2n. As shown in (3.6), the polynomials m1(t),m2(t), ... satisfy the same relation:

mp(t+ s) = mp(t) + mp(s) +

p−1∑
ℓ=1

∑
k0,k1,...,kℓ≥0

k0+k1+···+kℓ=p−ℓ

mℓ(t)mk0(s) · · ·mkℓ(s) (5.23)

for p ∈ N. Here we select (A,φ) and xi ∈ A in Proposition 3.12 so that φ(xpi ) = mp(1), 0 ≤
p ≤ 2n. We will show that mp(t) = mp(t) for all t ≥ 0 and 1 ≤ p ≤ 2n by induction on p.

For p = 1, formula (5.22) is just m1(t+s) = m1(t)+m1(s), i.e., Cauchy’s functional equation.
Since t 7→ m1(t) is measurable, m1(t) should be linear, i.e., m1(t) = m1(1)t = φ(x1)t = m1(t).
Assume that mi(t) = mi(t) for all t ≥ 0 and 1 ≤ i ≤ p − 1. Subtracting (5.23) from (5.22)
yields

mp(t+ s) −mp(t+ s) = [mp(t) −mp(t)] + [mp(s) −mp(s)],

which is again Cauchy’s functional equation. Therefore mp(t) − mp(t) = (mp(1) − mp(1))t.
Since mp(1) = mp(µ1) = φ(xpi ) = mp(1), we conclude mp(t) = mp(t) as desired.

Step 2 to (2) =⇒ (3). We fix an arbitrary T > 0. From equality (5.20) and the asymptotic
expansion (4.34), we get as z = iy, y → +∞,

A(z) =
GT (z) − 1/z∫ T

0
∂
∂z
Gt(z) dt

=
m1(T )
z2

+ · · · + m2n(T )
z2n+1 + o(|z|−(2n+1))(

− 1
z2

) (
1 +

2
∫ T
0 m1(t) dt

z
+ · · · +

(2n+1)
∫ T
0 m2n(t) dt

z2n
− z2

∫ T

0
R′

t(z) dt
) , (5.24)

where R′
t(z) is the z-derivative of the remainder term in (4.34), i.e.,

R′
t(z) := −2n+ 1

z2n+2

∫
R

x2n+1

z − x
µt(dx) − 1

z2n+1

∫
R

x2n+1

(z − x)2
µt(dx).

Since m2n(t) is a polynomial in t, we have
∫ T

0
(
∫
R x

2n µt(dx))dt < +∞, which easily implies

that
∫ T

0
R′

t(iy) dt = o(y−(2n+2)) by the dominated convergence theorem. Therefore, using the
geometric series expansion 1/(1 + ζ) = 1 − ζ + ζ2 + · · · to the denominator of (5.24) and
recollecting terms, we find reals α1, α2, · · · , α2n such that

A(z) = −α1 −
α2

z
− · · · − α2n

z2n−1
+Q(z) (5.25)

where Q(iy) = o(y−(2n−1)), y → +∞. By Proposition 4.43, we have m2n(σ) < +∞.

(3) =⇒ (1). Since m2n(σ) < +∞, again Proposition 4.43 yields the expansion (5.25) in each
sector domain: Q(z) = o(|z|−(2n−1)) as z ∈ ▽γ, z → ∞ for each fixed γ > 0. Then the integral
equation (5.13) reads

Ft(z) = z − α1t−
2n−1∑
ℓ=1

αℓ+1

∫ t

0

Fs(z)−ℓ ds+

∫ t

0

Q(Fs(z)) ds, z = iy. (5.26)

As discussed in the proof of Theorem 5.23, thanks to the tightness of {µt : t ∈ [0, T ]} for each
fixed T > 0 and γ > 0, there is y0 > 0 such that {Ft(iy) : 0 ≤ t ≤ T, y > y0} ⊆ ▽γ, and
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also the asymptotic behavior Ft(iy) = iy(1 + o(1)) holds uniformly on t ∈ [0, T ]. From this
observation, we can deduce the following uniform estimates over 0 ≤ t ≤ T :∫ t

0

Q(Fs(iy)) ds = o(y−(2n−1)), (5.27)∫ t

0

Fs(iy)−ℓ ds = t(iy)−ℓ(1 + o(1)). (5.28)

Plugging (5.27) and (5.28) for ℓ = 1 into (5.26) yields

Ft(iy) = z − α1t−
α2t

iy
+ o(y−1),

which is again uniform, i.e., the modulus of the remainder term o(y−1) is bounded by a function
f(y) independent of t ∈ [0, T ] such that yf(y) → 0 as y → +∞. Plugging this improved
estimate into (5.26) then gives

Ft(iy) = iy − α1t−
α2t

iy
− α3t+ (α1α2t

2)/2

(iy)2
+ o(y−2).

Repeating these arguments amounts to

Ft(iy) = iy − b1(t) −
b2(t)

iy
− · · · − b2n(t)

(iy)2n−1
+ o(y−(2n−1)), y → +∞.

for some polynomials b1(t), b2(t), ..., b2n(t) with real coefficients. From Proposition 4.43 we
conclude

∫
R x

2n µt(dx) < +∞ for all 0 ≤ t ≤ T .

On σ and monotone cumulants. In the proof of Step 2 above, we used

Gt(z) − 1

z
= A(z)

∫ t

0

∂

∂z
Gs(z) ds.

Substituting the truncated Laurent series for Gt(z) and A(z) and comparing the coefficients
yields exactly the relations (5.21) up to the order 2n. Then the remaining proof is identical to
the proof of Proposition 5.21. □

5.3. Infinitely divisible distributions. The concept of infinitely divisible distribution is
closely related to convolution semigroups.

Definition 5.24. A probability measure µ on R is said to be monotonically infinitely
divisible if for every n ∈ N there exists a probability measure µ1/n such that µ is the n-fold
monotone convolution of µ1/n.

It is obvious that each member of a monotone convolution semigroup (µt)t≥0 is monotonically
infinitely divisible, as µt is the n-fold monotone convolution of µt/n. This observation can be
enhanced to the following.

Theorem 5.25. Let µ be a probability measure on R having a determinate moment sequence.
The following are equivalent.

(1) µ is infinitely divisible with respect to ▷.

(2) there is a monotone convolution semigroup (µt)t≥0 such that µ1 = µ.

(3) the sequence (κn(µ))n≥2 of monotone cumulants from order two is positive semi-definite:
for every p ∈ N and c1, c2, ..., cp ∈ R one has

p∑
m,n=1

cmcnκm+n(µ) ≥ 0.
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(4) there is a sequence of probability measures (νN)N≥1 with finite moments of all orders
and strictly increasing positive integers (ℓN)N≥1 such that

lim
N→∞

∫
R
xn (νN)▷ℓN (dx) =

∫
R
xn µ(dx), n ∈ N.

Proof. (2) =⇒ (1) is obvious from µ = µ1 = (µ 1
N

)▷N for all N ∈ N.

(1) =⇒ (4) is also obvious as one can select νN := µ1/N and ℓN := N .

(4) =⇒ (3). We show that

κn(µ) = lim
N→∞

ℓN

∫
R
xn νN(dx), n ∈ N. (5.29)

To see this first we observe that

κn((νN)▷ℓN ) = ℓNκn(νN),

the left-hand side of which converges to κn(µ) since κn is a polynomial of moments up to order
n. Also, recall that

mn(νN) = κn(νN) +Qn(κ1(νN), ..., κn−1(νN)),

where the universal polynomial Qn has no constant or linear term. Therefore, we obtain

lim
N→∞

ℓNmn(νN) = lim
N→∞

ℓNκn(νN) + lim
N→∞

ℓNQn(κ1(νN), ..., κn−1(νN))

= lim
N→∞

ℓNκn(νN) = κn(µ)

as desired. From (5.29) we obtain
p∑

m,n=1

cmcnκm+n(µ) = lim
N→∞

ℓN

p∑
m,n=1

cmcn

∫
R
xm+n νN(dx)

= lim
N→∞

ℓN

∫
R

∣∣∣∣∣
p∑

n=1

cnx
n

∣∣∣∣∣
2

νN(dx) ≥ 0.

(3) =⇒ (2). By the assumption, the sequence (κn+1(µ))n≥0 is positive semi-definite, so that by
[3, Theorem 2.1.1] or [134, Theorem 3.8], there exists a finite Borel measure ρ on R with finite
moments of all orders such that

κn(µ) =

∫
R
xn−2 ρ(dx), n ≥ 2.

We set

A(z) := −κ1(µ) +

∫
R

1

x− z
ρ(dx), z ∈ C+.

Since this is a Nevanlinna function with ∢ limz→∞A(z)/z = 0, by Theorem 5.16, there cor-
responds a monotone convolution semigroup (µt)t≥0. Theorem 5.23 ensures that every µt has
finite moments of all orders. By the last statement of Theorem 5.23, the monotone cumulant
κn(µt) coincides with tκn(µ) for all t ≥ 0 and n ∈ N; in particular, κn(µ1) = κn(µ). This means
that µ1 and µ have the same moment sequence. Since µ has a determinate moment sequence,
we conclude that µ1 = µ. □

5.4. Notes. The definition of additive monotone convolution of probability measures in The-
orem 5.1 is due to Muraki [115, Definition 3.2]. Example 5.4 is a special case of examples
in [112, Section 8]. M lotkowski introduced “Fuss-Catalan distributions”, which behave nicely
with respect to monotone convolution [111, Proposition 4.5]. The definition of multiplicative
monotone convolution in Theorem 5.5 appeared in Arizmendi and Hasebe [9, Proposition 3.2]
but its weak continuity in Proposition 5.6 is a new result. Both convolutions have unbounded
operator models constructed by Franz [66]. Note that for multiplicative monotone convolution,
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Franz’s model was restricted to the case where both measures are supported on [0,+∞), but
the same technique is applicable to the general case of Theorem 5.5.

Theorem 5.16 was due to Muraki [115]. Our proof heavily depends on Berkson–Porta’s work
while the original proof was more straightforward. The exposition of Theorem 5.23 followed
[76, Theorem 4.8]. Theorem 5.25 builds upon Hasebe [78, Theorem 8.5]. Theorem 5.25 for
compactly supported µ was due to Muraki [115, Section 5] except condition (3). Belinschi
proved the equivalence of (1) and (2) in Theorem 5.25 for arbitrary probability measures,
as well as the uniqueness of the monotone convolution semigroup into which µ embeds [22].
Theorem 5.25 is an analogue of the free probability result [120, Theorem 13.16] in the case
when µ is compactly supported; however, the proof of Theorem 5.25 is more complicated even
if µ has compact support. The main difficulty is the absence of a priori bounds for monotone
cumulants of the form |κn(µ)| ≤ Cn for compactly supported measures µ; compare with the
bounds for free cumulants [120, Lemma 13.13]. In the case of monotonically infinitely divisible
distributions with compact support, this bound comes a posteriori as a result of Propositions
5.19, 5.21 and Theorem 5.25. For a general probability measure µ with compact support, it is
still unknown whether the bound |κn(µ)| ≤ Cn holds for some C > 0 or not.

Monotone convolution semigroups for multiplicative convolutions are also studied in the
literature; see e.g. [30, 65]. There is a certain parallelism between additive and multiplicative
cases, which was systematically studied in [5].

A remarkable feature of additive and multiplicative monotone convolutions is a connection
to additive free convolution ⊞ and multiplicative free convolution ⊠: for probability measures
λ on [0,+∞) and µ, ν on R there exist probability measures ρ = ρµ,ν and σ = σλ,µ on R such
that

µ⊞ ν = µ▷ ρ, (5.30)

λ⊠ µ = λ ⟳ σ; (5.31)

see [20, 34] for additive convolution and [10] for multiplicative convolution. These relations
have been used for the study of regularity properties of free convolutions, see e.g. [10, 23, 90].
Formulas (5.30) and (5.31) have an elegant interpretation in terms of graph products; see
Accardi, Lenczewski and Sa lapata [2] (additive case) and Lenczewski [99] (multiplicative case).
Jekel and Liu’s tree independence also allows an interpretation. In the context of Loewner
theory, the monotone convolution hemigroups associated with free convolution hemigroups
are studied e.g. in [67, 80, 88, 134]. Other notable connections between free probability and
monotone probability can be found in Franz [65], Skoufranis [138], Cébron, Dahlqvist, Gabriel
and Gilliers [40, 42], and Mingo and Tseng [109].

6. Monotone convolution hemigroups and Loewner theory

As already mentioned, convolution semigroups correspond to Lévy processes that are continuous-
time analogues of random walk of identically distributed increments. We turn our attention to
random walk whose increments are still independent but not necessarily identically distributed.
Let (Xi)

∞
i=1 be independent, R-valued random variables. We denote by νi the distribution of

Xi. Let us consider the random walk

Sn := X1 +X2 + · · · +Xn; S0 := 0.

The distribution of Sn is given by µn := ν1 ∗ ν2 ∗ · · · ∗ νn. For n > m we have the relation
µn = µm ∗ νm+1 ∗ · · · ∗ νn, which involves νi’s. To obtain a closed relation of distributions, it is
more convenient to consider the increments

Sm,n := Sn − Sm, 0 ≤ m ≤ n.
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Let µm,n be the law of Sm,n. The obvious identity Sℓ,m + Sm,n = Sℓ,n gives rise to the distribu-
tional relation

µℓ,m ∗ µm,n = µℓ,n, 0 ≤ ℓ ≤ m ≤ n, (6.1)

µn,n = δ0, n ∈ N0. (6.2)

The law ofXi can be recovered from the two parameter family (µm,n)0≤m≤n as µi−1,i. Conversely,
given a family (µm,n)0≤m≤n of probability measures on R with relations (6.1) and (6.2), it comes
from a random walk.

The above discrete-time setup can be well extended to the continuous-time case. A family
(µs,t) of probability measures, index by real numbers 0 ≤ s ≤ t < ∞, is called a convolution
hemigroup if µt,t = δ0 and µs,t ∗ µt,u = µs,u for all 0 ≤ s ≤ t ≤ u and (s, t) 7→ µs,t is
weakly continuous. A convolution hemigroup corresponds to a stochastic process called an
additive process or a process with independent increments. The reader is referred to [130] for
further information. Replacing the convolution ∗ with monotone convolution, we are lead to
the following.

Definition 6.1. Let △ := {(s, t) ∈ R2 : 0 ≤ s ≤ t < +∞}. A family (µs,t)(s,t)∈△ of probability
measures on R is called a monotone convolution hemigroup if

(i) △ ∋ (s, t) 7→ µs,t is weakly continuous, i.e., for every bounded continuous function f on
R, the function (s, t) 7→

∫
R f(x)µs,t(dx) is continuous.

(ii) µs,u = µs,t ▷ µt,u for all 0 ≤ s ≤ t ≤ u < +∞,

(iii) µs,s = δ0 for all s ≥ 0.

If a monotone convolution hemigroup satisfies µs,t = µ0,t−s for all 0 ≤ s ≤ t, then it is
reduced to the convolution semigroup: µ0,s ▷µ0,t = µ0,s+t holds. Conversely, given a monotone
convolution semigroup (µt), the measures µs,t := µt−s form a convolution hemigroup. Thus
monotone convolution hemigroups generalize semigroups.

A monotone convolution hemigroup (µs,t) can be described by its reciprocal Cauchy trans-
forms.

Definition 6.2. A family of holomorphic self-maps (Fs,t)(s,t)∈△ on C+ is called a P-reverse
evolution family (P-REF for short)∗ if

(R1) ∢ limz→∞ Fs,t(z)/z = 1 for all (s, t) ∈ △,

(R2) △ ∋ (s, t) 7→ Fs,t is continuous with respect to the locally uniform convergence on C+,

(R3) Fs,t ◦ Ft,u = Fs,u for all 0 ≤ s ≤ t ≤ u < +∞,

(R4) Fs,s(z) = z for all s ≥ 0 and z ∈ C+.

We often impose the additional condition that

(R5) for each (s, t) ∈ △ there exist ms,t ∈ R and vs,t ∈ [0,+∞) such that

Fs,t(z) = z −ms,t +
vs,t
z

+ o(z−1), z = iy, y → +∞, (6.3)

and the maps (s, t) 7→ ms,t and (s, t) 7→ vs,t are continuous.

We call (Fs,t) satisfying (R1)–(R5) a P2-REF. Moreover, if ms,t = 0 for all (s, t), we call (Fs,t)
a P0

2 -REF.

Remark 6.3. (a) The continuity (s, t) 7→ Fs,t is equivalent to the weaker condition that the
map △ ∋ (s, t) 7→ Fs,t(z) ∈ C+ is continuous for all z ∈ C+, thanks to Proposition 4.33.

(b) In fact, the continuities of (s, t) 7→ ms,t and (s, t) 7→ vs,t in condition (R5) follow from
the other conditions. This fact, however, requires rather long arguments and we refer the
interested reader to [80].

∗P stands for the fact that each function Fs,t corresponds to a probability measure.
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(c) There is a one-to-one correspondence between the set of the monotone convolution hemi-
groups and the set of the P-REFs. From Proposition 4.43, the P2-REFs exactly correspond
to the monotone convolution hemigroups with finite first and second moments continuous
with respect to (s, t). Let (Fs,t)(s,t)∈△ be a P2-REF and (µs,t)(s,t)∈△ be the associated
monotone convolution hemigroup. Formulas (5.9) and (5.10) together with (4.31) and
(4.32) show that, with notation in (6.3),

ms,u = m1(µs,u) = m1(µs,t) +m1(µt,u) = ms,t +mt,u,

vs,u = Var(µs,u) = Var(µs,t) + Var(µt,u) = vs,t + vt,u, 0 ≤ s ≤ t ≤ u.

(d) If (Fs,t) is a P2-REF then each Fs,t has an integral formula

Fs,t(z) = z −ms,t +

∫
R

1

x− z
ρs,t(dx),

where ρs,t is a finite Borel measure such that ρs,t(R) = vs,t. We can see that the map
(s, t) 7→ ρs,t is weakly continuous. Let (sn, tn), (s, t) ∈ △ and (sn, tn) → (s, t). Let ρn :=
ρsn,tn and ρ := ρs,t. If ρ = 0 then ρn(R) = vsn,tn → vs,t = 0, so that ρn → 0 weakly. If ρ ̸= 0
then vs,t > 0 and we set ρ := ρ/vs,t and ρn := ρ/vsn,tn . As Gρn(z) = z −msn,tn − Fsn,tn(z)
converges to Gρ(z), the Cauchy transform of the normalized measure Gρn(z) also converges
to Gρ(z) for each z ∈ C+. Therefore, by Proposition 4.33, ρn converges weakly to ρ, which
in turn implies that ρn converges weakly to ρ.

(e) A family (Fs,t)(s,t)∈△ of holomorphic self-maps of C+ satisfying (R2)–(R4) is called a reverse
evolution family. Such a family of holomorphic self-maps is well developed in Loewner
theory, e.g. in [38]. The reason of the term “reverse” is that from the viewpoint of dynamics
on C+, the alternative condition Ft,u ◦ Fs,t = Fs,u has a more natural interpretation that a
point z at time s arrives at the point Fs,t(z) at time t and then Fs,t(z) arrives at the point
Ft,u(Fs,t(z)) at time u, which coincides with Fs,u(z). Such a family is called an evolution
family.

Moreover, we consider a one-parameter family of holomorphic functions, which turns out to
have a one-to-one correspondence with the P-REFs and monotone convolution hemigroups.

Definition 6.4. A family (Ft)t≥0 of holomorphic self-maps of C+ is called a P-decreasing
Loewner chain (P-DLC for short) if the following conditions (L1)–(L5) are satisfied:

(L1) ∢ limz→∞ Ft(z)/z = 1 for every t ≥ 0,

(L2) t 7→ Ft is continuous with respect to the locally uniform convergence,

(L3) Ft is injective on C+ for each t ≥ 0,

(L4) the range Ft(C+) is non-increasing with respect to t ≥ 0,

(L5) F0(z) = z for all z ∈ C+.

We also consider the condition that

(L6) for every t ≥ 0 there exist mt ∈ R, vt ∈ [0,+∞) such that

Ft(z) = z −mt +
vt
z

+ o(z−1), z = iy, y → +∞, (6.4)

and also the functions t 7→ mt and t 7→ vt are continuous.

We call (Ft) a P2-DLC if (L1)–(L6) are satisfied. Moreover, if mt = 0 for all t ≥ 0 then we
call (Ft) a P0

2 -DLC.

