
STUDIA MATHEMATICA
Online First version

On Boolean selfdecomposable distributions
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Abstract. This paper introduces the class of selfdecomposable distributions con-
cerning Boolean convolution. A general regularity property of Boolean selfdecomposable
distributions is established; in particular, the number of atoms is at most 2 and the singular
continuous part is 0. We then analyze how shifting probability measures changes Boolean
selfdecomposability. Several examples are presented to supplement the above results. Fi-
nally, we prove that the standard normal distribution N(0, 1) is Boolean selfdecomposable
but the shifted one N(m, 1) is not for sufficiently large |m|.

1. Introduction. In non-commutative probability theory, random vari-
ables are defined as elements in some ∗-algebra. A remarkable aspect of
this theory is that various notions of independence exist for those random
variables. From a certain viewpoint, notions of independence are classified
into five kinds: tensor, free, Boolean, monotone and anti-monotone indepen-
dence (see [M03]). Further, each notion of independence has the associated
convolution of (Borel) probability measures on R that is defined to be the
distribution of the sum of two independent (selfadjoint) random variables
having prescribed distributions.

Limit theorems have been central subjects in both commutative (classi-
cal) and non-commutative probability theories. For instance, Khinchin in-
troduced the class L of limit laws of certain independent triangular arrays.
More precisely, a probability measure µ on R belongs to L if there exist a
sequence {Xn}n≥1 of independent R-valued random variables and sequences
{an}n≥0 ⊂ R and {bn}n≥1 ⊂ (0,∞) of deterministic numbers such that

• the family {bnXk}n≥k≥1 forms an infinitesimal triangular array, i.e.

lim
n→∞

sup
1≤k≤n

P [|bnXk| ≥ ε] = 0 for all ε > 0,
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• the law of the sequence of random variables

Sn = an + bn(X1 + · · ·+Xn), n ≥ 1,

converges weakly to µ.

When {Xn}n≥1 is furthermore identically distributed, the limit distribu-
tion µ, if it exists, is known to be a stable distribution. Thus the class L
contains the class of stable distributions as a subset. In 1937, Lévy charac-
terized L by the following property (see e.g. [GK54, Section 29, Theorem 1]):
A probability measure µ on R is in L if and only if µ is selfdecomposable,
i.e., for any c ∈ (0, 1), there exists a probability measure µc on R such that
µ = Dc(µ)∗µc, where Dc(µ) is the push-forward of µ by the mapping x 7→ cx,
and ∗ denotes the classical convolution (see e.g. [Sat13]).

In non-commutative probability theory, an analogous limit theorem can
be formulated for each notion of independence. Bercovici and Pata [BP00],
Chistyakov and Götze [CG08] and Wang [W08] proved a parallelism between
classical Khinchin limit theorem above and its non-commutative versions (for
further details see Subsection 2.3 below). Correspondingly, notions of selfde-
composable distributions with respect to other convolutions are also defined
(see Definition 3.1 below). In particular, the two classes of freely and mono-
tonically selfdecomposable distributions were investigated in detail (see e.g.
[BNT02, HST19, HT16] and [FHS20], respectively, where analogy and dis-
analogy with the classical class L are discussed). By contrast, little has been
done on Boolean selfdecomposable distributions. Although our definition of
the latter is natural for specialists, there has been no formal definition in the
literature to the authors’ best knowledge.

The purpose of this paper is to study the class of Boolean selfdecom-
posable distributions. Results will be presented along the following lines. In
Section 2, we introduce some concepts and some preliminary results that
are used in the remainder of the paper. In Section 3, we establish a general
regularity result on Boolean selfdecomposable distributions. Specifically, we
demonstrate that they have at most two atoms and do not have singular con-
tinuous part. We then investigate how Boolean selfdecomposability changes
under shifts. It turns out that it is typically lost when the distribution is
shifted by a sufficiently large positive or negative number. Furthermore, we
observe some distributional properties of Boolean selfdecomposable distri-
butions through several examples.