Example 6.5. (a) Let (µt)t≥0 be a monotone convolution semigroup and f : [0,+∞) → R be
a continuous nondecreasing function. Then µs,t := µf(t)−f(s) form a monotone convolution
hemigroup.
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(b) The semicircle distribution of mean 0 and variance t has the reciprocal Cauchy transform

Ft(z) =
z +

√
z2 − 4t

2
.

One can check that (Ft)t≥0 is a P0
2 -DLC. First of all, Ft is of the form (6.4) with mt = 0 and

vt = t. It remains to check conditions (L3) and (L4) since the others are easy. Condition
(L3) can be directly confirmed: assuming z, w ∈ C+ and Ft(z) = Ft(w), we obtain z = w
after algebraic calculations. In fact, we can show more strongly that Ft extends to a
continuous injective function F̃t : C+ ∪ R → C+ ∪ R. Regarding condition (L4), from the
previous consideration and Carathéodory’s theorem for Jordan domains, the boundary of
the domain Ft(C+) is F̃t(R). For x > 2

√
t, the point F̃t(x) = (x +

√
x2 − 4t)/2 moves

over the half-line [2
√
t,+∞). For x < −2

√
t, note that the point

√
(x+ 0i)2 − 4t has

argument π by the definition of square root, so that F̃t(x) = (x −
√
x2 − 4t)/2 and its

trajectory is the half-line (−∞,−2
√
t). For |x| ≤ 2

√
t by the Stieltjes inversion we have

F̃t(x) = (x+ i
√

4t− x2)/2, which moves over the semi-circle {u+ iv : u2 + v2 = 4t, v > 0}.
In conclusion,

Ft(C+) = {u+ iv ∈ C+ : u2 + v2 > 4t},
which is decreasing with respect to t ≥ 0.

This section establishes a correspondence between P2-REFs and P2-DLCs, and an integro-
differential/integral equation for them, which generalizes the differential equation known in case
the time-dependence is absolutely continuous.

6.1. Reverse evolution families and Loewner chains. We establish a bijection between
the P2-REFs and P2-DLCs.

Lemma 6.6. Let C+
β := {z ∈ C+ : ℑ(z) > β} for β > 0. Let µ be a probability measure with

finite second moment. Then for any β > 0 one has

Fµ(z) = z +O(1), z ∈ C+
β , z → ∞. (6.5)

Moreover, Fµ is injective on C+
σ , where σ :=

√
Var(µ), and the range Fµ(C+

σ ) contains C+
2σ.

Proof. Because the measure τ in Proposition 4.43 has finite second moment, the Nevanlinna
formula for Fµ can be written in terms of ρ(dx) := (1 + x2)τ(dx) as

Fµ(z) = z −m+

∫
R

ρ(dx)

x− z
, (6.6)

where m = m1(µ) and ρ(R) = Var(µ) = σ2. For z ∈ C+
β , the function 1/|x− z| is bounded by

1/β, so that the dominated convergence theorem yields that the integral term in (6.6) goes to
zero, and hence (6.5) holds true.

For every z, w ∈ C+
σ with z ̸= w we have

|Fµ(z) − Fµ(w)| = |z − w|
∣∣∣∣1 +

∫
R

ρ(dx)

(x− z)(x− w)

∣∣∣∣
≥ |z − w|

[
1 −

∫
R

ρ(dx)

|x− z||x− w|

]
≥ |z − w|

[
1 − ρ(R)

ℑ(z)ℑ(w)

]
> 0,

thereby verifying the injectivity.
For all z with ℑ(z) = σ we have

ℑ[Fµ(z)] = ℑ(z) +

∫
R

ℑ(z)

(x−ℜ(z))2 + (ℑ(z))2
ρ(dx) ≤ ℑ(z) +

σ2

ℑ(z)
= 2σ.
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Combining this estimate and (6.5) yields that for every w ∈ C+
2σ the curve {Fµ(z) : z ∈ C},

where C is the boundary of a large square D in C+
σ that has an edge [−R,R] + iσ, surrounds

the point w. By the argument principle, the equation Fµ(z) = w has a solution z ∈ D. □

Proposition 6.7. Let (Fs,t) be a P2-REF. Then each map Fs,t is injective on C+.

Proof. Let z, w ∈ C+ with z ̸= w and 0 ≤ s ≤ t. We select ε > 0 so that z, w ∈ C+
ε and take

s = s0 < s1 < s2 < · · · < sn = t such that min0≤i≤n−1 |vsi,si+1
| < ε2, which is possible by the

continuity of (r, u) 7→ vr,u and the fact vr,r = 0. Let

zk := Fsk,sk+1
◦ · · · ◦ Fsn−1,sn(z),

wk := Fsk,sk+1
◦ · · · ◦ Fsn−1,sn(w), 0 ≤ k ≤ n− 1.

Note that Fs,t(z) = z0 and Fs,t(w) = w0. By the inequality ℑ[Fsn−1,sn(z)] ≥ ℑ(z) (see (4.17))
and by Lemma 6.6, the points zn−1 and wn−1 are distinct and lie in C+

ε ; recall that vs,t is the
variance of the probability measure associated with Fs,t. By induction on k in the decreasing
direction, we can prove zk, wk are distinct and lie in C+

ε for all k = n − 1, n − 2, ..., 0, so that
Fs,t(z) = z0 ̸= w0 = Fs,t(w). □

Theorem 6.8. There is a one-to-one correspondence between P2-REFs and P2-DLCs given by
the maps

(Fs,t)(s,t)∈△ 7→ (F0,t)t≥0, (6.7)

(Ft)t≥0 7→ (F−1
s ◦ Ft)(s,t)∈△. (6.8)

Proof. Given (Fs,t), let Ft := F0,t. Conditions (L1), (L2) and (L6) are obvious. By Proposition
6.7, each Ft is injective on C+. Moreover, Ft ◦ Ft,u = Fu holds for 0 ≤ t ≤ u, which implies
that Fu(C+) = Ft(Ft,u(C+)) ⊆ Ft(C+), i.e., t 7→ Ft(C+) is non-increasing. Thus (Ft)t≥0 is a
P2-DLC.

Conversely, given a P2-DLC (Ft)t≥0, the assumption Fs(C+) ⊇ Ft(C+), s ≤ t allows us to
define the composed map Fs,t := F−1

s ◦Ft as a self-map of C+. It is well known that the inverse
map of a holomorphic function is also holomorphic, so that Fs,t is holomorphic. Conditions
(R3) and (R4) are obvious.

Condition (R1). For each s ≥ 0, recall from Lemma 6.6 that F−1
s is defined on C+

2σ, where
σ2 := vs is the variance of the underlying probability measure. From (6.5), w → ∞ implies
z = F−1

s (w) → ∞, so that we have

lim
w→∞
w∈C+

2σ

F−1
s (w)

w
= lim

z→∞
z∈C+

σ

z

Fs(z)
= 1.

Then

∢ lim
z→∞

Fs,t(z)

z
= ∢ lim

z→∞

F−1
s (Ft(z))

Ft(z)
· Ft(z)

z
= 1,

which verifies condition (R1).

Condition (R2). It suffices to show the continuity of (s, t) 7→ Fs,t(z) at each z0 ∈ C+, see
Remark 6.3. We use the Lagrange inversion formula. Let (s0, t0) ∈ △. Since Ft0(z0) ∈ Fs0(C+),
there exists an open disk D such that D ⊆ C+ and Ft0(z0) ∈ Fs0(D). By the continuity of
t 7→ Ft and since Fs0(D) is open, we can find open intervals I ∋ s0 and J ∋ t0 such that
Ft(z0) ∈ Fs(D) for all s ∈ I, t ∈ J . Therefore, by the Lagrange inversion formula,

Fs,t(z0) =
1

2πi

∫
∂D

wF ′
s(w)

Fs(w) − Ft(z0)
dw, s ∈ I, t ∈ J, s ≤ t.

The continuity (s, t) 7→ Fs,t(z0) at (s0, t0) is now a consequence of the dominated convergence
theorem.
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Condition (R5). If we denote by µt and µs,t the underlying probability measures for Ft and Fs,t,
respectively, then µs ▷ µs,t = µt. Since µt has finite second moment due to (6.4), µs,t also has
finite second moment from Proposition 5.14. Therefore, formula (6.3) holds and from Remark
6.3 (c) the numbers ms,t and vs,t satisfy

ms,t = m1(µs,t) = m1(µt) −m1(µs) = mt −ms,

vs,t = Var(µs,t) = Var(µt) − Var(µs) = vt − vs.

This implies the continuity of (s, t) 7→ ms,t, vs,t, so that (R5) holds true. □

Example 6.9. Let Ft be the reciprocal Cauchy transform of the semicircle distribution of mean
0 and variance t ≥ 0. The family (Ft)t≥0 is a P0

2 -DLC, see Example 6.5. This can be more
easily shown from Theorem 6.8 by finding the corresponding REF. First, a formal algebraic
calculation yields a formal inverse function F−1

s (z) = z + s/z. Therefore, the corresponding
REF should be F−1

s ◦ Ft, which is

Fs,t(z) :=
1

2

(
1 +

s

t

)
z +

1

2

(
1 − s

t

)√
z2 − 4t, 0 ≤ s ≤ t.

We can check this is a Nevanlinna function with Fs,t(iy)/(iy) → 1, so that it is the reciprocal
Cauchy transform of a probability measure µs,t. We can also check that Fs,t(z) = z − (t −
s)/z + O(z−2), z → ∞ and Fs,t ◦ Ft,u = Fs,u, 0 ≤ s ≤ t ≤ u. Therefore (Fs,t) is a P0

2 -REF, and
so Ft := F0,t form a P0

2 -DLC.

6.2. Integral/Integro-differential equations. Infinitesimal descriptions are helpful to bet-
ter understand reverse evolution families; later we will see in Section 7.1 that an infinitesimal
description is useful for constructing an operator model for monotone additive processes. For
example, suppose that the limit

A(s, z) = lim
h→0+

Fs−h,s(z) − z

h

exists. Then taking the derivative of Fs,u = Fs,t ◦ Ft,u with respect to s at s = t yields the
non-autonomous ODE

∂Ft,u

∂t
= A(t, Ft,u(z)).

In the following, we establish a refined description of P0
2 -REFs. In general, Fs,t need not

be differentiable in time, but still an integral/integro-differential equation holds. As a key
lemma we use the following version of Radon-Nikodym’s theorem that generalizes Lebesgue’s
differentiation theorem. The reader is referred to [59, Theorem 2, Section 1.6] for a proof.

Lemma 6.10. Let µ and ν be Borel measures on R that are finite on any compact subset of
R. Suppose that µ is absolutely continuous with respect to ν. Then the limit

dµ

dν
(x) := lim

h→0+

µ(x− h, x+ h)

ν((x− h, x+ h))
∈ [0,+∞)

exists at ν-a.e. x, and it serves as a Radon-Nikodym derivative, i.e.,

µ(B) =

∫
B

dµ

dν
(x) ν(dx), B ∈ B(R).

Theorem 6.11. Let (Fs,t)(s,t)∈△ be a P0
2 -REF having the asymptotic behavior (6.3). Let τ be the

Lebesgue-Stieltjes measure on [0,+∞) associated with the non-decreasing continuous function
t 7→ v0,t. There exists a probability kernel ρ̇ from [0,+∞) to R such that for all 0 ≤ s ≤ t

Fs,t(z) = z +

∫ t

s

[∫
R

1

x− Fa,t(z)
ρ̇(a, dx)

]
τ(da), (6.9)

Fs,t(z) = z +

∫ t

s

∂Fs,b

∂z
(z)

[∫
R

1

x− z
ρ̇(b, dx)

]
τ(db). (6.10)
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Either of (6.9) and (6.10) implies the uniqueness of ρ̇ in the sense that if another probability
kernel σ̇ exists, then we must have ρ̇(t, ·) = σ̇(t, ·) for τ -a.e. t ≥ 0.

Proof. From Proposition 4.43, for each (s, t), Fs,t is of the form

Fs,t(z) = z +

∫
R

ρs,t(dx)

x− z

and vs,t = ρs,t(R). We set vt := v0,t. The fact F0,0 = id implies v0 = 0. From Remark 6.3 (c),
we have vs + vs,t = vt; in particular, t 7→ vt is non-decreasing.

Let us consider the finite Borel measure ρr,s on R̂ defined by

ρr,s({∞}) = 0, ρr,s|R :=

{
ρr,s
vr,s
, if vr,s > 0,

0, otherwise.

Since ρr,s(R̂) ≤ 1, for each s ≥ 0 we can find a sequence hn → 0+ such that ρs−hn,s+hn
weakly

converges to a Borel measure ρs on R̂ with ρs(R̂) ≤ 1; be aware that hn depends on s. Note
that the following convergence holds whenever vs+h > vs−h for all h > 0:

Fs−hn,s+hn(z) − z

vs+hn − vs−hn

=

∫
R

ρs−hn,s+hn
(dx)

x− z
→
∫
R

ρs(dx)

x− z
= −Gρs|R(z), h→ 0+. (6.11)

Proof of (6.10). Observe that

Fr,t(z) − Fr,s(z) = Fr,s(Fs,t(z)) − Fr,s(z)

= [Fs,t(z) − z]

[
1 +

∫
R

ρr,s(dx)

(x− z)(x− Fs,t(z))

]
(6.12)

and

|Fs,t(z) − z| =

∣∣∣∣∫
R

ρs,t(dx)

x− z

∣∣∣∣ ≤ vt − vs
ℑ(z)

.

Therefore, for any fixed r ≥ 0 and z ∈ C+, the function f(s) := Fr,s(z) satisfies

|f(t) − f(s)| ≤ Ct,z(vt − vs), r ≤ s ≤ t,

where Ct,z := 1/ℑ(z) + vt/ℑ(z)3. In particular, for any fixed T > 0, f is of bounded variations
on [r, T ], and so there exists a complex Borel measure ν on (r, T ] such that ν((s, t]) = f(t)−f(s)
for r ≤ s ≤ t ≤ T . The inequality |ν((s, t])| ≤ CT,zτ((s, t]) extends to

|ν(B)| ≤ CT,zτ(B), B ∈ B((r, T ]). (6.13)

To show (6.13), we consider the set M := {B ∈ B((r, T ]) : |ν(B)| ≤ CT,zτ(B)}, which is a
monotone class. We also consider the algebra A consisting of the empty set and finite unions
of disjoint intervals of the form (s, t] (r ≤ s ≤ t ≤ T ). It is easy to check that M contains A.
By the monotone class theorem (Theorem 4.10), M contains σ(A) = B((r, T ]).

Because of the arbitrariness of T , we can extend ν to a complex measure on [r,+∞) with do-
main the set of bounded Borel subsets. Inequality (6.13) implies that ν is absolutely continuous
with respect to τ . By Lemma 6.10, the limit

Dv(s)Fr,s(z) := lim
h→0+

ν((s− h, s+ h))

τ((s− h, s+ h))
= lim

h→0+

Fr,s+h(z) − Fr,s−h(z)

vs+h − vs−h

∈ C (6.14)

exists at τ -a.e. s ∈ (r,+∞). Let Jr,z be the set of all s ∈ (r,+∞) such that this limit exists.
Dividing (6.12) by vt − vs, replacing (s, t) with (s− h, s + h) and passing to the limit h → 0+

yields

lim
h→0+

Fs−h,s+h(z) − z

vs+h − vs−h

=
Dv(s)Fr,s(z)

1 +
∫
R(x− z)−2 ρr,s(dx)

=
Dv(s)Fr,s(z)

∂
∂z
Fr,s(z)

, s ∈ Jr,z, z ∈ C+. (6.15)

Note here that the weak convergence ρr,s−h → ρr,s shown in Remark 6.3 (d) was used in the
first equality above.
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On the other hand, at every s ∈ Jr,z, the inequality vs+h > vs−h holds for all h > 0, and so
we can deduce from (6.11) that

lim
h→0+

Fs−h,s+h(z) − z

vs+h − vs−h

= lim
h→0+

∫
R

ρs−h,s+h(dx)

x− z
=

∫
R

ρs(dx)

x− z
, s ∈ Jr,z, z ∈ C+. (6.16)

Combining (6.15) and (6.16) yields

Dv(s)Fr,s(z) =
∂Fr,s

∂z
(z)

∫
R

1

x− z
ρs(dx), s ∈ Jr,z, z ∈ C+. (6.17)

Applying Lemma 6.10 to the measure ν and B = [r, t] and using (6.17), we get

Fr,t(z) − z =

∫ t

r

Dv(s)Fr,s(z) τ(ds)

=

∫ t

r

∂Fr,s

∂z
(z)

[∫
R

1

x− z
ρs(dx)

]
τ(ds), z ∈ C+, 0 ≤ r ≤ t. (6.18)

Here we take any countable subset A ⊆ C+ having an accumulation point in C+, e.g. A =
{i + 1/n : n ∈ N}, and set J :=

⋂
z∈A J0,z. For any s ∈ J and z ∈ A the convergence in (6.16)

holds. Therefore, by Proposition 4.26, the convergence in (6.16) holds for all z ∈ C+ and s ∈ J .
This implies that J ∋ s 7→ Gρs|R(z) is measurable for each z ∈ C+, so that Lemma 5.11 implies
that J ∋ s 7→ ρs(B) is measurable for each B ∈ B(R).

By the dominated convergence theorem applied to (6.18) (the estimates in (5.15) are helpful),
we can see that

vt = lim
y→+∞

[F0,t(iy) − iy]iy =

∫ t

0

ρs(R)τ(ds).

Since ρs(R) ≤ 1 and τ([0, t]) = vt, we must have ρs(R) = 1 for τ -a.e. s ≥ 0. We can then
define ρ̇(s, ·) := ρs|R whenever ρs(R) = 1 and s ∈ J , and otherwise define ρ̇(s, ·) := δ0. This is
a probability kernel. Now formula (6.18) yields the desired formula (6.10).

Proof of (6.9). Observe that for 0 ≤ r ≤ s ≤ t

Fs,t(z) − Fr,t(z) = Fs,t(z) − Fr,s(Fs,t(z)) =

∫
R

ρr,s(dx)

Fs,t(z) − x
, (6.19)

and so |Fs,t(z)−Fr,t(z)| ≤ (vs− vr)/ℑ(z). As before, for any (t, z) there exists a complex Borel
measure µ on [0, t] such that µ((r, s]) = Fs,t(z) − Fr,t(z) for 0 ≤ r ≤ s ≤ t and

|µ(B)| ≤ τ(B)

ℑ(z)
, B ∈ B((0, t]). (6.20)

Inequality (6.20) implies that µ is absolutely continuous with respect to τ . By Lemma 6.10 the
limit

Dv(s)Fs,t(z) := lim
h→0+

Fs+h,t(z) − Fs−h,t(z)

vs+h − vs−h

∈ C (6.21)

exists at τ -a.e. s ∈ (0, t). At any s ∈ J where this limit exists, (6.19) and (6.16) yield

Dv(s)Fs,t(z) = lim
h→0+

∫
R̂

ρs−h,s+h(dx)

Fs+h,t(z) − x
=

∫
R̂

ρs(dx)

Fs,t(z) − x
=

∫
R

ρs(dx)

Fs,t(z) − x
. (6.22)

The last equality holds because the integrand vanishes at x = ∞. The second equality holds
because of the continuity of r 7→ Fr,t, i.e., in the triangular inequality∣∣∣∣∫

R̂

ρs−h,s+h(dx)

Fs+h,t(z) − x
−
∫
R̂

ρs(dx)

Fs,t(z) − x

∣∣∣∣
≤
∣∣∣∣∫

R̂

ρs−h,s+h(dx)

Fs+h,t(z) − x
−
∫
R̂

ρs−h,s+h(dx)

Fs,t(z) − x

∣∣∣∣︸ ︷︷ ︸
=:I1h

+

∣∣∣∣∫
R̂

ρs−h,s+h(dx)

Fs,t(z) − x
−
∫
R̂

ρs(dx)

Fs,t(z) − x

∣∣∣∣︸ ︷︷ ︸
=:I2h
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the second term I2h tends to zero due to (6.16) that holds for s ∈ J and z ∈ C+, and the first
term I1h also converges to zero because

I1h ≤
∫
R̂

|Fs+h,t(z) − Fs,t(z)|
|Fs+h,t(z) − x||Fs,t(z) − x|

ρs−h,s+h(dx) ≤ |Fs+h,t(z) − Fs,t(z)|
ℑ(z)2

.

By Lemma 6.10 and (6.22), we have

Fs,t(z) − z = −
∫ t

s

Dv(a)Fa,t(z) τ(da) =

∫ t

s

[∫
R

ρa(dx)

x− Fa,t(z)

]
τ(da),

which is nothing but (6.9).

Uniqueness of ρ̇. For example, we assume that (6.9) holds for ρ̇ and σ̇. We fix T > 0 and
z ∈ C+ for some time. The complex measure

λ(B) :=

∫
B

[∫
R

1

x− Fs,T (z)
ρ̇(s, dx)

]
τ(ds), B ∈ B([0, T ]),

is absolutely continuous with respect to τ , so by Lemma 6.10 and uniqueness of Radon-Nikodym
derivative, we obtain∫

R

1

x− Fs,T (z)
ρ̇(s, dx) = lim

h→0+

λ((s− h, s+ h))

τ((s− h, s+ h))
= lim

h→0+

Fs−h,T (z) − Fs+h,T (z)

τ((s− h, s+ h))

at τ -a.e. s. The same formula holds for σ̇, so we obtain Gρ̇(s,·) = Gσ̇(s,·) on Fs,T (C+) for τ -
a.e. s ∈ [0, T ]. By the identity theorem, the equality Gρ̇(s,·) = Gσ̇(s,·) holds on C+ and then we
have ρ̇(s, ·) = σ̇(s, ·) for τ -a.e. s ∈ [0, T ]. A similar idea works for the case when we assume
(6.10) instead. □

We also verify the converse direction: given τ and ρ̇, solving these equations gives a unique
P0

2 -REF. The uniqueness is formulated in a stronger form.

Theorem 6.12. Let τ be a Borel measure on [0,+∞) that is finite on any compact subset and
that has no atom. Let ρ̇ be a probability kernel and

A(t, z) :=

∫
R

1

x− z
ρ̇(t, dx).

(i) For each fixed t ≥ 0 and z ∈ C+, the integral equation

f(s) = z +

∫ t

s

A(r, f(r)) τ(dr), s ∈ [0, t] (6.23)

has a unique solution f(s) = f(s; t, z) ∈ C+, s ∈ [0, t], such that [0, t] ∋ s 7→ f(s) ∈ C+

is continuous.

(ii) For each fixed s ≥ 0, the integro-differential equation

h(t, z) = z +

∫ t

s

∂h

∂z
(r, z)A(r, z) τ(dr), t ∈ [s,+∞), z ∈ C+ (6.24)

has a unique solution h(t, z) = h(t, z; s) ∈ C+, t ∈ [s,+∞), z ∈ C+, such that t 7→ h(t, z)
is continuous for each fixed z and z 7→ h(t, z) is holomorphic for each fixed t.

Moreover, f(s; t, z) = h(t, z; s) holds for all (s, t) ∈ △, z ∈ C+ and Fs,t(z) := f(s; t, z) forms a
P0

2 -REF.

Proof. Uniqueness of a solution to (6.23). Let t ≥ 0 and z ∈ C+ be fixed. Suppose that
continuous functions f1, f2 : [0, t] → C+ satisfy (6.23). We easily obtain for F (s) := f1(s)−f2(s)

|F (s)| ≤
∫ t

s

[∫
R

|f1(r) − f2(r)|
|x− f1(r)||x− f2(r)|

ρ̇(r, dx)

]
τ(dr)

≤ 1

ℑ(z)2

∫ t

s

|F (r)| τ(dr), s ∈ [0, t].
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Iterating this inequality yields

|F (s)| ≤ 1

ℑ(z)2n

∫
s≤s1≤s2≤···≤sn≤t

|F (sn)| τ⊗n(ds1ds2 · · · dsn)

≤ τ([s, t])n

n!ℑ(z)2n
sup
r∈[0,t]

|F (r)|, s ∈ [0, t], n ∈ N, (6.25)

where we used the fact

τ⊗n({(s1, s2, ..., sn) : s ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ t}) =
τ([s, t])n

n!
.

Since the right-hand side of (6.25) tends to zero as n→ ∞, we conclude F ≡ 0.

Existence of a solution to (6.23). The proof is based on Picard’s iteration. We recursively
define F 0, F 1, F 2, ..., by F 0

s,t(z) ≡ z and

F n
s,t(z) = z +

∫ t

s

A(r, F n−1
r,t (z)) τ(dr), (s, t) ∈ △, z ∈ C+, n ∈ N. (6.26)

Inductive arguments easily show that F n
s,t is holomorphic in C+ and satisfies ℑ[F n

s,t(z)] ≥ ℑ(z).
We then obtain from (6.26)

|F n
s,t(z)| ≤ |z| +

τ([s, t])

ℑ(z)
,

|F n
s,t(z) − F n

s′,t′(z)| ≤ τ([s, t]∆[s′, t′])

ℑ(z)
,

where A∆B is the symmetric difference (A\B)∪(B\A). In particular, for each fixed z ∈ C+, the
sequence of functions f z

n : △ → C+, f z
n(s, t) := F n

s,t(z) is uniformly bounded and equicontinuous
on each compact subset of △; note that the latter follows from the (uniform) continuity of the
function t 7→ τ([0, t]). We may therefore use Arzéla-Ascoli’s theorem to find a subsequence
f z
n(k), k ∈ N, that converges to a function f z : △ → C+ locally uniformly. Passing to the limit

in (6.26), the limit function Fs,t(z) := f z(s, t) satisfies equation (6.9) and hence f(s) := Fs,t(z)
satisfies (6.23).

The solution to (6.23) forms a P0
2 -REF. As already proved, F n

s,t is a Nevanlinna function for
each (s, t), so that its pointwise limit Fs,t is also a Nevanlinna function; see Proposition 4.26.
Moreover, the integral equation (6.9) and the dominated convergence theorem, together with
the bound 1/|x− Fa,t(z)| ≤ 1/ℑ(z), yield limy→+∞ Fs,t(iy)/(iy) = 1 and

lim
y→+∞

iy[Fs,t(iy) − iy] = τ([s, t]).

It remains to show Fs,t◦Ft,u = Fs,u. For each fixed z ∈ C+ and 0 ≤ t ≤ u, let F1, F2 : [0, u] → C+

be defined by F1(s) := Fs,u(z) and

F2(s) :=

{
Fs,t(Ft,u(z)), s ∈ [0, t],

Fs,u(z), s ∈ (t, u],

which is continuous. Recalling the equation

Fs,t(z) = z +

∫ t

s

A(r, Fr,t(z)) τ(dr), z ∈ C+, 0 ≤ s ≤ t,
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we have, for s ∈ [0, t],

F2(s) = Ft,u(z) +

∫ t

s

A(r, F2(r)) τ(dr)

= z +

∫ u

t

A(r, Fr,u(z)) τ(dr) +

∫ t

s

A(r, F2(r)) τ(dr)

= z +

∫ u

s

A(r, F2(r)) τ(dr),

and for s ∈ (t, u],

F2(s) = Fs,u(z) = z +

∫ u

s

A(r, Fr,u(z)) τ(dr) = z +

∫ u

s

A(r, F2(r)) τ(dr).

Therefore, F2 satisfies exactly the same equation satisfied by F1. By the trajectory-wise unique-
ness, we conclude that F1 = F2 on [0, u].

Existence of a solution to (6.24). We already constructed a P0
2 -REF (Fs,t) that solves (6.9). On

the other hand, by Theorem 6.11, there exists a probability kernel σ̇ for which (6.9) and (6.10)
hold, where ρ̇ is replaced by σ̇. In the same theorem the uniqueness of ρ̇ is verified, so that
ρ̇(t, ·) = σ̇(t, ·) for τ -a.e. t ≥ 0. Thus, (Fs,t) is also a solution to (6.10), so that h(t, z) := Fs,t(z)
satisfies (6.24).

Uniqueness of a solution to (6.24). Let s ≥ 0 be fixed. Let h1, h2 : [s,+∞) × C+ → C+ be
solutions to (6.24) with prescribed assumptions. Note then that hi, ∂zhi are continuous on
[s,+∞) ×C+ thanks to Lemma 4.28; in particular, the integral in (6.24) is well defined. Since
|A(t, z)| ≤ 1/ℑ(z), the function H(t, z) := h1(t, z) − h2(t, z) satisfies

|H(t, z)| ≤ 1

ℑ(z)

∫ t

s

∣∣∣∣∂H∂z (r, z)

∣∣∣∣ τ(dr). (6.27)

By Cauchy’s integral formula we obtain∣∣∣∣∂H∂z (t, z)

∣∣∣∣ =
1

2π

∣∣∣∣∫
C(z,ε)

H(t, w)

(w − z)2
dw

∣∣∣∣ ≤ 1

2πε2

∫
C(z,ε)

|H(t, w)| |dw|, (6.28)

where C(z, ε) is the circle centered at z with radius ε ∈ (0,ℑz). Combining (6.27) and (6.28)
gives

|H(t, z)| ≤ 1

2πε2ℑ(z)

∫
[s,t]×C(z,ε)

|H(r1, w1)| τ(dr1)|dw1|. (6.29)

Choosing ε = ℑz/(2n), n ∈ N, and iterating this inequality n times yields

|H(t, z)| ≤
(

1

2πε2

)n ∫
[s,t]n≥×Bn

|H(rn, wn)|
ℑ(z)ℑ(w1) · · · ℑ(wn−1)

τ(dr1 · · · drn)|dw1| · · · |dwn|,

where [s, t]n≥ := {(r1, r2, ..., rn) : s ≤ rn ≤ rn−1 ≤ · · · ≤ r1 ≤ t} and Bn := {(w1, w2, ..., wn) ∈
(C+)n : w1 ∈ C(z, ε), w2 ∈ C(w1, ε), ..., wn ∈ C(wn−1, ε)}. Since w1, w2, ..., wn belong to the
compact subset Kz := {w ∈ C+ : |w − z| ≤ ℑ(z)/2}, by setting Mt,z := supr∈[s,t],w∈Kz

|H(r, w)|
we obtain

|H(t, z)| ≤ Mt,z

[2πε2(ℑ(z)/2)]n
· τ([s, t])n

n!
· (2πε)n =

Mt,zn
n

n!
·
(

4τ([s, t])

ℑ(z)2

)n

.

By Stirling’s formula, for sufficiently large n we have n! ≥
√
2πn
2

(n/e)n, so that

|H(t, z)| ≤ 2Mt,z√
2πn

·
(

4eτ([s, t])

ℑ(z)2

)n

︸ ︷︷ ︸
=:αn

.
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If we take t close enough to s such that α < 1, say for s < t < s + δ, then letting n → ∞ we
obtain H(t, z) = 0. Then (6.29) reads

|H(t, z)| ≤ 1

2πε2ℑ(z)

∫
[s+δ,t]×C(z,ε)

|H(r1, w1)| τ(dr1)|dw1|.

Repeating the above calculations, we can prove H(t, z) = 0 for all s + δ < t < s + δ + δ′.
Actually, we can take δ′ = δ so this procedure shows H(t, z) = 0 for all t ≥ s. The reason
we can choose δ′ = δ is that t 7→ τ([0, t]) is uniformly continuous on any fixed interval [0, T ],
so that for any η > 0 there exists δ > 0 such that τ([a, b]) < η whenever a, b ∈ [0, T ] and
|a− b| < δ. □

Corollary 6.13. Let τ be a Borel measure on [0,+∞) that is finite on any compact subset and
that has no atom. Let ρ̇ be a probability kernel. Then there exists a unique P0

2 -DLC (Ft)t≥0

such that

Ft(z) = z +

∫ t

0

∂Fs

∂z
(z)

[∫
R

1

x− z
ρ̇(s, dx)

]
τ(ds).

Overall, there is a one-to-one correspondence between the following four kinds of sets:

• monotone convolution hemigroups (µs,t)(s,t)∈△ such that each µs,t has vanishing mean
and finite second moment that is continuous with respect to (s, t),

• P0
2 -REFs,

• P0
2 -DLCs,

• pairs (ρ̇, τ), where ρ̇ is a probability kernel from [0,+∞) to R and τ is an atomless
locally finite Borel measure on [0,+∞).

We call (ρ̇, τ) the generator of the other three objects. Actually, the generators can also
be defined for P2-REFs, P2-DLCs and monotone convolution hemigroups with finite second
moments; see [80].

In light of the generator, we offer a sufficient condition for a monotone convolution hemigroup
to have locally uniform compact support.

Proposition 6.14. Let ρ̇ be a probability kernel from [0,+∞) to R and τ be an atomless,
locally finite Borel measure on [0,+∞). Let (µs,t) be the corresponding monotone convolution
hemigroup. Suppose that for every T > 0 there exists RT > 0 such that ρ̇(t, ·) is supported
on [−RT , RT ] for all t ∈ [0, T ]. Then for every T > 0 there exists R′

T > 0 such that µs,t is
supported on [−R′

T , R
′
T ] for all 0 ≤ s ≤ t ≤ T .

Proof. The proof is analogous to the proof of Proposition 5.19, part (3) =⇒ (1). For example,
one can replace (5.18) with

|Ã(t, z)| ≤ C, |z| > RT + 1, t ∈ [0, T ].

The details are omitted. □

6.3. Notes. C. Loewner introduced Loewner chains in 1923 to attack the Bieberbach con-
jecture, which lead to the positive solution by de Branges in 1985; the reader interested in
the history is referred to the monograph [15] and the survey article [94]. Loewner theory has
also found applications to other fields; in particular, applications to SLE (Stochastic Loewner
Evolution) made a significant success in physics and probability theory [98].

The results in Section 6 are adopted from Hasebe, Hotta and Murayama [80]. Proposition
6.7 and Theorem 6.8 hold for more general REFs and DLCs, but we restricted the results
to the P2-ones to simplify the proof. Lemma 6.6 was proved by Maassen [105, Lemma 2.4].
Example 6.9 of the REF associated with the semicircle distributions was give by Biane [34].
The original proof of Theorem 6.11 given in [80] was a reduction of time-continuous Loewner
chains to the absolutely continuous ones that are already well studied by Goryainov and Ba
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[73] and Bauer [18]. Our proof is rather different and is more self-contained. Our proof of the
uniqueness of a solution to equation (6.10) is different from Bauer’s short proof in the absolutely
continuous case. Actually, we could give a similar proof to Bauer’s but that would require a
“Dv(s)- (Dv(s)-)calculus”, e.g., the Leibniz formula and the derivative of composite functions,
which also require proofs. To avoid such an argument, we gave a tricky proof based on Picard’s
iteration.

In the absolutely continuous case, a more general Loewner theory has been established by
Bracci, Contreras, Dı́az-Madrigal and Gumenyuk [38, 49]. Schleißinger [134], Franz, Hasebe
and Schleißinger [67], and Jekel [88] also proved results analogous to Theorems 6.11 and 6.12
in different but absolutely continuous setups.

At present, for a technical reason, we need the assumption of finite second moment to establish
the integral/integro-differential equations. On the other hand, similar and more complete
results were established for multiplicative monotone convolution hemigroups on the unit circle
by Hasebe and Hotta [79].

7. Monotone additive processes

In probability theory, an additive process is a continuous-time stochastic process whose in-
crements are independent but may have time-dependent distributions. We define and construct
a monotone additive process.

Definition 7.1. Let (A,φ) be a unital C∗-probability space. A family of real random variables
(xt)t≥0 in A is called a monotone additive process, or a process of monotonically independent
increments, if the following conditions are satisfied.

(i) x0 = 0.

(ii) △ ∋ (s, t) 7→ µxt−xs is weakly continuous.

(iii) for every n ∈ N and reals 0 = t0 < t1 < · · · < tn, the elements (called increments)

xt1 − xt0 , xt2 − xt1 , ... , xtn − xtn−1

are monotonically independent.

Proposition 7.2. Let (xt)t≥0 be a monotone additive process in a unital C∗-probability space.
Let µs,t := µxt−xs for 0 ≤ s ≤ t. Then (µs,t) is a monotone convolution hemigroup.

Proof. It is obvious that µt,t = δ0. The weak continuity holds by definition. From the de-
composition xu − xs = (xt − xs) + (xu − xt) and since xt − xs and xu − xt are monotonically
independent, we have

µs,u = µxu−xs = µxt−xs ▷ µxu−xt = µs,t ▷ µt,u, 0 ≤ s ≤ t ≤ u. □

A question is given a monotone convolution hemigroup, does there exist a monotone additive
process that realizes the hemigroup? If the given hemigroup contains probability measures
with unbounded support, the process cannot be realized in a unital C∗-probability space. We
will therefore consider monotone convolution hemigroups consisting of probability measures
with compact support. Then we can indeed construct a monotone additive process on a unital
C∗-probability space. In fact, several constructions are known. Two of them are presented
below.

7.1. A construction on monotone Fock spaces. Here we define a continuous monotone
Fock space on which a monotone additive process can be canonically constructed. Suppose that
(µs,t)(s,t)∈△ is a monotone convolution hemigroup of mean zero and finite second moment with
generator (ρ̇, τ) such that ρ̇ is supported on compact subsets locally uniformly, i.e., for every
T > 0 there exists RT > 0 such that ρ̇(t, ·) is supported on [−RT , RT ] for all t ∈ [0, T ]. From
Proposition 6.14, (µs,t) is compactly supported locally uniformly. Let (Fs,t) be the associated
P0

2 -REF. Recall that equation (6.9) holds.
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For notational convenience, let R+ := [0,+∞) and Θ be the Borel measure on R+×R defined
by Θ(dtdx) := ρ̇(t, dx)τ(dt), i.e.,

Θ(B) =

∫
[0,+∞)

[∫
R
χB(t, x) ρ̇(t, dx)

]
τ(dt), B ∈ B(R+ × R).

Let (R+)n> := {(t1, t2, ..., tn) ∈ (R+)n : t1 > t2 > · · · > tn ≥ 0}. We restrict the measure Θ⊗n

on (R+ × R)n ≃ (R+)n × Rn to the subset (R+)n> × Rn and define

Hn := L2((R+)n> × Rn,Θ⊗n)

=

{
f : (R+)n> × Rn → C

∣∣∣ ∫
(R+)n>×Rn

|f(t;x)|2 Θ⊗n(dtdx) < +∞

}
equipped with the inner product

⟨f, g⟩ :=

∫
(R+)n>×Rn

f(t;x)g(t;x)Θ⊗n(dtdx).

The algebraic monotone Fock space associated to Θ is the pre-Hilbert space

F0
> := CΩ ⊕

∞⊕
n=1

Hn,

where Ω is a unit vector and the direct sum is the algebraic one, i.e., each element of F0
> is a

finite sum of elements of Hi’s and CΩ. We also write H0 = CΩ. The monotone Fock space
is the norm closure

F> := F0
>

∥·∥
=

{
(hn)n∈N0 : hn ∈ Hn (n ∈ N0),

∑
n≥0

∥hn∥2Hn
< +∞

}
.

We consider the C∗-probability space (B(F>), φ), where φ = ⟨Ω, ·Ω⟩. The identity operator on
F> is denoted as 1. Let us first introduce three kinds of operators on the algebraic monotone
Fock space, and then extend them to the monotone Fock space.

Definition 7.3. The symbols t = (t1, t2, ..., tn) ∈ (R+)n> and x = (x1, x2, ..., xn) ∈ Rn are
employed below.

(a) Creation operators a∗(f), f ∈ H1: its restriction to Hn is a map to Hn+1 defined by

[a∗(f)h](t, t;x,x) := f(t;x)h(t;x), t > t1, x ∈ R, h ∈ Hn, n ∈ N,
a∗(f)Ω := f.

(b) Annihilation operators a(f), f ∈ H1: its restriction to Hn+1 is a map into Hn defined
by

[a(f)h](t;x) :=

∫
(t1,+∞)×R

f(t;x)h(t, t;x,x)Θ(dtdx), h ∈ Hn+1, n ∈ N,

a(f)h := ⟨f, h⟩H1Ω, h ∈ H1,

a(f)Ω := 0.

(c) Gauge operators λ(g), g ∈ L∞(Θ): its restriction to Hn is a map into itself given by

[λ(g)h](t;x) := g(t1;x1)h(t;x), h ∈ Hn, n ∈ N,
λ(g)Ω := 0.

Note that f 7→ a∗(f) is linear while f 7→ a(f) is antilinear.