In Section 4, we study Boolean selfdecomposability for normal distribu-
tions. The results in that section are motivated by the fact that every normal
distribution is both classically and freely selfdecomposable (see e.g. [Sat13]
and [HST19], respectively). Our conclusion is that the standard normal dis-
tribution N(0, 1) is Boolean selfdecomposable too; however, the shifted one
N(m, 1) is not Boolean selfdecomposable when |m| is sufficiently large, as a
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consequence of the aforementioned general result in Section 3. Simulations
suggest that |m| ≃ 3.09 is the approximate threshold.

2. Preliminaries. In the first part of this section, we introduce analytic
tools for understanding Boolean and free additive convolutions. Then we
summarize a transfer principle for limit theorems for convolutions, which
induces a bijection between different kinds of infinitely divisible distributions.

2.1. Boolean convolution and analytic tools. The Boolean convo-
lution of probability measures on R was defined in [SW97]. We set P(R) to
be the set of all Borel probability measures on R, C+ the complex upper
half-plane and C− the complex lower half-plane. For µ ∈ P(R), we define
the Cauchy transform Gµ : C+ → C− and the F -transform Fµ : C+ → C+

as follows:

Gµ(z) :=
�

R

1

z − t
µ(dt) and Fµ(z) :=

1

Gµ(z)
, z ∈ C+.

The self-energy function Kµ of µ is defined by

Kµ(z) := z − Fµ(z), z ∈ C+.

Since Im[Fµ(z)] ≥ Im[z] for z ∈ C+ (see [BV93, Corollary 5.3]), the function
Kµ is an analytic map from C+ to C− ∪ R. The self-energy functions are
characterized in the following way (see [SW97, Proposition 3.1] for further
details).

Proposition 2.1. Let K be an analytic function on C+. The following
assertions are equivalent:

(1) There exists µ ∈ P(R) such that K = Kµ.
(2) There exist b ∈ R and a finite positive measure τ on R, such that K has

the form

K(z) = b+
�

R

1 + xz

z − x
τ(dt), z ∈ C+.(2.1)

If either of (1) or (2) holds, then the pair (b, τ) is uniquely determined by µ
(from formulas (2.2)–(2.3) below).

We call such a pair (b, τ) the Boolean generating pair for µ. By Propo-
sition 2.1, there is a one-to-one correspondence between P(R) and the set
of all Boolean generating pairs. Hence, we denote by µ

(b,τ)
⊎ the probability

measure µ with Boolean generating pair (b, τ). The Boolean generating pair
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for µ
(b,τ)
⊎ can be computed from the following formulas:

K
µ
(b,τ)
⊎

(i) = b− iτ(R),(2.2)

β�

α

(1 + t2) τ(dt) = − 1

π
lim
ε→0+

β�

α

Im[K
µ
(b,τ)
⊎

(x+ iε)] dx(2.3)

for all α, β ∈ R that are continuity points of τ . The latter formula is referred
to as the Stieltjes inversion formula, due to

Im[K
µ
(b,τ)
⊎

(x+ iε)] = −
�

R

ε

(x− t)2 + ε2
· (1 + t2) τ(dt).

For µ, ν ∈ P(R), their Boolean convolution µ ⊎ ν is the probability mea-
sure on R satisfying

Kµ⊎ν(z) = Kµ(z) +Kν(z), z ∈ C+.(2.4)

The η-transform of µ ∈ P(R) is defined by

ηµ(z) := 1− zFµ

(
1

z

)
, z ∈ C−.

It is obvious that ηµ(z) = zKµ(1/z), and therefore ηµ⊎ν(z) = ηµ(z) + ην(z)
for all z ∈ C−.

A probability measure µ is said to be Boolean infinitely divisible if for
each n ∈ N there exists µn ∈ P(R) such that µ = µn ⊎ · · · ⊎ µn (n times).
For each µ ∈ P(R) with Boolean generating pair (b, τ), set µn to be the
probability measure with Boolean generating pair (b/n, τ/n) for each n ∈ N.
Then µ is the n-fold Boolean convolution of µn. Therefore every probability
measure on R is Boolean infinitely divisible.

For a probability measure µ on R with Boolean generating pair (b, τ), let
us set

(2.5)



a = τ({0}),

ν(dt) =
1 + t2

t2
· 1R\{0}(t)τ(dt),

γ = b+
�

R

t

(
1[−1,1](t)−

1

1 + t2

)
ν(dt).

The triplet (a, ν, γ) thus defined satisfies

(T) a ≥ 0, γ ∈ R and ν is a positive measure on R such that ν({0}) = 0
and

	
R(1 ∧ x2) ν(dx) < ∞.

Moreover, the set of triplets (a, ν, γ) satisfying (T) is in bijection with the
set of pairs (b, τ) of a real number b and a finite positive measure τ on R. In
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terms of this bijection, formula (2.1) has the following equivalent form:

ηµ(z) = zKµ

(
1

z

)
= γz + az2 +

�

R

(
1

1− zt
− 1− zt1[−1,1](t)

)
ν(dt).(2.6)

The real number a ≥ 0 is called the Boolean Gaussian component for µ, and
the measure ν is called the Boolean Lévy measure for µ. The triplet (a, ν, γ)
is called the Boolean Lévy triplet.

Let µ ∈ P(R) and ν be its Boolean Lévy measure. Let νac be the Lebesgue
absolutely continuous part of ν. We introduce functions kµ, ℓµ : R \ {0} →
[0,∞) by

kµ(x) = |x|dν
ac

dx
(x) and ℓµ(x) = |x|kµ(x), x ∈ R \ {0}.(2.7)

Those functions are key ingredients in our main results. We observe that
νac(dx) can be expressed in the form x−2ℓµ(x) dx = |x|−1kµ(x) dx.

Remark 2.2. The pair (kµ(x),ℓµ(x)) is determined uniquely in the sense
of Remark 15.12(ii) in the book by Sato [Sat13].

2.2. Free convolution and analytic tools. The free convolution of
general probability measures on R was defined in [BV93]. According to
[BV93, Proposition 5.4], for any µ ∈ P(R) and any λ > 0 there exist
α, β,M > 0 such that Fµ is univalent on the set Γα,β := {z ∈ C+ : Im[z] > β,
|Re[z]| < α Im[z]} and Γλ,M ⊂ Fµ(Γα,β). This implies that the right inverse
function F−1

µ of Fµ exists on Γλ,M . The Voiculescu transform φµ is defined
by

φµ(z) := F−1
µ (z)− z, z ∈ Γλ,M .

For µ, ν ∈ P(R), their free convolution µ⊞ ν is the probability measure sat-
isfying

φµ⊞ ν(z) = φµ(z) + φν(z)(2.8)

for z in the common domain in which the three transforms are defined.
The R-transform of µ ∈ P(R) is defined by

Rµ(z) := zφµ

(
1

z

)
, z ∈ C− with

1

z
∈ Γλ,M .

It is obvious that Rµ⊞ ν(z) = Rµ(z)+Rν(z) for all z in the common domain
in which the three transforms are defined.

A probability measure µ on R is said to be freely infinitely divisible (de-
noted by µ ∈ I(⊞)) if for each n ∈ N there exists µn ∈ P(R) such that
µ = µn ⊞ · · ·⊞µn (n times). Several criteria for free infinite divisibility were
given by using harmonic analysis, complex analysis, and combinatorics (see
e.g. [BBLS11, AH13]). In particular, the following characterization of I(⊞)
is well known (see [BV93, Theorem 5.10]).
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Proposition 2.3. For µ ∈ P(R), the following conditions are equivalent.

(1) µ ∈ I(⊞).
(2) The Voiculescu transform φµ has an analytic extension (denoted by the

same symbol φµ) defined on C+ with values in C− ∪ R.
(3) There exist b ∈ R and a finite positive measure τ on R such that

φµ(z) = b+
�

R

1 + tz

z − t
τ(dt), z ∈ C+.(2.9)

Note that such a pair (b, τ) is uniquely determined by µ for the same reason
as (2.2)–(2.3). Conversely, given b ∈ R and a finite positive measure τ on R,
there exists µ ∈ I(⊞) such that (2.9) holds.

The above pair (b, τ) is called the free generating pair for µ, and we denote
by µ

(b,τ)
⊞ the freely infinitely divisible distribution with free generating pair

(b, τ).
For µ ∈ I(⊞) with free generating pair (b, τ), formula (2.9) is equivalent to

Rµ(z) = γz + az2 +
�

R

(
1

1− zt
− 1− zt1[−1,1](t)

)
ν(dt), z ∈ C−,(2.10)

where the triplet (a, ν, γ) is given by (2.5); see [BNT02] for further details.
The real number a ≥ 0 is called the free Gaussian component for µ, and the
measure ν is called the free Lévy measure for µ.