Proposition 7.4. For any f ∈ H1 and g ∈ L∞(Θ), we have

∥a∗(f)∥ = ∥f∥H1 , ∥a(f)∥ = ∥f∥H1 , ∥λ(g)∥ = ∥g∥L∞ .
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Proof. On H0, we have ∥a∗(f)Ω∥F0
>

= ∥f∥F0
>

= ∥f∥H1∥Ω∥F0
>

. For h ∈ Hn, n ≥ 1 we have by
Fubini’s theorem

∥a∗(f)h∥2F0
>

=

∫
(R+)n>×Rn

|h(t;x)|2
(∫ ∞

t1

|f(t;x)|2Θ(dtdx)

)
Θ⊗n(dtdx)

≤ ∥f∥2H1

∫
(R+)n>×Rn

|h(t;x)|2Θ⊗n(dtdx)

= ∥f∥2H1
∥h∥2F0

>
.

Therefore, by linearity we have ∥a∗(f)h∥F0
>
≤ ∥f∥H1∥h∥F0

>
for all h ∈ F0

>. The equality holds

for h ∈ H0 and hence ∥a∗(f)∥ = ∥f∥H1 .
The formula ∥a(f)∥ = ∥f∥H1 can also be shown by similar estimates. This is also a conse-

quence of the following Proposition 7.5.
For the gauge operator, we can easily show

∥λ(g)h∥F0
>
≤ ∥g∥L∞∥h∥F0

>
, h ∈ Hn, n ∈ N0,

and so ∥λ(g)∥ ≤ ∥g∥L∞ . It is a standard result in functional analysis that the equality holds
because λ(g) is a multiplication operator on each Hn, n ∈ N. □

The previous boundedness allows us to extend these operators to bounded operators on F>,
which we still denote by the same symbols.

Proposition 7.5. The creation operator a∗(f) is the adjoint of the annihilation operator a(f)
for all f ∈ H1.

Proof. By linearity and continuity it suffices to show ⟨a∗(f)g, h⟩ = ⟨g, a(f)h⟩ for all g ∈ Hn, h ∈
Hm,m, n ∈ N0. We may assume m = n + 1 since otherwise these inner products are all zero.
For n ≥ 1 we have

⟨a∗(f)g, h⟩ =

∫
(R+)n+1

> ×Rn+1

f(t;x)g(t;x)h(t, t;x,x) Θ⊗(n+1)(dtdtdxdx)

=

∫
(R+)n>×Rn

g(t;x)

[∫
(t1,∞)×R

f(t;x)h(t, t;x,x) Θ(dtdx)

]
Θ⊗n(dtdx)

= ⟨g, a(f)h⟩.

For n = 0 we have

⟨a∗(f)Ω, h⟩ = ⟨f, h⟩ = ⟨Ω, a(f)h⟩. □

Proposition 7.6. The following formulas hold for f, k ∈ H1 and g, h ∈ L∞(Θ):

a(f)λ(g) = a(fg), (7.1)

λ(g)a∗(k) = a∗(gk), (7.2)

λ(g)λ(h) = λ(gh), (7.3)

a(f)a∗(k) = ⟨f, k⟩pΩ + λ(I(fk)), (7.4)

where pΩ is the orthogonal projection onto CΩ and I : L1(Θ) → L∞(Θ) is defined by

[I(v)](t, x) :=

∫
(t,∞)×R

v(s, y) Θ(dsdy),

which is constant on the second variable x.

Proof. These formulas can be checked by straightforward calculations. Here we only show the
last formula. On H0 = CΩ, we have

a(f)a∗(k)Ω = a(f)k = ⟨f, k⟩Ω = [⟨f, k⟩pΩ + λ(I(fk))]Ω
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For l ∈ Hn, n ∈ N we have

[a(f)a∗(k)l](t;x) =

[∫
(t1,+∞)×R

f(t;x)k(t;x) Θ(dtdx)

]
l(t;x)

= [I(fk)](t1)l(t;x)

= [⟨f, k⟩pΩ + λ(I(fk))]l(t;x). □

We will show that the family of operators (xt)t≥0 defined by

xt := a(χ[0,t]×R) + a∗(χ[0,t]×R) + λ(χ[0,t]X), (7.5)

where X(x) := x, is an additive monotone process that has the generator (ρ̇, τ). For notational
conciseness we set

as,t := a(χ(s,t]×R), a∗s,t := a∗(χ(s,t]×R), λs,t := λ(χ(s,t]X).

As a first step, we calculate the resolvent of xt − xs. The following lemma is substantially
based on the integral equation developed in Section 6.2.

Lemma 7.7. Let (Fs,t)(s,t)∈∆ be the P0
2 -REF associated with (ρ̇, τ). We fix 0 ≤ s ≤ t and

z ∈ C \ R and define a function F̃ ∈ L∞(Θ) by

F̃ (r) :=


Fs,t(z), 0 ≤ r ≤ s,

Fr,t(z), s ≤ r ≤ t,

z, r ≥ t

and the operator

λ̃ := λ(Fs,t(z) − F̃ (·) + χ(s,t]X).

Then we have for sufficiently large |z|

[z1− (xt − xs)]
−1 = [1− (Fs,t(z)1− λ̃)−1a∗s,t]

−1(Fs,t(z)1− λ̃)−1[1− as,t(Fs,t(z)1− λ̃)−1]−1.

Proof. We can directly compute the inverse operator

(Fs,t(z)1− λ̃)−1 =
1

Fs,t(z)
pΩ + λ

(
1

F̃ − χ(s,t]X

)
. (7.6)

Using the relations in Proposition 7.6 and pΩa
∗
s,t = 0 we obtain

as,t(Fs,t(z)1− λ̃)−1a∗s,t = as,ta
∗

(
χ(s,t]

1

F̃ − χ(s,t]X

)

=

[∫
(s,t]×R

1

Fr,t(z) − x
Θ(drdx)

]
pΩ + λ

(
I

(
χ(s,t]

1

F̃ − χ(s,t]X

))
.

This can be simplified more because, thanks to (6.9)∫
(s,t]×R

1

Fr,t(z) − x
Θ(drdx) = z − Fs,t(z)

and similarly,

I

(
χ(s,t]

1

F̃ − χ(s,t]X

)
(r) = z − F̃ (r).
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Indeed, for r ≤ s we have

I

(
χ(s,t]

1

F̃ − χ(s,t]X

)
(r) =

∫
[r,∞)×R

χ(s,t](u)
1

F̃ (u) − χ(s,t](u)x
Θ(dudx)

=

∫
(s,t]

[∫
R

1

Fu,t(z) − x
ρ̇(u, dx)

]
τ(du)

= −Fs,t(z) + z = −F̃ (r) + z.

The other cases s ≤ r ≤ t and r ≥ t can be calculated analogously. Altogether, we obtain

as,t(Fs,t(z)1− λ̃)−1a∗s,t = [z − Fs,t(z)]pΩ + λ(z − F̃ (·))
= [z − Fs,t(z)]1 + λ̃− λs,t.

Then

z1− (xt − xs) = z1− a∗s,t − as,t − λs,t

= (z1− Fs,t(z)1 + λ̃− λs,t) + (Fs,t(z)1− λ̃) − a∗s,t − as,t

= (Fs,t(z)1− λ̃) − a∗s,t − as,t + as,t(Fs,t(z)1− λ̃)−1a∗s,t

= [1− as,t(Fs,t(z)1− λ̃)−1](Fs,t(z)1− λ̃)[1− (Fs,t(z)1− λ̃)−1a∗s,t].

Taking the inverse of the above formula yields the desired formula. Note here that Fs,t(z) =

z + o(z) and the norm of λ̃ is uniformly bounded as z → ∞, so that all the inverses exist as
bounded operators. □

Proposition 7.8. The distribution of xt − xs is µs,t for all 0 ≤ s ≤ t. Moreover, for any
y, y′ ∈ {a∗(f), a(f), λ(g) : f ∈ L2([0, s) × R,Θ), g ∈ L∞([0, s) × R,Θ)} and n ∈ N, we have

y(xt − xs)
ny′ = φ[(xt − xs)

n]yy′, (7.7)

y(xt − xs)
nΩ = φ[(xt − xs)

n]yΩ. (7.8)

Proof. Lemma 7.7 implies for z with large |z|

[z1− (xt − xs)]
−1 =

∞∑
j,k=0

[(Fs,t(z)1− λ̃)−1a∗s,t]
j(Fs,t(z)1− λ̃)−1[as,t(Fs,t(z)1− λ̃)−1]k, (7.9)

and so

φ([z1− (xt − xs)]
−1)

=
∞∑

j,k=0

⟨[as,t(Fs,t(z)1− λ̃∗)−1]jΩ, (Fs,t(z)1− λ̃)−1[as,t(Fs,t(z)1− λ̃)−1]kΩ⟩.

Here from (7.6) we deduce that

as,t(Fs,t(z)1− λ̃)−1Ω = 0. (7.10)

Therefore, only j = k = 0 gives a nonzero contribution, i.e.,

φ([z1− (xt − xs)]
−1) = ⟨Ω, (Fs,t(z)1− λ̃)−1Ω⟩ =

1

Fs,t(z)
=: Gs,t(z), (7.11)

showing that the analytic distribution of xt − xs equals µs,t.
We turn to the proof of (7.7). Using (7.6) we can check

(Fs,t(z)1− λ̃)−1y′ = Gs,t(z)y′
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for any y′ that is either creation, annihilation or gauge operators supported on [0, s). The point
is that when multiplying a function h in Hn by y′, the resulting function y′h vanishes when the
first variable t1 is larger than s. Then the next operator (Fs,t(z)1− λ̃)−1 acts as

1

Fs,t(z)
pΩ + λ

(
1

Fs,t(z)

)
= Gs,t(z)1

because χ(s,t]X is always zero on the support of the function y′h. From a similar consideration
of support, we can further obtain

as,t(Fs,t(z)1− λ̃)−1y′ = Gs,t(z)as,ty
′ = 0. (7.12)

Taking the adjoint and complex conjugate yields

y(Fs,t(z)1− λ̃)−1a∗s,t = 0. (7.13)

Combining (7.9), (7.12) and (7.13) we obtain

y[z1− (xt − xs)]
−1y′ = Gs,t(z)yy′.

Expanding the formula into Laurent series and comparing the coefficients of z−n−1 we obtain
the desired (7.7). The last formula (7.8) can be obtained by similar calculations, combining
(7.9), (7.10) and (7.13). □

Theorem 7.9. The family of operators (xt)t≥0 defined by (7.5) is a monotone additive process
such that the analytic distributions of the increments xt − xs (0 ≤ s ≤ t) form a monotone
convolution hemigroup associated with the generator (ρ̇, τ).

Proof. It remains to prove the independent increment property. A fully general description
requires heavy notation, so let us consider 0 = t0 < t1 < t2 < t3, m,n, p, q ∈ N and calculate
the example

φ[(xt2 − xt1)
m(xt3 − xt2)

n(xt1 − xt0)
p(xt2 − xt1)

q]. (7.14)

Observe that (xt2 − xt1)
m is the linear combination of words consisting of operators in G[0,t2) in

Proposition 7.8. The same holds for (xt1 − xt0)
p. Then (7.7) implies

(xt2 − xt1)
m(xt3 − xt2)

n(xt1 − xt0)
p = φ[(xt3 − xt2)

n](xt2 − xt1)
m(xt1 − xt0)

p,

which obviously implies (7.14) equals

φ[(xt3 − xt2)
n]φ[(xt2 − xt1)

m(xt1 − xt0)
p(xt2 − xt1)

q]. (7.15)

Recall here that φ = ⟨Ω, ·Ω⟩. We in turn use (7.8) to obtain

(xt1 − xt0)
p(xt2 − xt1)

qΩ = φ[(xt2 − xt1)
q](xt1 − xt0)

pΩ,

which implies (7.15) equals

φ[(xt3 − xt2)
n]φ[(xt2 − xt1)

q]φ[(xt2 − xt1)
m(xt1 − xt0)

p].

To compute the last factor φ[(xt2 − xt1)
m(xt1 − xt0)

p], we can move the operators to the left
side of the inner product as adjoints, and then we apply (7.8).

The general case can be shown analogously. For the interested reader, we note what has
to be shown: Let n ∈ N and 0 = t0 < t1 < · · · < tn. For each interval I(k) := (tk−1, tk] we
denote xI(k) := xtk − xtk−1

for notational conciseness. Let j1, j2, ..., jm ∈ [n] with j1 ̸= j2, j2 ̸=
j3, ..., jm−1 ̸= jm and Pi ∈ C[x], i ∈ [m] without a constant term. In the setting above, if ℓ ∈ [m]
is such that jℓ−1 < jℓ > jℓ+1 then

φ[P1(xI(j1))P2(xI(j2)) · · ·Pm(xI(jm))]

= φ[Pℓ(xI(jℓ))]φ[P1(xI(j1)) · · ·Pℓ−1(xI(jℓ−1))Pℓ+1(xI(jℓ+1)) · · ·Pm(xI(jm))]. □

Example 7.10. In the case ρ̇(t, dx) = δ0(dx) and τ(dt) = dt, the Hilbert space Hn is isomorphic
to L2((R+)n>, dt1dt2 · · · dtn). The function X is zero and hence λs,t = 0 and xt = a∗(χ[0,t]) +
a(χ[0,t]). This is called a monotone Brownian motion. The distribution of xt − xs is the
arcsine law with mean 0 and variance t− s that appeared in the monotone CLT.
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The above proof heavily depended on the resolvent of the increment xt − xs. We can show
monotone independence for bigger subalgebras by combinatorial methods. For an interval
I ⊆ [0,+∞), let AI be the (∗-)subalgebra of B(F>) generated by the set of operators

GI := {a∗(f), a(f), λ(g) : f ∈ L2(I × R,Θ), g ∈ L∞(I × R,Θ)}.
Lemma 7.11. Let I := [s,+∞) be a half-axis for some s ≥ 0. The ∗-subalgebra AI + C1
coincides with the linear span of the elements of the form

w = a∗(f1)a
∗(f2) · · · a∗(fm)[λ(h) + α1]a(g1)a(g2) · · · a(gn), (7.16)

where fi, gi ∈ L2(I × R,Θ), h ∈ L∞(I × R,Θ), m, n,∈ N0, α ∈ C.

Proof. Let BI denote the linear span of the elements (7.16). Obviously, BI ⊆ AI + C1. To
show the converse inclusion, since BI contains the generator set GI for AI , it suffices to show
that BI is a ∗-subalgebra. Moreover, for this it suffices to show that xBI , BIx ⊆ BI for any
x ∈ GI . In addition, since BI and GI are closed under ∗, only showing xBI ⊆ BI suffices. We
check this case-by-case.

The inclusion xBI ⊆ BI is obvious for x = a∗(f) and for x = λ(g); the latter is because of
(7.2) and (7.3). Therefore, it remains to check that a(f)w ∈ BI , where w is the operator (7.16).

Case m ≥ 2. Using Proposition 7.6 and pΩa
∗(f2) = 0 we get

a(f)a∗(f1)a
∗(f2) = [⟨f, f1⟩pΩ + λ(k)]a∗(f2) = λ(k)a∗(f2) = a∗(kf2),

where k := I(ff1). Since kf2 is supported on I × R, it follows that a(f)w ∈ BI .

Case m = 1. Combining the decomposition 1 = pΩ + λ(χR+×R) and the previous calculations
yields

a(f)a∗(f1) = [⟨f, f1⟩pΩ + λ(k)] = ⟨f, f1⟩1 + λ(k − ⟨f, f1⟩χR+×R).

Observe that k̃ := k − ⟨f, f1⟩χR+×R is supported on I × R. Setting β := ⟨f, f1⟩, the first three
letters of the word a(f)w equals

a(f)a∗(f1)[λ(h) + α1] = [λ(k̃) + β1][λ(h) + α1] = λ(k̃h+ αk̃ + βh) + αβ1,

so that a(f)w ∈ BI .

Case m = 0. From Proposition 7.6, the first two letters of the word a(f)w can be calculated as

a(f)[λ(h) + α1] = a(fh+ αf),

so that a(f)w ∈ BI . □

Proposition 7.12. Let s ≥ 0. For any x, x′ ∈ A[0,s) and y ∈ A[s,+∞) + C1, we have

xyx′ = φ(y)xx′, (7.17)

xyΩ = φ(y)xΩ. (7.18)

Proof. The second formula follows from the first one because (7.4) shows pΩ ∈ A[0,s) unless
L2([0, s) × R,Θ) = {0}, in which case the second formula is obvious. It suffices to show (7.17)
for y = w in the form (7.16) and x, x′ ∈ G[0,s).

Case m ≥ 1. Then yΩ = 0 and hence φ(y) = 0. Since x is one of a∗(f), a(f), λ(g) where f, g
are supported on [0, s) × R and f1 is supported on [s,+∞) × R, we can conclude xa∗(f1) = 0,
so that xy = 0.

Case m = 0 and n ≥ 1. We have yΩ = 0 and hence φ(y) = 0. On the other hand, the argument
symmetric with the previous case m ≥ 1 shows xyx′ = 0.

Case m = 0 and n = 0. Then y = λ(h) + α1 and φ(y) = α. One can show that xλ(h)x′ = 0
from Proposition 7.6 and the fact that the support of h is contained in [s,+∞) × R. Thus we
obtain xyx′ = αxx′ = φ(y)xx′. □
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Theorem 7.13. Let n ∈ N and 0 = t0 < t1 < · · · < tn. Then the ∗-subalgebras
A[t0,t1), A[t1,t2), ... , A[tn−1,tn)

are monotonically independent.

Proof. Almost the same as the proof of Theorem 7.9. □

Note that this theorem implies the monotone independence of the increments of (xt), which
was already proved in Theorem 7.9.

7.2. A construction from Markov processes. The second construction of monotone ad-
ditive processes is based on classical Markov processes. Basic facts on Markov processes are
reviewed briefly here. For further information on Markov processes, the reader is referred to
e.g., [92, 128].

Recall from Lemma 5.9 that the composition of two probability kernels k, l on R

(kl)(x,B) :=

∫
R
k(x, dy)l(y,B), x ∈ R, B ∈ B(R),

is also a probability kernel.

Definition 7.14. A family (ks,t)(s,t)∈△ of probability kernels on R is called transition kernels
if ks,s(x, ·) = δx for all x ∈ R, s ≥ 0 and the following Chapman–Kolmogorov equation
holds:

ks,tkt,u = ks,u, 0 ≤ s ≤ t ≤ u. (7.19)

Definition 7.15. Let (ks,t)(s,t)∈△ be transition kernels on R. A family of R-valued measurable
functions (Xt)t≥0 on a measurable space (Ω,F), together with a family of σ-subfields FI ⊆
F indexed by the closed intervals I of [0,∞) and a family of probability measures P(s,x) on
(Ω,F[s,∞)) (s ≥ 0, x ∈ R), is called a Markov process having the transition kernels
(ks,t)(s,t)∈△ if

• FI ⊆ FJ whenever I ⊆ J ;

• for every bounded Borel measurable function f : R → R, 0 ≤ s ≤ t ≤ u and x ∈ R,

E(s,x)[f(Xu)|F[s,t]] =

∫
R
f(y)kt,u(Xt, dy), P(s,x)-a.s.; (7.20)

• P(s,x)[Xs = x] = 1 for all s ≥ 0 and x ∈ R.

The following is a rather standard result.

Proposition 7.16. Let (ks,t)(s,t)∈△ be transition kernels on R. Then there exists a Markov
process that has the transition kernels (ks,t)(s,t)∈△.

Proof. A standard construction is called the coordinate process that we present below. Let Ω =
R[0,∞) be the set of all functions ω : [0,∞) → R. Let C ⊆ 2Ω be the set of the cylinder sets {ω ∈
Ω : ω(t1) ∈ A1, ω(t2) ∈ A2, ..., ω(tn) ∈ An}, 0 ≤ t1 < t2 < · · · < tn, A1, A2, .., An ∈ B(R), n ∈ N.
Let F ⊆ 2Ω be the σ-field generated by C. The coordinate process Xt : Ω → R is defined by
Xt(ω) := ω(t). The σ-subfield FI is the σ-field generated by X−1

t (A), t ∈ I, A ∈ B(R).

We consider the family of probability measures µ
(s,x)
t1,t2,...,tn on Rn, indexed by s ≤ t1 < t2 <

· · · < tn (n ∈ N), defined by the iterated integrals

µ
(s,x)
t1,t2,...,tn(A) :=

∫
R
ks,t1(x, dx1)

∫
R
kt1,t2(x1, dx2) · · ·

∫
R
χA(x1, x2, ..., xn)ktn−1,tn(xn−1, dxn).

By the Chapman-Kolmogorov equation, these probability measures satisfy the consistency

µ
(s,x)
t1,t2,...,tn(A1 × · · · × Ai−1 × R× Ai+1 × · · · × An)

= µ
(s,x)
t1,...,ti−1,ti+1,...,tn(A1 × · · · × Ai−1 × Ai+1 × · · · × An), 1 ≤ i ≤ n,
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and so Kolmogorov’s extension theorem (see, e.g. [56]) guarantees that there exists a probability
measure P(s,x) on F[s,∞) such that

P(s,x)[Xt1 ∈ A1, Xt2 ∈ A2, ..., Xtn ∈ An] = µ
(s,x)
t1,t2,...,tn(A1 × A2 × · · · × An)

for all s ≤ t1 < t2 < · · · < tn and A1, A2, ..., An ∈ B(R).
All the requirements for a Markov process are obvious except (7.20). To show this, by the

well known characterization of the conditional expectation, it suffices to show

E(s,x)[f(Xu)χF ] = E(s,x)

[∫
R
f(y)kt,u(Xt, dy)χF

]
, F ∈ F[s,t]. (7.21)

It further suffices to show that the above holds for all F ∈ G := {
⋂n

i=1X
−1
ri

(Ai) : n ∈ N, s ≤
ri ≤ t, Ai ∈ B(R)}. Indeed, as soon as the set F ′ := {F ∈ F[s,t] : (7.21) holds} contains G,
since G is a π-system and F ′ is a λ-system, by the π-λ theorem (Theorem 4.9), F ′ contains
σ(G) = F[s,t].

To finish the proof, let F =
⋂n

i=1X
−1
ri

(Ai) ∈ G with s ≤ r1 < r2 < · · · < rn ≤ t. To avoid
heavy notation we only consider n = 2; the general case is similar. We then have

E(s,x)

[∫
R
f(y)kt,u(Xt, dy)χF

]
= E(s,x)

[∫
R
f(y)χA1(Xr1)χA2(Xr2)kt,u(Xt, dy)

]
=

∫
R2

µ
(s,x)
r1,r2,t(dx1dx2dz)

∫
R
χA1(x1)χA2(x2)f(y)kt,u(z, dy)

=

∫
R
χA1(x1)ks,r1(x, dx1)

∫
R
χA2(x2)kr1,r2(x1, dx2)

∫
R
kr2,t(x2, dz)

∫
R
f(y)kt,u(z, dy) (7.22)

=

∫
R
χA1(x1)ks,r1(x, dx1)

∫
R
χA2(x2)kr1,r2(x1, dx2)

∫
R
f(y)kr2,u(x2, dy) (7.23)

= E(s,x)[χA1(Xr1)χA2(Xr2)f(Xu)] = E(s,x)[χFf(Xu)],

where the Chapman-Kolmogorov equation was used from (7.22) to (7.23). □

Remark 7.17. The above construction of Markov process does not tell us about how the sample
path t 7→ Xt(ω) looks like for each ω ∈ Ω. To have good sample paths, usually some kind of
continuity, one has to “modify” the above Markov process. For our purpose, sample paths do
not matter and the above construction is enough.

We introduce a suitable Markov process for constructing a monotone additive process. Let
(µs,t)(s,t)∈△ be a monotone convolution hemigroup. We take 0 ≤ s ≤ t ≤ u. Let ks,t(x, ·) :=
(δx ▷ µs,t)(·). Recall from Proposition 5.12 that ks,t is a probability kernel and for every
probability measure µ, we have

µ▷ µt,u =

∫
R
kt,u(y, ·)µ(dy).

Selecting µ = δx ▷ µs,t = ks,t(x, ·) yields

δx ▷ µs,u =

∫
R
kt,u(y, ·)ks,t(x, dy),

which reads ks,u = ks,tkt,u, i.e., the Chapman-Kolmogorov equation. The weak continuity of
(s, t) 7→ ks,t(x, ·) follows from

Fks,t(x,·)(z) = Fµs,t(z) − x

and Proposition 4.33. By Proposition 7.16 there exists a Markov process (Xt)t≥0 that has the
constructed transition kernels (ks,t). We then set H := L2(Ω,F ,P(0,0)) and work on the C∗-
probability space (B(H), φ), where φ(a) := ⟨χΩ, aχΩ⟩. The identity operator on H is denoted



94 TAKAHIRO HASEBE

as 1. For notational simplicity we denote P := P(0,0), E := E(0,0) and Ft := F[0,t]. Also for
analytic transforms, we set the shorthand symbols Fs,t(z) := Fµs,t(z) and Gs,t(z) := Gµs,t(z).

For the sake of simplicity, we assume that each µs,t has compact support. Let pt ∈ B(H) be
the conditional expectation ptZ := E[Z|Ft], Z ∈ H. It is known that conditional expectations
onto σ-subfields are orthogonal projections on the L2 space, so each pt is an orthogonal pro-
jection. The multiplication operator on H by the random variable Xt is denoted by mt, i.e.,
mt(Z) := XtZ. Since µ0,t has compact support, Xt ∈ L∞ and so the operator mt is bounded.

We set

yt := ptmt, t ≥ 0. (7.24)

Note that ptmt = mtpt because

ptmt(Z) = E[XtZ|Ft] = XtE[Z|Ft] = mtpt(Z).

We will show that (yt)t≥0 is a monotone additive process.

Lemma 7.18. For z ∈ C+ and 0 ≤ s ≤ t it holds that

ps(z1−mt)
−1ps = (Fs,t(z)1−ms)

−1ps.

Proof. For Z ∈ H, keeping in mind that ps(Z) is Fs-measurable, we have

ps(z1−mt)
−1ps(Z) = E

[
1

z −Xt

ps(Z)

∣∣∣∣Fs

]
= E

[
1

z −Xt

∣∣∣∣Fs

]
ps(Z)

=

∫
R

1

z − y
ks,t(Xs, dy)ps(Z) = Gks,t(Xs,·)(z)ps(Z)

=
1

Fs,t(z) −Xs

ps(Z) = (Fs,t(z)1−ms)
−1ps(Z). □

Proposition 7.19. For z ∈ C+ and 0 ≤ s ≤ t it holds that

ps[z1− (yt − ys)]
−1ps = Gs,t(z)ps. (7.25)

In particular, the distribution of yt − ys with respect to φ = ⟨χΩ, ·χΩ⟩H equals µs,t, and

ps(yt − ys)
nps = φ[(yt − ys)

n]ps, n ∈ N. (7.26)

Proof. By analytic continuation, it suffices to show the formula for z ∈ C+ with large |z|. We
first observe

ps[z1− (yt − ys)]
−1ps = ps[z1− (mt −msps)]

−1ps. (7.27)

Indeed, by series expansion

ps[z1− (yt − ys)]
−1ps =

∑
n≥0

ps(mtpt −msps)
nps

zn+1
.

If we look at the expansion of (mtpt−msps)
npsZ (Z ∈ H), pt always acts on a random variable

that is Fs-measurable, so that pt acts as the identity operator. This verifies (7.27).
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We continue the calculation (7.27) as follows:

ps[z1− (mt −msps)]
−1ps = ps[1 + (z1−mt)

−1msps]
−1(z1−mt)

−1ps

=
∑
n≥0

(−1)nps[(z1−mt)
−1msps]

n(z1−mt)
−1ps

=
∑
n≥0

(−1)npsm
n
s [ps(z1−mt)

−1ps]
n+1 (7.28)

=
∑
n≥0

ps(−ms)
n[(Fs,t(z)1−ms)

−1ps]
n+1 (7.29)

=
∑
n≥0

(−ms)
n(Fs,t(z)1−ms)

−n−1ps

= [Fs,t(z)1−ms − (−ms)]
−1ps

= Gs,t(z)ps.

Here, (7.28) holds because ms commutes with both ps and (z1−mt)
−1, and (7.29) is obtained

from Lemma 7.18.
For the last statement, observe that∫

R

1

z − u
µyt−ys(du) = φ([z1− (yt − ys)]

−1) = φ(ps[z1− (yt − ys)]
−1ps)

= Gs,t(z) =

∫
R

1

z − u
µs,t(du),

so that µyt−ys = µs,t. The relation (7.26) follows by comparing the coefficients of z−n−1 in the
series expansion of (7.25). □

Theorem 7.20. The process (yt)t≥0 defined in (7.24) is a monotone additive process such that
each increment yt − ys has the given distribution µs,t.

Proof. Let us consider 0 = t0 < t1 < t2 < t3, m,n, p, q, r ∈ N and calculate the example

φ[(yt2 − yt1)
m(yt3 − yt2)

n(yt1 − yt0)
p(yt2 − yt1)

q(yt1 − yt0)
r]. (7.30)

Observe that (yt2 − yt1)
mpt2 = (yt2 − yt1)

m and pt2(yt1 − yt0)
p = (yt1 − yt0)

p because of the tower
property of conditional expectations pt2pti = pti for i = 0, 1, 2. Hence, we are allowed to replace
the factor (yt3 − yt2)

n with pt2(yt3 − yt2)
npt2 , which is equal to φ[(yt3 − yt2)

n]pt2 by Proposition
7.19. This implies that (7.30) equals

φ[(yt3 − yt2)
n]φ[(yt2 − yt1)

m(yt1 − yt0)
p(yt2 − yt1)

q(yt1 − yt0)
r].

The general case can be shown analogously. □

Remark 7.21. The above construction of monotone additive processes is independent of the
integral or integro-differential equation developed in Section 6.2. In the case of monotone
convolution semigroup, i.e., µs,t = µ0,t−s for all 0 ≤ s ≤ t, the Markov process (Xt)t≥0 is a
Feller process and its generator can be expressed in terms of the parameter (γ, σ) in (5.16); see
[67] for further details.

7.3. Notes. The study of Fock spaces in noncommutative probability can be traced back to
Boson and Fermion Fock spaces in quantum physics. Hudson and Parthasarathy developed
a quantum version of Itô calculus on the Boson Fock space [87, 124]. In free probability, the
corresponding space is the full (or free) Fock space [143], on which free stochastic calculus was
initiated by Kümmerer and Speicher [96]. The Boson, Fermion and full Fock spaces are interpo-
lated by the q-Fock space of Bożejko and Speicher [37]. Fock spaces have provided a canonical
construction of independent random variables and continuous-time processes of independent
increments. In particular, the q-Fock space and its relatives have offered remarkable von Neu-
mann algebras that are still actively studied [95, 110]. Concerning monotone probability, there
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seems to be no notable von Neumann algebras building upon monotonically independent ran-
dom variables so far. On the other hand, C∗-algebras related to the monotone Fock space have
been investigated in the literature, see e.g. [52, 53, 54].

The construction of additive processes on the monotone Fock space followed Jekel [88], who
developed Loewner theory and monotone convolution hemigroups in a more general operator-
valued setting, where φ is an algebra-valued functional called a conditional expectation. Here
we have presented the results in the simplified setting of C-valued functional. Our results also
contain advancements because we only assume the continuity (not absolute continuity) about
the time parameter. The special case of monotone Brownian motion xt = a∗(χ[0,t]) + a(χ[0,t])
first appeared in Lu [104] and Muraki [114]. Muraki considered a discrete monotone Fock space
in [113, 116]. In free probability, a parallel construction of free additive processes on the full
Fock space is known, see [120, Exercise 13.19] that assumes the stationarity of the distributions.
The term “gauge operator” appears in [120] for an analogous operator on the full Fock space;
note that the terms “gauge process” and “conservation process” are used in [87] and [124]
respectively for the operator on the Boson Fock space corresponding to our λ(χ[0,t]X). The
operator λ(g) is called the multiplication operator in [88]. Concerning notation, it is common
to denote ℓ(f) for the creation operator and ℓ∗(f) for the annihilation operator on the full
Fock space [120, 143]. On the other hand, the symbol a∗(f) or a†(f) is commonly used for
the creation operator on the Boson Fock space and a(f) for the annihilation, which we have
followed.

The construction of monotone additive processes from the Markov processes (Xt)t≥0 is due
to [67]. In the original paper unbounded operator processes are treated. Our construction is
limited to the bounded case, which greatly simplifies the proofs and formulations; already the
definition of monotone additive processes is more involved in the unbounded operator setting.
The Markov process (Xt)t≥0 was first considered by Biane [34] in connection to free additive
processes and subordination functions.

There are other constructions of monotone additive processes as solutions to quantum sto-
chastic differential equations, see [24, 64] and [67]. Hamdi constructed a multiplicative mono-
tone unitary Brownian motion as a solution to a quantum SDE [74].

Classical stochastic processes related to monotone independence are studied in the literature:
a discrete-time analogue of the Markov process (Xt), i.e., Markov chains, can be similarly
defined and is studied by Letac and Malouche [103], Wang and Wendler [148]; Biane mentions
that the Markov process (Xt)t≥0 associated with Ft(z) =

√
z2 − 2t (the reciprocal Cauchy

transform of the arcsine law with mean 0 an variance t) is the Azéma martingale [34]; Belton
studied a semimartingale having the monotone Poisson distribution [25, 26].

8. Monotone independence in random matrix and graph theory

So far we have studied monotone independence from the viewpoint of analogy to probability
theory. Here we discuss different aspects of monotone independence: large random matrices
and a graph product.

For a square matrixXN of sizeN , recall from Example 1.6 (a) that the empirical eigenvalue
distribution is the probability measure on R

µXN
=

1

N

N∑
i=1

δλi(XN ),

where λi(XN), i = 1, 2, ..., N are the eigenvalues of XN counting multiplicities. For many ran-
dom matrix models XN , the empirical eigenvalue distributions converge weakly to a nonrandom
compactly supported probability measure µ on C as N → ∞. In addition, the largest modulus
of eigenvalues often converge to the largest modulus of the support of µ. For example, the
normalized Gaussian Unitary Ensemble (GUE) is a random matrix GN = (g(i, j))i,j∈[N ]

that satisfies the following conditions:
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Figure 3. A histogram for the eigenvalues of GN with N = 5000 and bin size
0.05. One can observe that the graph of the histogram looks like the probability
density function of the semicircle distribution. In fact, one can show that when
the bin size δN → 0+ (N → ∞) is appropriately selected, then the graph of the
normalized histogram (so that the area equals one) converges to (1/(2π))

√
4 − x2.

A remarkable sufficient condition N−2/3 logN ≪ δN ≪ 1 is given in [58, Corollary
4.2].

• g(i, j) = g(j, i) for all i, j, i.e., GN is Hermitian,

• the random variables {ℜg(i, j),ℑg(i, j), g(i, i) : 1 ≤ i, j ≤ N, i > j} are independent,

• ℜg(i, j) and ℑX(i, j) are distributed as N(0, 1/(2N)) if i ̸= j, and g(i, i) is distributed
as N(0, 1/N).

It is known that the empirical eigenvalue distribution of GN converges weakly to Wigner’s
semicircle distribution 1

2π

√
4 − x2 χ[−2,2](x) dx a.s., see e.g. [142, Theorem 2.4.2]. Moreover, the

largest eigenvalue converges to 2 a.s., see e.g. [142, Section 2.3]. A simulation is shown in Figure
3.

In general, the weak convergence of the empirical eigenvalue distributions does not guarantee
that the largest modulus of eigenvalues converges to the largest modulus of the support of the
limiting measure. This is because, in the convergence of empirical eigenvalue distributions, a
relatively small number of eigenvalues, e.g. of order o(N), will disappear in the large N limit.
For example, suppose that XN , N ∈ N are Hermitian matrices and µXN

weakly converges to a
probability measure µ. Then for any sequence of positive integers (ℓ(N))∞N=1 with ℓ(N) = o(N)
and a bounded continuous function f on R we have∫

R
f(x)µXN

(dx) =
1

N

ℓ(N)∑
i=1

f(λi(XN)) +
1

N

N∑
i=ℓ(N)+1

f(λi(XN)).

The first sum goes to zero since N → ∞ as∣∣∣∣∣∣ 1

N

ℓ(N)∑
i=1

f(λi(XN))

∣∣∣∣∣∣ ≤ ∥f∥L∞
ℓ(N)

N
→ 0,

and therefore, the first ℓ(N) eigenvalues do not contribute to the limit µ. To put it differently,
the weak convergence µXN

→ µ carries no information about the first ℓ(N) eigenvalues.
Eigenvalues located outside the support of the limiting measure in the large N limit are

called outliers. As an application of monotone independence, we will analyze some random
matrix models that have outliers in the large N limit.

8.1. Weingarten calculus on the unitary group. Let U be a Haar unitary random
matrix of size N , i.e., it is a random variable taking values in the group UN of unitary
matrices of size N such that the distribution on UN induced by U is the normalized Haar
measure. We use several known results on expectations of moments of entries of U . Let Sk
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denote the symmetric group on [k]. For each σ ∈ Sk and matrices A1, A2, ..., Ak ∈ MN(C), let
Trσ[A1, A2, ..., Ak] denote the product of traces according to the cycle decomposition of σ: if
σ = c1c2...cℓ where ci = (ki(1), ki(2), ..., ki(pi)) are cyclic permutations, then

Trσ(A1, A2, ..., Ak) :=
ℓ∏

i=1

Tr(Aki(1)Aki(2) · · ·Aki(pi)).

The number ℓ is determined uniquely by σ and is denoted ℓ(σ). For example for σ = (1, 4, 6)(2)(3, 5)
the above definition reads

Trσ[A1, A2, ..., A6] := Tr(A1A4A6)Tr(A2)Tr(A3A5).

There exists a function Wg:
(⋃

k∈NSk

)
× N → R, called the Weingarten function for the

unitary groups, such that

E[Trσ(A1UB1U
∗, A3UB2U

∗, . . . , AkUBkU
∗)]

=
∑

σ1,σ2,σ3∈Sk
σ1σ2σ3=σ

Trσ1(A1, A2, . . . , Ak)Trσ2(B1, B2, . . . , Bk)Wg(σ3, N) (8.1)

for any k,N ∈ N and nonrandom square matrices Ai, Bi ∈ MN(C), see [48].
Let Cp be the Catalan number

Cp :=
(2p)!

p!(p+ 1)!
, p ∈ N.

For σ ∈ Sk let |σ| be the minimal number of transpositions such that σ can be expressed as
the product of them. The relation ℓ(σ) = k − |σ| holds true. Let σ = c1 · · · cℓ(σ) be the cycle
decomposition of σ ∈ Sk and then let

m(σ) :=

ℓ(σ)∏
i=1

(−1)|ci|C|ci|. (8.2)

The Weingarten function satisfies

Wg(σ,N) = N−k−|σ|(m(σ) +O(N−2)), σ ∈ Sk, (8.3)

see [48, Corollary 2.7].

8.2. Asymptotic monotone independence of large random matrices. Since Voiculescu’s
pioneering work on asymptotic free independence of large random matrices [145], the method of
noncommutative probability has been applied to a wide range of theoretical and practical prob-
lems on random matrices. One of results in this direction is asymptotic monotone independence
for large random matrices.

Proposition 8.1. Let U(N) be an N ×N Haar unitary random matrix and (A(i, N) : i ∈ I),
(B(j,N) : j ∈ J) be families of N ×N nonrandom matrices for N ∈ N. Suppose that the limits

lim
N→∞

Tr(A(i1, N)ε1A(i2, N)ε2 · · ·A(ik, N)εk) ∈ C, (8.4)

lim
N→∞

1

N
Tr(B(j1, N)ε1B(j2, N)ε2 · · ·B(jk, N)εk) ∈ C (8.5)

exist for any k ∈ N, i1, i2, ..., ik ∈ I, j1, j2, ..., jk ∈ J and ε1, ε2, ..., εk ∈ {1, ∗}. Then for any
noncommutative polynomials Pr(xi : i ∈ I) ∈ C⟨xi : i ∈ I⟩ (r ∈ [k]) and Qs(yj : j ∈ J) ∈
C⟨1, yj : j ∈ J⟩ (s ∈ [k]), the matrices Ar = Ar(N) := Pr(A(i, N) : i ∈ I), Bs = Bs(N) :=
Qs(U(N)B(j,N)U(N)∗ : j ∈ J) satisfy the following estimates:

E[Tr(A1B1 · · ·AkBk)] = Tr[A1 · · ·Ak]
k∏

p=1

[
1

N
Tr(Bp)

]
+O(N−1), (8.6)

E
[
|Tr(A1B1A2B2 · · ·AkBk) − E[Tr(A1B1 · · ·AkBk)]|4

]
= O(N−2). (8.7)



MONOTONE PROBABILITY THEORY 99

Proof. Let γ be the circular permutation γ = (1, 2, . . . , k).

Proof of (8.6). The left hand side of the desired formula is exactly (8.1) for σ = γ. By the
assumptions on the convergence of traces, the following estimates hold:

Trσ1(A1, A2, . . . , Ak) = O(1), (8.8)

Trσ2(B1, B2, . . . , Bk) = O(Nk−|σ2|). (8.9)

Since Wg(σ3, N) = O(N−k−|σ3|), for a triple σ1, σ2, σ3 such that σ1σ2σ3 = γ, the contribution
of the summand is O(N−|σ2|−|σ3|). Therefore, the leading term of (8.1) is of order O(1) and it
appears when |σ2| = |σ3| = 0, i.e., only when σ2 = σ3 = 1k and σ1 = γ. Since m(γ) = 1 and so
Wg(γ,N) = N−k(1 +O(N−2)), we obtain the desired formula (8.6).

Proof of (8.7), Step 1: reduction of the problem. We prove a slightly stronger result: taking
additional polynomials of matrices Ar = Pr(A(i, N) : i ∈ I), Br = Qr(U(N)B(j,N)U(N)∗ :
j ∈ J), k + 1 ≤ r ≤ 4k and setting

Xi = Tr
(
A(i−1)k+1B(i−1)k+1 · · ·A(i−1)k+kB(i−1)k+k

)
, i = 1, 2, 3, 4, (8.10)

X̊i = Xi − E[Xi], (8.11)

we prove

E[X̊1X̊2X̊3X̊4] = O(N−2). (8.12)

This implies the desired (8.7) in the special case X1 = X3 = X2 = X4. Note that the last con-
dition X2 = X1 can be satisfied by selecting Ak+1 := A∗

k, Bk+1 := B∗
k−1, Ak+2 := A∗

k−1, Bk+2 :=
B∗

k−2, . . . , B2k−1 := B∗
1 , A2k = A∗

1, B2k = B∗
k, which yields

X1 = Tr((A1B1 · · ·AkBk)∗) = Trn(A∗
kB

∗
k−1A

∗
k−1 · · ·A∗

2B
∗
1A

∗
1B

∗
k) = X2.

Let Ii be the interval {(i − 1)k + 1, (i − 1)k + 2, . . . , (i − 1)k + k}, γi the cyclic permutation
((i− 1)k + 1, (i− 1)k + 2, . . . , (i− 1)k + k) of SIi , and γ∪4 := γ1γ2γ3γ4 ∈ S4k. Let us expand

E[X̊1X̊2X̊3X̊4] =
∑
J⊆[4]

EJ , where (8.13)

EJ := (−1)#JE

[∏
i∈J

Xi

] ∏
i∈[4]\J

E[Xi]. (8.14)

For example, our notation means E{1,3,4} = −E[X1E[X2]X3X4].

For each J ⊆ [4], from the Weingarten formulas for E
[∏

i∈J Xi

]
and for E[Xi], i ∈ [4] \ J ,

there exists a number fJ(σ1, σ2, N) such that

EJ =
∑

σ1,σ2,σ3∈S4k

σ1σ2σ3=γ∪4

Trσ1(A1, A2, . . . , A4k)Trσ2(B1, B2, . . . , B4k)fJ(σ1, σ2, N). (8.15)

The function fJ is either a product of Weingarten functions with signs or zero. Take again
J = {1, 3, 4} for example. The product of Weingarten formulas (8.1) for σ = γ2 and for
σ = γ1γ3γ4 gives permutations of SI2×SI1∪I3∪I4 , and so, for σ1, σ2, σ3 ∈ S4k with σ1σ2σ3 = γ∪4,

fJ(σ1, σ2, N) =

{
−Wg(σ3|I2 , N)Wg(σ3|I1∪I3∪I4 , N), if σ1, σ2 preserve I2 and I1 ∪ I3 ∪ I4,
0, otherwise.

The function fJ has a similar expression for general J .
We have the expression

E[X̊1X̊2X̊3X̊4] =
∑

σ1,σ2,σ3∈S4k

σ1σ2σ3=γ∪4

Trσ1(A1, . . . , A4k)Trσ2(B1, . . . , B4k)f(σ1, σ2, N),
(8.16)
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where

f(σ1, σ2, N) :=
∑
J⊆[4]

fJ(σ1, σ2, N). (8.17)

From the assumption of convergence of traces, we have the estimates Trσ1(A1, . . . , A4k) = O(1)
and Trσ2(B1, . . . , B4k) = O(N ℓ(σ2)) = O(N4k−|σ2|). Combined with (8.3) these estimates yield

Trσ2(B1, . . . , B4k)f(σ1, σ2, N) = O(N−|σ2|−|σ3|). (8.18)

We show the estimates

Trσ2(B1, . . . , B4k)f(σ1, σ2, N) = O(N−2), (8.19)

which suffice to finish the proof.

Proof of (8.7), Step 2: Proof of (8.19). Given σ1, σ2, σ3 ∈ S4k with σ1σ2σ3 = γ∪4, we introduce
an equivalence relation ∼ on [4k]: i ∼ j if there exists τ ∈ Grp⟨σ1, σ2, σ3⟩ such that τ(i) = j.
Since this group contains γ∪4, every interval Ii must be a subset of some equivalence class.
Then the permutations σ1, σ2, σ3 associate a set partition π(σ1, σ2, σ3) = {P1, . . . , Pm} of [4]
such that the subsets ⋃

i∈P1

Ii,
⋃
i∈P2

Ii, . . . ,
⋃
i∈Pm

Ii ⊆ [4k]

are exactly the equivalence classes.
On the other hand, a subset J ⊆ [4] also associates the set partition π(J) = {J, {p} : p ∈

[4] \ J} of [4]. Since fJ(σ1, σ2, N) vanishes if σ1 or σ2 do not preserve one of the subsets⋃
i∈J Ii, Ip, p ∈ [4] \ J , the only fJ ’s satisfying π(J) ≥ π(σ1, σ2, σ3) contribute to f in the sum

(8.17) and the other fJ ’s are zero. We discuss several cases according to π(σ1, σ2, σ3).

Case 1: π(σ1, σ2, σ3) = {[4]}, or equivalently, the group Grp⟨σ1, σ2, σ3⟩ acts on [4k] transitively.
In this case, fJ vanishes unless J = [4], and so f = f[4] = Wg(σ3, N). The case |σ2|+ |σ3| = 0 is
irrelevant because the condition σ1σ2σ3 = γ∪4 contradicts transitivity. The case |σ2| + |σ3| = 1
is also irrelevant because then one would be the identity and the other would be a transposition,
and again the condition σ1σ2σ3 = γ∪4 would contradict the transitivity. Therefore, only the
case |σ2| + |σ3| ≥ 2 occurs, and so Trσ2(B1, . . . , B4k)f(σ1, σ2, N) = O(N−2).

Case 2: π(σ1, σ2, σ3) is a pair partition, i.e., its each block has cardinality two. In this case
again we have f = f[4] = Wg(σ3, N), and from a similar reasoning we must have |σ2|+ |σ3| ≥ 2
and hence Trσ2(B1, . . . , B4k)f(σ1, σ2, N) = O(N−2).

In the other cases, a cancellation occurs between Wg functions.

Case 3: π(σ1, σ2, σ3) has two blocks with cardinality 1 and 3. For example, let us consider the
case π(σ1, σ2, σ3) = {{1, 3, 4}, {2}}. The equivalence classes are I1 ∪ I3 ∪ I4 and I2. The only
indices J ’s for which fJ is non-zero are J = {1, 3, 4}, {1, 2, 3, 4}. In these cases we have

f{1,3,4} = −Wg(σ3|I2 , N)Wg(σ3|I1∪I3∪I4 , N),

f{1,2,3,4} = Wg(σ3, N).

By (8.3) and the multiplicativity (8.2) of Moebius functions, we obtain

f = f{1,3,4} + f{1,2,3,4}

= N−4k−|σ3|(−m(σ3|I2)m(σ3|I1∪I3∪I4) + m(σ3)︸ ︷︷ ︸
=0

+O(N−2))

= O(N−4k−|σ3|−2).

Thus Trσ2(B1, . . . , B4k)f(σ1, σ2, N) = O(N−|σ2|−|σ3|−2) = O(N−2). The other cases of π(σ1, σ2, σ3)
are similar.
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Case 4: π(σ1, σ2, σ3) has three blocks. Let us consider the example π(σ1, σ2, σ3) = {{1}, {2}, {3, 4}}.
The indices J ’s for which fJ is non-zero are J = {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}. We see
that

f =f{3,4} + f{1,3,4} + f{2,3,4} + f{1,2,3,4}

=Wg(σ3|I1 , N)Wg(σ3|I2 , N)Wg(σ3|I3∪I4 , N) − Wg(σ3|I2 , N)Wg(σ3|I1∪I3∪I4 , N)

− Wg(σ3|I1 , N)Wg(σ3|I2∪I3∪I4 , N) + Wg(σ3, N)

=N−4k−|σ3|
(
m(σ3|I1)m(σ3|I2)m(σ3|I3∪I4) − m(σ3|I2)m(σ3|I1∪I3∪I4)

− m(σ3|I1)m(σ3|I2∪I3∪I4) + m(σ3) +O(N−2)
)

=O(N−4k−|σ3|−2).

The other π(σ1, σ2, σ3)’s can be handled in the same way.

Case 5: π(σ1, σ2, σ3) = {{1}, {2}, {3}, {4}}, i.e., every interval Ii is preserved by σ1, σ2, σ3. In
this case fJ for all the 16 subsets J ⊆ {1, 2, 3, 4} contribute to f . By the multiplicativity (8.2),
the dominant contribution to f is the sum of 16 terms

±N−4k−|σ3|m(σ3|I1)m(σ3|I2)m(σ3|I3)m(σ3|I4).

Exactly half of them have the minus sign, so their sum cancel and we obtain f = O(N−4k−|σ3|−2).

The above arguments finish the proof of (8.19). □

Theorem 8.2. Under the assumptions and notations of Proposition 8.1, we have

lim
N→∞

Tr(A1B1A2B2 · · ·AkBk) =
[

lim
N→∞

Tr(A1A2 · · ·Ak)
] k∏
p=1

[
lim

N→∞

1

N
Tr(Bp)

]
a.s.

Proof. The assumptions (8.4) and (8.5) imply that the limits

lim
N→∞

Tr(A1 · · ·Ak), lim
N→∞

1

N
Tr(Bp)

exist, and then the proven estimate (8.6) further implies

E[Tr(A1B1 · · ·AkBk)] =
[

lim
N→∞

Tr(A1 · · ·Ak)
] k∏
p=1

[
lim

N→∞

1

N
Tr(Bp)

]
. (8.20)

On the other hand, taking the sum
∑∞

N=1 of the estimate (8.7) yields

∞∑
N=1

|Tr(A1B1 · · ·AkBk) − E[Tr(A1B1 · · ·AkBk)]|4 < +∞ a.s.,

so that the summand converges to zero a.s. Combining this fact and (8.20) finishes the proof.
□

Remark 8.3. To show the almost sure convergence, we computed the L4-norm in Proposition
8.1. Of course the L2-norm is easier to calculate but it only gives the estimate O(N−1), which
is insufficient to deduce the almost sure convergence. One can confirm this through a simple
example for k = 1: for a rank-one projection P = diag(1, 0, 0, ..., 0) and deterministic matrices
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A,B ∈ MN(C) we can see

E[|Tr(PUBU∗) − E[Tr(PUBU∗)]|2]
= E[|Tr(PUBU∗)|2] − |E[Tr(PUBU∗)]|2

= E[Tr(PUBU∗)Tr(PUB∗U∗)] − |E[Tr(PUBU∗)]|2

= Tr(P )2|Tr(B)|2Wg(12, N) + Tr(P )2Tr(BB∗)Wg((1, 2), N)

+ Tr(P 2)|Tr(B)|2Wg((1, 2), N) + Tr(P 2)Tr(BB∗)Wg(12, N)

− Tr(P )2|Tr(B)|2Wg(11, N)2.

As soon as one applies (8.3) to the above expression, the first and fifth terms contain a can-
cellation and yield O(N−2); the second term is O(N−2); however, the third and forth terms do
not cancel and contribute O(N−1). In a similar manner, the L3-norm is also of order O(N−1).

Corollary 8.4 (Asymptotic monotone independence). Let ℓ ∈ N be fixed, Ã(i, N) (i ∈ I,N >
ℓ) be deterministic ℓ× ℓ matrices such that limN→∞ Ã(i, N) exists in Mℓ(C). Let

A(i, N) :=

(
Ã(i, N) O
O O

)
∈ MN(C).

Let (B(j,N))j∈J be a family of N ×N matrices that satisfy the assumption (8.5). Let U(N) be
a Haar unitary random matrix of size N . We consider the partial trace

φℓ(X) :=
1

ℓ

ℓ∑
i=1

Xi,i, X = (Xi,j)i,j∈[N ]. (8.21)

Then for any noncommutative polynomials Pr(xi : i ∈ I) ∈ C⟨xi : i ∈ I⟩ and Qs(yj : j ∈ J) ∈
C⟨1, yj : j ∈ J⟩ and any k ≥ 2, the matrices Ar := Pr(A(i, N) : i ∈ I) (r ∈ [k − 1]), Bs :=
Qs(U(N)B(j,N)U(N)∗ : j ∈ J) (s ∈ [k]) satisfy

lim
N→∞

φℓ(Bp) = lim
N→∞

1

N
Tr(Bp) a.s., p ∈ [k], (8.22)

lim
N→∞

φℓ(B1A1B2A2 · · ·Ak−1Bk) = lim
N→∞

φℓ(A1A2 · · ·Ak−1)
k∏

p=1

[
lim

N→∞
φℓ(Bp)

]
a.s. (8.23)

The second convergence shows that the subsets (A(i, N) : i ∈ I) and (U(N)B(j,N)U(N)∗ : j ∈
J) are almost surely “monotonically independent in the limit N → ∞” with respect to φℓ.

Proof. To show (8.22), we apply Theorem 8.2 to the rank-ℓ projection Pℓ(N) = diag(1, 1, ..., 1, 0, 0, ..., 0)
regarded as a family of single matrix, and the family (B(j,N) : j ∈ J). Then Theorem 8.2 for
k = 1, A1 = Pℓ(N) and B1 replaced with Bp, is exactly the desired (8.22).

To show (8.23), we again apply Theorem 8.2 now for the families (Pℓ(N), A(i, N) : i ∈ I)
and (B(j,N) : j ∈ J), the former of which satisfies the assumption (8.4). Then Theorem 8.2
with A1 := Pℓ(N), Ai replaced with Ai−1 for i ≥ 2, together with the proven (8.22), is exactly
the desired (8.23). □

Remark 8.5. For ℓ = 1, the factorization (8.23) holds without taking the limit N → ∞; see
Example 1.18.

Remark 8.6. Results of this section can be extended to the case when (B(j,N) : j ∈ J)
is a family of random matrices independent of the Haar unitary U(N) with an additional
assumption: Let us assume that for any k ∈ N, j1, j2, ..., jk ∈ J and ε1, ..., εk ∈ {1, ∗},

lim
N→∞

1

N
Tr(B(j1)

ε1 · · ·B(jk)εk) = lim
N→∞

E
[

1

N
Tr(B(j1)

ε1 · · ·B(jk)εk)

]
∈ C a.s. (8.24)

with shorthand symbol B(j) := B(j,N). Then we modify Proposition 8.1 as follows.



MONOTONE PROBABILITY THEORY 103

• We only take the expectation in (8.6) for the Haar unitary part:

EU [Tr(A1B1 · · ·AkBk)] = Tr[A1 · · ·Ak]
k∏

p=1

[
1

N
Tr(Bp)

]
+O(N−1)f(B1, ..., Bk, N). (8.25)

Here the term f(B1, ..., Bk, N) is a polynomial in N−1 and the normalized traces of Bi’s
that are bounded a.s. by the assumption (8.24).

• Instead of (8.7) we can show

E
[
|Tr(A1B1A2B2 · · ·AkBk) − EU [Tr(A1B1 · · ·AkBk)]|4

]
= O(N−2). (8.26)

For this first we show (8.7) only by taking the expectation concerning the Haar unitary U
and fixing the B(j,N)’s. Then the term O(N−2) in (8.7) would include random variables
of the form 1

N
Tr(B(j1)

ε1 · · ·B(jk)εk). Further taking the expectation with respect to
B(j,N)’s and using the condition (8.24) we can deduce (8.26). The modified formulas
(8.25) and (8.26) yield the same conclusions Theorem 8.2 and Corollary 8.4.

If (B(j,N) : j ∈ J) is an independent family of normalized GUEs, then the above require-
ments are satisfied because a GUE has the same law as UDU∗ where D is diagonal, U is Haar
unitary and D,U are independent. Condition (8.24) is satisfied because the convergence of the
expected traces is a consequence of Voiculescu’s asymptotic freeness [145], and the almost sure
convergence is known in Hiai and Petz [85, Corollary 4.3.6].

8.3. Outliers of additive and multiplicative perturbations. We consider finite-rank per-
turbations of random matrices. In this section we always assume that the eigenvalues λi(X), i ∈
[N ] of a Hermitian matrix X ∈ MN(C) are arranged in the way

λ1(X) ≥ λ2(X) ≥ · · · ≥ λN(X).

Let µX be the empirical eigenvalue distribution of X and νX the analytic distribution of X
with respect to the partial trace φℓ defined in (8.21). As being an analytic distribution, νX is
supported on Sp(X) that is the set of the eigenvalues of X.

We will use the following Weyl’s inequalities. These can be proved from the min-max theorem
and the reader is referred to [33, Chapter III.2] for the proofs.

Lemma 8.7. Let X, Y be N ×N Hermitian matrices.

(i) λi+j−1(X + Y ) ≤ λi(X) + λj(Y ) holds for 1 ≤ i, j ≤ N with i+ j − 1 ≤ N .

(ii) If X ≤ Y then λi(X) ≤ λi(Y ) for all i ∈ [N ].

(iii) |λi(X) − λi(Y )| ≤ ∥X − Y ∥ for all i ∈ [N ], where ∥ · ∥ is the operator norm.

Theorem 8.8. Let ℓ ∈ N be fixed, θ1 ≥ θ2 ≥ · · · ≥ θℓ > 0 and

P = P (θ1, θ2, ..., θℓ, N) := diag(θ1, θ2, ..., θℓ, 0, 0, ..., 0) ∈ MN(C), N ≥ ℓ.

Let U = U(N) be a Haar unitary random matrix of size N defined on a common probability
space (Ω,F ,P) and B = B(N) be an N×N Hermitian deterministic matrix. Suppose that there
exists a probability measure µ on R such that β := max supp(µ) < +∞, µ has finite moments
of all orders that satisfy Carleman’s condition (A.2), and

lim
N→∞

1

N
Tr(Bk) =

∫
R
xk µ(dx), k ∈ N, (8.27)

lim
N→∞

λ1(B) = β. (8.28)

Let γ := Fµ(β + 0) that lies in [0,+∞). For each i ∈ [ℓ] the following hold.

(i) The empirical eigenvalue distribution of UBU∗ + P converges weakly to µ a.s.

(ii) If θi > γ, then the equation Fµ(x) = θi has a unique solution x = xi ∈ (β,+∞) and
limN→∞ λi(UBU

∗ + P ) = xi a.s.
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(iii) If θi ≤ γ then limN→∞ λi(UBU
∗ + P ) = β a.s.

Remark 8.9. The result also holds when B is a random matrix independent of U and satisfying
conditions (8.24), (8.27) and (8.28) almost surely.

Proof. Before going into the details, it would be helpful for the reader to have the key idea: by
Corollary 8.4, the matrices P and UBU∗ are asymptotically monotonically independent with
respect to the state φℓ. Then we can identify the limit distribution of UBU∗ + P with respect
to φℓ as the monotone convolution of νP and µ. If this distribution has an atom at a point in
(β,+∞), then the matrix UBU∗+P must have an eigenvalue near the point, which becomes an
outlier. This point is exactly the solution x to the equation Fµ(x) = θi. However, this argument
only shows the existence of an outlier and does not tell us the number or multiplicities of them.
Then Weyl’s inequalities provide sufficiently sharp estimates on the number of outliers. The
details are as follows.

Weak convergence of µB and µUBU∗+P . Assumption (8.27) and the determinacy of the moment
sequence of µ imply that the empirical eigenvalue distribution µB converges weakly to µ. Con-
cerning µUBU∗+P , we expand (UBU∗ + P )k into monomials. Each monomial except (UBU∗)k

has at least one factor P , so that by Theorem 8.2 its evaluation by Tr converges almost surely
to a finite value. Therefore, the evaluation by the normalized trace converges to zero. The
above arguments yield

lim
N→∞

1

N
Tr((UBU∗ + P )k) = lim

N→∞
Tr((UBU∗)k) = lim

N→∞
Tr(Bk) a.s., k ∈ N. (8.29)

This implies the weak convergence µUBU∗+P → µ a.s.

General estimates on eigenvalues. As a preparation for proving (ii) and (iii) we derive some
facts from Weyl’s inequalities. First, the weak convergence µB → µ and (8.28) imply

lim
N→∞

λi(B) = β, i ∈ N, (8.30)

because otherwise µ would be supported on a smaller interval (−∞, β − ε).
Next, by Lemma 8.7 (i) we have

λi+j−1(UBU
∗ + P ) ≤ λi(B) + λj(P ), i+ j − i ≤ N.

Since P has ℓ positive eigenvalues, we conclude λi+ℓ(UBU
∗ +P ) ≤ λi(B) for all 1 ≤ i ≤ N − ℓ.

Combining this and (8.30) yields

lim sup
N→∞

λi+ℓ(UBU
∗ + P ) ≤ β, i ∈ N. (8.31)

Since the weak convergence limit of µUBU∗+P is also µ, we must have

lim inf
N→∞

λi(UBU
∗ + P ) ≥ β a.s., i ∈ N; (8.32)

otherwise the measure µ would be supported on (−∞, β − ε) for some ε > 0, which would be
a contradiction. The previous two inequalities imply

lim
N→∞

λi+ℓ(UBU
∗ + P ) = β a.s., i ∈ N. (8.33)

Asymptotic monotone independence with measurability issues. Corollary 8.4 can be applied to
the families of single matrices {P (Θ, N)} and {B(N)}, which yields with notation B̃ := UBU∗

lim
N→∞

φℓ(B̃
p) = lim

N→∞

1

N
Tr(B̃p) a.s., p ∈ N0, (8.34)

lim
N→∞

φℓ(B̃
p0P q1B̃p1P q2 · · ·P qkB̃pk) = lim

N→∞
φℓ(P

q1+q2+···+qk)
k∏

i=0

[
lim

N→∞
φℓ(B̃

pi)
]

a.s. (8.35)
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for all k ∈ N, qi ∈ N and pi ∈ N0. A technical issue to note here is that the almost sure
convergence above holds on an event ΩΘ of probability one depending on Θ = (θ1, ..., θℓ).
Because we will change the parameter Θ later, let us consider the countable set

S := {(θ1, θ2, ..., θℓ) ∈ Qℓ : θ1 > θ2 > · · · > θℓ > 0}

and an event Ω′ ∈ F with probability one defined by

Ω′ := {ω ∈ Ω : (8.29), (8.31), (8.32), (8.34) and (8.35) hold

for all i, k ∈ N, p, pi ∈ N0, qi ∈ N and Θ ∈ S}.

For any sample ω ∈ Ω′ it holds from (8.35) that

lim
N→∞

∫
R
xk νUBU∗+P (dx) = lim

N→∞
φℓ((UBU

∗ + P )k)

=

∫
R
xk(νP ▷ µ)(dx), k ∈ N.

Note that νP = 1
ℓ
(δθ1 + δθ2 + · · · + δθℓ). By Proposition A.4, νP ▷ µ has a determinate moment

sequence, and hence by Proposition A.6, νUBU∗+P weakly converges to νP ▷ µ. According to
Theorem 5.1, the limit distribution has the Cauchy transform

GνP (Fµ(z)) =
1

ℓ

(
1

Fµ(z) − θ1
+

1

Fµ(z) − θ2
+ · · · +

1

Fµ(z) − θℓ

)
.

Since µ is supported on (−∞, β], the reciprocal Cauchy transform Fµ has an analytic
continuation to C \ (−∞, β], strictly increasing and taking positive values on (β,+∞), and
limx→+∞ Fµ(x) = +∞; see Proposition 4.39. This implies γ = Fµ(β + 0) ∈ [0,∞) and, if
θi > γ, the existence of a unique solution xi to Fµ(x) = θi as stated in (ii).

Completing the proof. Now we are ready to finish the proofs of (ii) and (iii).

Case 1: Θ ∈ S, θ1 > · · · > θℓ > γ. Since for each i ∈ [ℓ] the equation Fµ(x) = θi has a solution
x = xi > β with x1 > x2 > · · · > xℓ > β, the function GνP (Fµ(z)) has a pole at xi, so that the
monotone convolution νP ▷ µ has an atom at each xi. We take ε > 0 so that xℓ > β + ε. This
implies that for sufficiently large N , the matrix UBU∗ + P has at least one eigenvalue close to
xi for each i, so that altogether at least ℓ eigenvalues on the interval (β+ ε,+∞). On the other
hand, (8.33) implies that UBU∗ + P has at most ℓ eigenvalues greater than β + ε, so that has
exactly ℓ eigenvalues on (β + ε,+∞). This shows limN→∞ λi(UBU

∗ + P ) = xi for all i ∈ [ℓ]
and ω ∈ Ω′.

Case 2: Θ ∈ S, θ1 > · · · > θℓ−1 > γ ≥ θℓ. We again fix a sample ω ∈ Ω′. We consider θℓ
as a variable. In case 1, the function (γ, θℓ−1) ∩ Q ∋ θℓ 7→ xℓ(θℓ) ∈ (β,+∞) is continuous
and limθℓ↓γ,θℓ∈Q xℓ(θℓ) = β. By Lemma 8.7 (ii), the function Q ∋ θℓ 7→ λℓ(UBU

∗ + P ) is non-
decreasing, so that for each θℓ ∈ (0, γ] we obtain lim supN→∞ λℓ(UBU

∗ + P ) ≤ β. Combined
with (8.32) this yields

lim
N→∞

λℓ(UBU
∗ + P ) = β.

Hence, for each ε > 0, UBU∗+P has at most ℓ−1 eigenvalues on (β+ε,+∞) for all large N . On
the other hand, νP▷µ has an atom at xi > β+ε for i ∈ [ℓ−1]. Therefore, for large N , UBU∗+P
must have exactly ℓ− 1 eigenvalues on (β + ε,+∞). The weak convergence νUBU∗+P → νP ▷µ
implies the convergence λi(UBU

∗ + P ) → xi for each i ∈ [ℓ− 1], finishing the proof of Case 2.
Repeating similar arguments yields the statement in the case Θ ∈ S, θi > γ ≥ θi+1.

Case 3: Θ ∈ Rℓ, θ1 ≥ · · · ≥ θℓ−1 > 0 (the most general case). We take a sequence Θ(n) ∈ S
such that Θ(n) converges to Θ. By Lemma 8.7 (iii), we have the uniform estimate |λi(UBU∗ +

P (Θ)) − λi(UBU
∗ + P (Θ(n)))| ≤ maxi∈[ℓ] |θi − θ

(n)
i |, which finishes the proof. □
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Figure 4. A histogram for the eigenvalues of G+P , where G is the normalized
GUE of matrix size 2000, P = diag(3, 2, 2, 2, 1, 0, 0, . . . , 0) and the bin size is
selected to be 1/10.

Example 8.10. Let µ be the standard semicircle distribution (1/(2π))
√

4 − x2χ[−2,2](x) dx.
From (4.38) we have

Fµ(z) =
z +

√
z2 − 4

2
.

We see that Fµ(2 + 0) = 1 and for each θ > 1 the solution to Fµ(x) = θ is given by x =
θ + 1/θ > 2. Therefore,

lim
N→∞

λi(UBU
∗ + P ) =

θi +
1

θi
, θi > 1,

2, 0 < θi ≤ 1.

See Figure 4 for a simulation.

For the multiplicative perturbation, we can obtain a similar result.

Theorem 8.11. Let ℓ, P and U be as defined in Theorem 8.8. Let B = B(N) be an N × N
positive semi-definite deterministic matrix and

YN := (I + P )
1
2UBU∗(I + P )

1
2 .

We assume that the empirical eigenvalue distribution µB converges weakly to a probability mea-
sure µ supported on an interval [0, β] with 0 ≤ β < +∞, and that λ1(B) converges to β as
N → ∞. The function ηµ has analytic continuation to C \ [1/β,+∞), still denoted as ηµ. The
limit δ := ηµ(1/β − 0) ∈ (0,+∞] exists and the following holds for each i ∈ [ℓ].

(i) The empirical eigenvalue distribution of YN converges weakly to µ a.s.

(ii) If 1 + θi > 1/δ, then the equation ηµ(y) = 1/(1 + θi) has a unique solution y = yi ∈
(0, 1/β) and limN→∞ λi(YN) = 1/yi a.s.

(iii) If 1 + θi ≤ 1/δ then limN→∞ λi(YN) = β a.s.

Proof. The proof is quite analogous to that of Theorem 8.8. We omit the details and only
mention the main differences. Let B′ := UBU∗.

• Under our assumptions, we have the moment convergence

lim
N→∞

1

N
Tr(Bk) =

∫
[0,β]

xk µ(dx), k ∈ N.

• The matrix Y ′
N = Y ′

N(Θ) :=
√
B′(I+P )

√
B′ has the same eigenvalues as YN . We then use

the decomposition Y ′
N = B′ +

√
B′P

√
B′. Because the rank of the positive semi-definite

matrix
√
B′P

√
B′ is at most ℓ, we can deduce λi+ℓ(YN) = λi+ℓ(Y

′
N) → β a.s. for each

i ∈ N.
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• The almost sure limit of νYN
is the multiplicative monotone convolution νI+P ⟳ µ, where

νI+P =
1

ℓ

ℓ∑
i=1

δ1+θi .

• The function ψµ has an analytic continuation to C \ [1/β,+∞), still denoted as ψµ, such

that ψµ(z) = ψµ(z). We can check that ψ′
µ > 0 on (0, 1/β) and η′µ = ψ′

µ/(1 +ψµ)2 > 0 on
(0, 1/β). Therefore, δ := ηµ(1/β − 0) exists in (0,+∞]. Note that ηµ(0) = 0.

• The relation ψνI+P⟳µ = ψνI+P
(ηµ(z)) reads

ψνI+P⟳µ(z) =
1

ℓ

ℓ∑
i=1

(1 + θi)ηµ(z)

1 − (1 + θi)ηµ(z)
.

From this relation, if the equation ηµ(y) = 1/(1 + θi) has a solution y = yi ∈ (0, 1/β) then
ψνI+P⟳µ has a pole at yi and so the measure νI+P ⟳ µ has an atom at 1/yi.

• Using the matrix Y ′
N above, we can deduce the monotonicity of the map θi 7→ λi(Y

′
N(Θ))

and the estimate |λi(Y ′
N(Θ)) − λi(Y

′
N(Θ(n)))| ≤ βmaxi∈[ℓ] |θi − θ

(n)
i |. □

Remark 8.12. We can also consider the more general case when B is Hermitian. For simplicity,
assume that µB converges to µ supported on a compact interval [α, β] with α < 0 < β. In
this case the above method to estimate the number of outliers does not work because Y ′

N =√
B′(I +P )

√
B′ cannot be defined. However, we can still prove that if ηµ(y) = 1/(1 + θi) has a

solution y = yi ∈ (0, 1/β) then for any ε > 0 there exists N0 ∈ N such that min{|λj(YN)−1/yi| :
j ∈ [N ]} < ε a.s. for all N ≥ N0. This is because as soon as the measure νI+P ⟳ µ has an atom
at 1/yi there must exists at least one eigenvalue of YN close to 1/yi. Note that ηµ still has an
analytic continuation to (0, 1/β) but it might not be increasing on (0, 1/β) anymore.

Example 8.13. Suppose that µ is the Marchenko–Pastur distribution

µ(dx) =
1

2π

√
4 − x

x
χ(0,4)(x) dx.

The Cauchy transform of µ is known in Example 4.48 as Gµ(z) = (z −
√
z2 − 4z)/(2z), which

implies

Fµ(z) =
z +

√
z2 − 4z

2
and ηµ(z) =

1 −
√

1 − 4z

2
.

We see that ηµ(1/4 − 0) = 1/2 and hence for each θ > 1 the solution to ηµ(y) = 1/(1 + θ) is
given by y = θ/(θ + 1)2 < 1/4. Therefore, for each i ∈ N,

lim
N→∞

λi((I + P )
1
2UBU∗(I + P )

1
2 ) =

θi +
1

θi
+ 2, θi > 1,

4, 0 < θi ≤ 1.

See Figure 5 for a simulation where UBU∗ is selected to be a Wishart matrix.

Example 8.14. Suppose that µ is the standard semicircle distribution. The η-transform is
given by

ηµ(z) =
1 −

√
1 − 4z2

2
.

We see that ηµ(1/2 − 0) = 1/2 and hence for each θ > 1 the solution to ηµ(y) = 1/(1 + θ)

is given by y =
√
θ/(θ + 1) < 1/2. If θi > 1, from Remark 8.12, we know that there is an

eigenvalue of YN := (I + P )
1
2UBU∗(I + P )

1
2 converging to

√
θi + 1/

√
θi. See Figure 6 for a

simulation where UBU∗ is selected to be the normalized GUE.
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Figure 5. A histogram for the eigenvalues of (I + P )
1
2G∗G(I + P )

1
2 , where G

is the normalized GUE of size 1000 and P = diag(4, 3, 3, 3, 1, 0, 0, . . . , 0) and the
bin size is selected to be 1/10. There are three eigenvalues near the theoretical
limit 16/3 = 5.333... and one eigenvalue near 6.25.
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Figure 6. A histogram for the eigenvalues of (I + P )
1
2G(I + P )

1
2 , where G

is the normalized GUE of size 2000 and P = diag(5, 5, 3, 3, 1/2, 0, 0, . . . , 0) and
the bin size is selected to be 1/10. This simulation suggests that the number of
eigenvalues in (2+ε,+∞) in the large N limit is exactly the number of θi’s larger
than one.

8.4. Comb product of graphs. As another application of monotone independence, we con-
sider a certain graph product. A directed graph is a pair G = (V,E), where V is a set and
E ⊆ V × V . For simplicity, let us assume that V is a finite set. Each element v ∈ V is called
a vertex and (u, v) ∈ E is called an edge (from u to v). In particular, an edge (v, v) ∈ E is
called a loop. Let ℓ2(V ) be the finite-dimensional Hilbert space of the functions f : V → C
equipped with inner product ⟨f, g⟩ :=

∑
v∈V f(v)g(v). The adjacency matrix of G is a linear

operator on ℓ2(V ) defined by

(AGf)(v) :=
∑

u∈V,(u,v)∈E

f(u).

If we assume V = {1, 2, ..., N} and identify f with the row vector (f(1), f(2), ..., f(N)), then
AG can be identified with the matrix whose (i, j) entry is 1 if (i, j) ∈ E and zero otherwise,
acting on the row vector f from the right.† The adjacency matrix contains all information
about G.

Let o be a vertex of G and we set the vector state φo : B(ℓ2(V )) → C by φo(a) := ⟨δo, aδo⟩,
where δo is the function defined by

δo(v) =

{
1, v = o,

0, v ̸= o.

†Multiplying a row vector by a matrix from the right is a common convention in some fields, e.g. in the theory
of Markov chains.
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Figure 7. Comb product. The root of the second graph is denoted as ⊙.

Then the nth moment φ(An
G) is exactly the number of directed paths of length n on G started

from o and terminated at o.
Let Gi = (Vi, Ei) be two finite directed graphs. We specify a vertex o2 ∈ V2 for G2, called the

root. The comb product (also called a rooted product) of G1 and G2 is a directed graph G
with vertex set V := V1×V2 and edge set E ⊆ V ×V defined as follows: for (u1, u2), (v1, v2) ∈ V ,

((u1, u2), (v1, v2)) ∈ E ⇐⇒

{
(u1, v1) ∈ E1 and u2 = v2 = o2, or

u1 = v1 and (u2, v2) ∈ E2.

We write G = G1 ▷ G2. The comb product is the graph made by gluing copies of G2 to each
vertex of G1 at o2, see Figure 7.

Proposition 8.15. Under the natural identification ℓ2(V1 × V2) = ℓ2(V1) ⊗ ℓ2(V2), we have

AG1▷G2 = AG1 ⊗ P2 + I1 ⊗ AG2 ,

where I1 is the identity operator on ℓ2(V1) and P2 is the orthogonal projection onto Cδo2.

Proof. It suffices to check the formula on simple tensors, i.e., functions of separated variables
f(v1, v2) = g(v1)h(v2):

(AG1▷G2f)(v1, v2) =
∑

(u1,u2)∈V1×V2

((u1,u2),(v1,v2))∈E

g(u1)h(u2)

=
∑

(u1,u2)∈V1×V2

(u1,v1)∈E1,u2=v2=o2

g(u1)h(u2) +
∑

(u1,u2)∈V1×V2

u1=v1,(u2,v2)∈E2

g(u1)h(u2)

=

 ∑
u1∈V1

(u1,v1)∈E1

g(u1)

h(o2)δo2(v2) + g(v1)

 ∑
u2∈V2

(u2,v2)∈E2

h(u2)


= (AG1g)(v1)(P2h)(v2) + g(v1)(AG2h)(v2)

= [(AG1 ⊗ P2 + I1 ⊗ AG2)f ](v1, v2). □

Observe that from Example 1.17 that AG1▷G2 is the sum of monotonically independent ran-
dom variables with respect to the state φ(o1,o2) = ⟨δ(o1,o2), ·δ(o1,o2)⟩.

We can consider the comb product of more than two graphs. In fact, the comb product
satisfies the following associativity.

Proposition 8.16. Let G1, G2, G3 be finite directed graphs, and o2 ∈ V2 and o3 ∈ V3 be roots.
We select (o2, o3) as the root of G2 ▷ G3. Then the bijection V1 × (V2 × V3) ≃ (V1 × V2) × V3
induces the isomorphism

G1 ▷ (G2 ▷G3) ≃ (G1 ▷G2) ▷G3.

Proof. It suffices to show that the adjacency matrices coincide on ℓ2(V1) ⊗ ℓ2(V2) ⊗ ℓ2(V3). On
one hand we have

AG1▷(G2▷G3) = AG1 ⊗ P2,3 + I1 ⊗ AG2▷G3

= AG1 ⊗ (P2 ⊗ P3) + I1 ⊗ (AG2 ⊗ P3 + I2 ⊗ AG3)

≃ AG1 ⊗ P2 ⊗ P3 + I1 ⊗ AG2 ⊗ P3 + I1 ⊗ I2 ⊗ AG3 , (8.36)
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where P2,3 is the orthogonal projection from ℓ2(V2 × V3) onto Cδ(o2,o3), which is P2 ⊗ P3 under
the identification ℓ2(V2 × V3) = ℓ2(V2) ⊗ ℓ2(V3). A similar calculation shows that A(G1▷G2)▷G3

has the same expression (8.36). □

If both G1, G2 have roots o1, o2 respectively, then the comb product G1 ▷G2 has the natural
root (o1, o2), and thus the comb product provides an associative binary operation for rooted
finite directed graphs (G1, o1) ▷ (G2, o2) := (G1 ▷G2, (o1, o2)).

Let (G, o) be a finite rooted undirected graph, where “undirected” means that (u, v) ∈ E
implies (v, u) ∈ E, or equivalently, AG is a self-adjoint operator. Assume further that (o, o) /∈ E
and

deg(o) := #{v ∈ V : (v, o) ∈ E} ≥ 1.

Let (GN , oN) := (G, o)▷N be the N -fold comb product of (G, o). Having no loop at o implies
that AG has mean 0 with respect to φo. Since the adjacency matrix of GN is the sum of mono-
tonically independent, identically distributed random variables with mean 0, the monotone
CLT (Theorem 3.15) implies

lim
N→∞

φoN

( AN√
deg(o)N

)k
 =

∫ √
2

−
√
2

xk
dx

π
√

2 − x2
. (8.37)

Note that deg(o) is exactly the second moment of AG with respect to φo. The convergence
(8.37) means that the number of paths of length k on GN started from oN and terminated at
oN is

deg(o)
k
2

[∫ √
2

−
√
2

xk
dx

π
√

2 − x2
+ o(1)

]
N

k
2

as N → ∞.

8.5. Notes. The change of the location of the largest eigenvalue of random matrices depending
on perturbation is often called the BBP phase transition, named after the work of Baik, Ben
Arous and Péché [16]. Forrester gives an excellent survey on rank one perturbations including
earlier works [62].

The application of monotone independence to outliers is due to Cébron, Dahlqvist and Gabriel
[40]. Our Corollary 8.4 is pointed out in [40] and Theorem 8.8 is an extension of a result stated
in [40, Section 1.4]. Theorems 8.8 and 8.11 are close to the results of Benaych-Georges and
Nadakuditi [29, Theorem 2.1, Theorem 2.6]. The difference is that our result for additive per-
turbation model allows the limit distribution to have unbounded support, while if the matrices
B(j,N) are random then we need a stronger assumption than [29] even if the limit distribution
is compactly supported; see Remark 8.6. Note that we have not included (a fixed number of)
negative diagonal entries in P but such an extension is also possible for the additive pertur-
bation and the proof requires only small modifications. For the multiplicative perturbation,
however, in case P contains negative eigenvalues, it is not clear how many negative eigenvalues
the matrix

√
B′P

√
B′ would have. The reader is referred to e.g. [125, 21] for further results on

outliers.
Formula (8.6) is a slight extension of a result of Shlyakhtenko [135]; note that a stronger

statement is given in [45, Theorem 4.1] but it contains an error: the result would be correct if
the matrices Aj(n), Bj(n) are deterministic just as in our result (8.6). The almost sure version
(Theorem 8.2) is proved by Collins, Hasebe and Sakuma [45]. The factorization formula (8.6)
or Theorem 8.2 is abstracted to the notion of “cyclic monotone independence” in [45] and
is further developed e.g. in [7, 11, 40, 46, 68]. Another random matrix model that satisfies
asymptotic monotone independence is constructed and studied by Lenczewski [100, 101] and
by Banna, Mingo and Tseng [17, 109].

The relation between the comb product of graphs and monotone independence appeared
in Accardi, Ben Ghorbal and Obata’s work [1]. Arizmendi, Hasebe and Lehner studied the
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empirical eigenvalue distribution of the adjacency matrix of (G, o)▷N in the large N limit
[11]. The limit distribution is not universal and depends heavily on the original graph (G, o).
Schleißinger studied comb products of non-identical rooted graphs and obtained an approxima-
tion of (continuous-time) monotone convolution hemigroups by discrete-time ones [131].

There are other graph products that correspond to other independences in noncommutative
probability. The adjacency matrix of the free product of graphs is the sum of free independent
operators. Accardi, Lenczewski and Sa lapata decomposed the free product graph into the
comb product of two subgraphs related to subordination of free convolution [2]. Lenczewski
constructed a graph product that corresponds to conditionally monotone independence [102].
Garza-Vargas and Kulkarni constructed an amalgamated free product of graphs and applied it
to the spectral analysis of Jacobi matrices of graphs [69]. Obata’s monograph [122] contains
other notable examples of graph products and references to earlier works.

Appendix A. Moments and weak convergence

In noncommutative probability, moments of random variables are fundamental concepts. We
collect here supplementary results on moments.

Definition A.1. Let µ be a probability measure on R having finite moments of all orders. We
say that µ has a determinate moment sequence if no other probability measures have the
same moment sequence.

Example A.2. Let −1 ≤ ε ≤ 1. The probability measure

µε(dx) =
1√
π
x−1e−(log x)2 [1 − ε sin(2π log x)]χ(0,∞)(x) dx

has an indeterminate moment sequence because the moments are independent of ε. The measure
µ0 is the distribution of the random variable eX where X has the distribution N(0, 1/2) and
is called a lognormal distribution. See [3, p. 88] and [134, pp. 88–90] for more examples of
indeterminate moment sequences.

We show a simple criterion for the determinacy of the moment problem.

Proposition A.3. Let µ be a probability measure on R with compact support. Then the moment
sequence of µ is determinate.

Proof. Suppose that µ is supported on the compact interval [−R,R]. Suppose that ν is a
probability measure on R having the same moment sequence.

Step 1: ν is also supported on [−R,R]. For this, let us observe the obvious bound

m2k(µ) =

∫
[−R,R]

x2k µ(dx) ≤ R2k.

Suppose to the contrary that ν is not supported on [−R,R]. Then there would exist R2 > R
such that ν(|x| > R2) > 0. Then

R2k ≥ m2k(ν) ≥
∫
|x|>R2

x2kν(dx) ≥ R2k
2 ν(|x| > R2),

which would yield the contradiction

0 < ν(|x| > R2) ≤
(
R

R2

)2k

→ 0, k → ∞.

Step 2: µ = ν. We have now∫
[−R,R]

f(x)µ(dx) =

∫
[−R,R]

f(x) ν(dx) (A.1)
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for any polynomial f . By Weierstrass’s theorem, the above holds for any continuous function f
on [−R,R]. Then some standard technique in probability theory shows µ = ν; for example, we
first approximate every indicator function χI over a closed interval I ⊆ [−R,R] by an increasing
sequence of nonnegative continuous functions, and then by the monotone convergence theorem,
(A.1) imply µ(I) = ν(I). By Proposition 4.11, we conclude µ = ν. □

A more general criterion is Carleman’s condition∑
n≥1

m2n(µ)−
1
2n = +∞. (A.2)

If a probability measure µ satisfies Carleman’s condition then the moment sequence of µ is
determinate; see [3, p. 85] or [134, Theorem 4.3]. It is easy to see that if µ has compact support
then µ satisfies Carleman’s condition. The normal distribution N(m,σ2) and the exponential
distribution λe−x/λ dx, x > 0 satisfy Carleman’s condition.

Proposition A.4. Let µ, ν be probability measures on R. If µ has compact support and ν
satisfies Carleman’s condition, then µ▷ ν also satisfies Carleman’s condition.

Proof. From the moment formula (5.8) for monotone convolution and inequality (4.19), we have

m2n(µ▷ ν) ≤
2n∑
ℓ=0

∑
k0,k1,...,kℓ≥0,

k0+k1+···+kℓ=2n−ℓ

|mℓ(µ)||mk0(ν)||mk1(ν)| · · · |mkℓ(ν)|

≤
2n∑
ℓ=0

∑
k0,k1,...,kℓ≥0,

k0+k1+···+kℓ=2n−ℓ

m2n(µ)
ℓ
2nm2n(ν)

k0+k1+···+kℓ
2n

=
2n∑
ℓ=0

(
2n

ℓ

)
m2n(µ)

ℓ
2nm2n(ν)

2n−ℓ
2n

=
[
m2n(µ)

1
2n +m2n(ν)

1
2n

]2n
.

Let an := m2n(µ)
1
2n and bn := m2n(ν)

1
2n . Suppose that µ is supported on [−R,R]. Then

an ≤ R. Note that due to (4.19) the sequence (bn)n≥1 is nondecreasing. If b1 = 0 then ν = δ0
and the statement is obvious. If b1 > 0 is then we can find c > 0 such that

m2n(µ▷ ν)−
1
2n ≥ 1

an + bn
≥ 1

R + bn
≥ c

bn
, n ∈ N.

Since
∑

n≥1 1/bn = +∞ we have
∑

n≥1m2n(µ▷ ν)−
1
2n = +∞. □

Next we discuss the relation between convergence of moments and weak convergence.

Lemma A.5. Let P be a family of probability measures on R. Let f : R → [0,+∞) be a
measurable function such that lim|x|→∞ f(x) = +∞ and

sup
µ∈P

∫
R
f(x)µ(dx) <∞. (A.3)

Then P is tight.

Proof. Let C ≥ 0 be the finite value (A.3). For any ε > 0 there exists R > 0 such that
inf |x|>R f(x) ≥ C+1

ε
. For all µ ∈ P we have

µ(R \ [−R,R]) =

∫
|x|>R

µ(dx) ≤
∫
|x|>R

ε

C + 1
f(x)µ(dx)

≤ ε

C + 1

∫
R
f(x)µ(dx) ≤ εC

C + 1
≤ ε. □
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Proposition A.6. Let µ, µn (n ∈ N) be probability measures on R. Suppose that µ, µn all have
finite moments of all orders, and

lim
n→∞

mk(µn) = mk(µ), k ∈ N.

If the moment sequence of µ is determinate, then µn converges weakly to µ.

Proof. Since m2(µn) converges to m2(µ), it is a bounded sequence and hence the assumption
of Lemma A.5 is satisfied for f(x) = x2, and so the sequence (µn)n≥1 is tight. Let (µn(j))j≥1 be
a subsequence that weakly converges to a probability measure µ′.

Step 1: µ′ has finite moments of all orders. For this we take a sequence of continuous functions
fN : R → [0, 1], N = 1, 2, 3, ... such that

• fN is supported on [−2N, 2N ],

• fN = 1 on [−N,N ],

• fN(x) ↑ 1 as N → ∞ at every x ∈ R.

In the obvious inequality∫
R
x2kfN(x)µn(j)(dx) ≤

∫
R
x2kµn(j)(dx) = m2k(µn(j))

passing to the limit j → ∞ yields∫
R
x2kfN(x)µ′(dx) ≤ m2k(µ).

Further passing to the limit N → ∞, together with the monotone convergence theorem, shows∫
R
x2kµ′(dx) ≤ m2k(µ) < +∞.

Thus µ′ has finite moments of all orders.

Step 2: mk(µ′) = mk(µ) for all k ∈ N. To show this we first observe that∫
|x|≥N

|x|kµn(dx) ≤
∫
|x|≥N

(
|x|
N

)k

|x|kµn(dx) ≤ 1

Nk
m2k(µn) ≤ CkN

−k,

where Ck := supn∈Nm2k(µn) < +∞. With this inequality we obtain

|mk(µ′) −mk(µn(j))| ≤
∣∣∣∣∫

R
xkfN(x)µ′(dx) −

∫
R
xkfN(x)µn(j)(dx)

∣∣∣∣︸ ︷︷ ︸
=:ε(N,j)

+

∣∣∣∣∫
R
xk(1 − fN(x))µ′(dx)

∣∣∣∣+

∣∣∣∣∫
R
xk(1 − fN(x))µn(j)(dx)

∣∣∣∣
≤ ε(N, j) +

∫
|x|≥N

|x|kµ′(dx) + CkN
−k.

As limj→∞ ε(N, j) = 0, taking N large enough and then j large enough, we obtain

mk(µ) = lim
j→∞

mk(µn(j)) = mk(µ′).

Step 3. Since the moment sequence of µ is determinate, we have µ = µ′. The whole above
argument shows that any subsequence of (µn)n≥1 has a further subsequence that weakly con-
verges to µ. By Lemma 4.2, we conclude that the original sequence (µn)n≥1 converges weakly
to µ. □
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Appendix B. Inverse mapping of Cauchy transform

We study the inverse mapping of (reciprocal) Cauchy transform to complete the proof of
Proposition 5.14.

Lemma B.1. Let E ⊂ C be a convex subset and f : E → C be the restriction of a holomorphic
function defined on an open set containing E such that ℑ[eiαf ′(z)] > 0 holds on E for some
constant α ∈ [0, 2π). Then f is injective on E.

Proof. By considering g(z) := eiαf(z), we may assume from the beginning that α = 0. For any
z0, z1 ∈ D, the following identity holds:

f(z1) − f(z0) =

∫ 1

0

d

dt
f((1 − t)z0 + tz1) dt

= (z1 − z0)

∫ 1

0

f ′((1 − t)z0 + tz1) dt.

Since the number C(z0, z1) = inf{ℑ[f ′((1 − t)z0 + tz1)] : t ∈ [0, 1]} is positive, the inequality

|f(z1) − f(z0)| ≥ C(z0, z1)|z1 − z0|

implies the injectivity of f . □

For a concise statement, we consider the domain

▽γ,δ := ▽γ ∩ {z : ℑ(z) > δ} = {z ∈ C+ : ℑ(z) > max{γ|ℜ(z)|, δ}}, γ, δ > 0.

Proposition B.2. Let µ be a probability measures on R. For every 0 < ε < γ < 1 there
exists δ0 = δ0(γ, ε) > 0 such that, for all δ ≥ δ0, the function Fµ is injective in ▽γ,δ and
▽γ+ε,(1+ε)δ ⊆ Fµ(▽γ,δ) ⊆ ▽γ−ε,(1−ε)δ.

Proof. Injectivity. We first establish

|F ′
µ(z) − 1| = o(1), z → ∞, z ∈ ▽γ. (B.1)

Using Proposition 4.34(3) we get

F ′
µ(z) = −Fµ(z)2G′

µ(z) = (1 + o(1))

∫
R

z2

(z − x)2
µ(dx)

as z → ∞, z ∈ ▽γ. Therefore, it suffices to show that

lim sup
z→∞
z∈▽γ

∣∣∣∣∫
R

z2

(z − x)2
µ(dx) − 1

∣∣∣∣ = 0. (B.2)

To see this, we use the inequalities |z2/(z − x)2| ≤ 1 + γ−2 and |z| ≤
√

1 + γ−2ℑz for z ∈ ▽γ

to proceed as, for each R > 0,∫
R

∣∣∣∣ z2

(z − x)2
− 1

∣∣∣∣ µ(dx) ≤
∫
[−R,R]

∣∣∣∣ z2

(z − x)2
− 1

∣∣∣∣ µ(dx) + (2 + γ−2)µ(R \ [−R,R])

≤
∫
[−R,R]

x2 + 2|zx|
(ℑz)2

µ(dx) + (2 + γ−2)µ(R \ [−R,R])

≤ R2 + 2R
√

1 + γ−2ℑz
(ℑz)2

+ (2 + γ−2)µ(R \ [−R,R]),

and then

lim sup
z→∞
z∈▽γ

∫
R

∣∣∣∣ z2

(z − x)2
− 1

∣∣∣∣ µ(dx) ≤ (2 + γ−2)µ(R \ [−R,R]).

Letting R tend to infinity here yields (B.2), and hence (B.1).
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By (B.1) we can find δ > 0 so large that

ℜ[F ′
µ(z)] ≥ 1

2
, z ∈ ▽γ,δ,

and by Lemma B.1, Fµ is injective on ▽γ,δ.

The inclusion ▽γ+ε,(1+ε)δ ⊆ Fµ(▽γ,δ). For z ∈ ∂▽γ,δ with γ|ℜz| = ℑz, one can see that

d(z,▽γ+ε,(1+ε)δ) ≥
ε|z|√

(1 + γ2)(1 + (γ + ε)2)
=: c1|z|.

Here d denotes the Euclidean distance. For z ∈ ∂▽γ,δ with ℑz = δ, we have

d(z,▽γ+ε,(1+ε)δ) ≥ εδ ≥ εγ|z|√
1 + γ2

=: c2|z|.

Therefore, if one takes δ0 > 0 so that supz∈▽γ,δ0
|Fµ(z) − z|/|z| < min{c1, c2}, then the simple

closed curve {Fµ(z) : z ∈ ∂▽γ,δ∪{∞}} ⊆ C∪{∞} surrounds each point of ▽γ+ε,(1+ε)δ exactly
once as soon as δ ≥ δ0, and hence by the argument principle we obtain Fµ(▽γ,δ) ⊇ ▽γ+ε,(1+ε)δ

as desired. The other inclusion can be proved analogously. □

The previous proposition allows us to define an injective function F−1
µ : ▽γ+ε,(1+ε)δ → C+

which satisfies Fµ ◦ F−1
µ = id on ▽γ+ε,(1+ε)δ. Fixing any 0 < ε < γ < 1 and large δ > 0, we set

γ′ := γ + ε and δ′ =: (1 + ε)δ for notational simplicity.

Proposition B.3. Let µ be a probability measures on R and n ∈ N. Let F−1
µ : ▽γ′,δ′ → C+ be

defined as above. Then the following are equivalent.

(1)

∫
R
x2n µ(dx) < +∞.

(2) There exist c1, c2, ..., c2n ∈ R such that

F−1
µ (z) = z + c1 +

c2
z

+ · · · +
c2n
z2n−1

+ o(|z|−(2n−1)), z → ∞, z ∈ ▽γ′,δ′ . (B.3)

Proof. (1) =⇒ (2). We only consider the case n = 2, which shall be enough to see how to
handle the general n.

Recall that, by definition, F−1
µ (▽γ′,δ′) is contained in some ▽γ,δ. By Proposition 4.43, for

some real constants b1, b2, b3, b4 we have

Fµ(w) = w − b1 −
b2
w

− b3
w2

− b4
w3

+ o(|w|−3), w → ∞, w ∈ ▽γ,δ. (B.4)

We set w := F−1
µ (z), z ∈ ▽γ′,δ′ . By the construction of the inverse function and the fact

Fµ(w) = w + o(w) we can see that w → ∞ whenever z → ∞. Putting w into (B.4) we get

z = F−1
µ (z) +O(1),

where O(1) is a bounded function. In particular we get

w = F−1
µ (z) = z + o(z). (B.5)

Next we substitute (B.5) into (B.4) to obtain

z = F−1
µ (z) − b1 −

b2
z + o(z)

+ o(z−1),

which amounts to

w = F−1
µ (z) = z + b1 +

b2
z

+ o(z−1). (B.6)

Finally, we substitute (B.6) into (B.4) to obtain

z = F−1
µ (z) − b1 −

b2
z + b1 + b2/z + o(z−1)

− b3
(z + b1 + o(1))2

− b4
(z + o(z))3

+ o(|z|3).
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Using the geometric series expansion 1/(1 − ζ) = 1 + ζ + ζ2 + · · · and recollecting terms, we
obtain

F−1
µ (z) = z + b1 +

b2
z

+
b3 − b1b2

z2
+
b4 − 2b1b3 − b22 + b21b2

z3
+ o(z3)

as desired.

(2) =⇒ (1) is very similar to the proof of (1) =⇒ (2). In this case we use the formula
F−1
µ (Fµ(w)) = w instead, which holds on a subdomain ▽γ̃,δ̃ ⊆ ▽γ,δ selected so that Fµ(▽γ̃,δ̃) ⊆

▽γ′,δ′ , e.g. γ̃ = γ′ + ε, δ̃ = δ′/(1 − ε). The remaining argument is exactly the same. □

Completing the proof of Proposition 5.14. It remains to prove
∫
R t

2n µ(dt) < +∞, assuming
that

∫
R t

2n λ(dt) < +∞ and
∫
R t

2n ν(dt) < +∞, where λ := µ▷ν. Take a domain ▽γ′,δ′ on which
F−1
ν can be defined, and set w = F−1

ν (iy), y > δ′. Then Fλ(w) = Fµ(Fν(w)) yields Fµ(iy) =
Fλ(F−1

ν (iy)). By Propositions 4.43 and B.3, we can expand Fλ(ζ) and F−1
ν (iy) into truncated

Laurent series. Following the lines for computing (5.11), we obtain a truncated Laurent series
of Fµ(iy) = Fλ(F−1

ν (iy)), from which we can conclude that
∫
R t

2n µ(dt) < +∞. □

B.1. Notes. Proposition A.6 is well known and can be found in the literature, e.g. in [43,
Theorem 4.5.5]. Lemma B.1 was proved by Noshiro and Warschawski [121, 149]. Proposition
B.2 was proved by Bercovici and Voiculescu [31]. Proposition B.3 is due to Benaych-Georges
[28, Theorem 1.3]. The coefficients c1, c2, c3, ... in Proposition B.3 are called the free cumulants
of µ. There are combinatorial formulas relating (cn)n≥1, the moment sequence (mn(µ))n≥1 and
the Boolean cumulants (bn)n≥1 and monotone cumulants (κn(µ))n≥1; see [12] and references
therein.
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[40] Guillaume Cébron, Antoine Dahlqvist, and Franck Gabriel. Freeness of type B and conditional freeness

for random matrices. Indiana Univ. Math. J., 73(3):1207–1252, 2024.
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processes and infinite ergodic theory. Indiana Univ. Math. J., 63(2):303–327, 2014.
[148] Jiun-Chau Wang and Enzo Wendler. Law of large numbers for monotone convolution. Probab. Math.

Statist., 33(2):225–231, 2013.
[149] Stefan E. Warschawski. On the higher derivatives at the boundary in conformal mapping. Trans. Amer.

Math. Soc., 38(2):310–340, 1935.
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