2.3. Boolean-to-free Bercovici–Pata bijection. In [BP99, Theorem
6.3], Bercovici and Pata found a remarkable equivalence between limit the-
orems for the convolutions ∗, ⊞ and ⊎. It leads to a bijection between the
corresponding three classes of infinitely divisible distributions. Bercovici and
Pata’s work concerned limit theorems for i.i.d. random variables. We present
here a statement in a generalized setting of infinitesimal triangular arrays,
combining [BP00, Theorem 1], [CG08, Theorem 2.1] and [W08, Theorem
5.3]. When µn, µ are finite positive measures on R, we use the notation
µn

w−→ µ to mean that µn converges weakly to µ.

Theorem 2.4. Let {an}n≥1 be a sequence of real numbers and let
{µn,k}1≤k≤kn, n≥1 be a family (or an array) of probability measures on R
such that {kn}n≥1 is a sequence of natural numbers which tends to infinity
and

(2.11) lim
n→∞

sup
1≤k≤kn

µn,k(R \ (−ε, ε)) = 0 for all ε > 0.

We set

an,k =
�

|x|<1

t µn,k(dt) and µ̊n,k(B) = µn,k(B + an,k)
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for Borel subsets B of R. Then the following conditions are equivalent:

(1) δan ⊎ µn,1 ⊎ µn,2 ⊎ · · · ⊎ µn,kn
w−→ µ for some µ ∈ P(R) as n → ∞.

(2) δan ⊞µn,1 ⊞µn,2 ⊞ · · ·⊞µn,kn
w−→ µ′ for some µ′ ∈ P(R) as n → ∞.

(3) δan ∗ µn,1 ∗ µn,2 ∗ · · · ∗ µn,kn
w−→ µ′′ for some µ′′ ∈ P(R) as n → ∞.

(4) There exist b ∈ R and a positive finite measure τ on R such that

lim
n→∞

[
an +

kn∑
k=1

(
an,k +

�

R

t

t2 + 1
µ̊n,k(dt)

)]
= b,

kn∑
k=1

t2

t2 + 1
µ̊n,k(dt)

w−→ τ(dt) as n → ∞.

Moreover, if one of those statements holds then µ = µ
(b,τ)
⊎ , µ′ = µ

(b,τ)
⊞ and

µ′′ = µ
(b,τ)
∗ , where the last measure is the infinitely divisible distribution

characterized by the Lévy–Khinchin representation
�

R

ezt µ
(b,τ)
∗ (dt) = exp

[
bz +

�

R

(
ezt − 1− zt

1 + t2

)
1 + t2

t2
τ(dt)

]
, z ∈ iR.

From this result, it is natural to identify the limit distributions µ, µ′, µ′′.
For later use, we only formulate the map ΛB between the two classes P(R)
and I(⊞) sending µ

(b,τ)
⊎ ∈ P(R) to µ

(b,τ)
⊞ ∈ I(⊞) for each b ∈ R and each

finite positive measure τ on R. This map ΛB is obviously a bijection and is
called the Boolean-to-free Bercovici-Pata bijection. It turns out that ΛB has
the following properties.

Lemma 2.5. Let µ1, µ2, µ ∈ P(R) and c ∈ R. Then:

(1) RΛB(µ) = ηµ on C−.
(2) ΛB(µ1 ⊎ µ2) = ΛB(µ1)⊞ΛB(µ2).
(3) ΛB(Dc(µ)) = Dc(ΛB(µ)).
(4) ΛB(δc) = δc.
(5) ΛB is a homeomorphism with respect to weak convergence.

Formulas (1)–(4) can be checked by straightforward algebraic calcula-
tions, while assertion (5) needs careful analysis. The reader is referred to
[BN08, (2.20)] for formula (1) and to [BNT02] for the other assertions.

Theorem 2.4 implies the following equivalence of Lévy’s limit theorems
(the classical one is already mentioned in the Introduction). Although this
will not be directly used in our paper, it will serve as a good motivation for
studying Boolean selfdecomposable distributions.

Corollary 2.6. Let {an}n≥1 be a sequence of real numbers, {bn}n≥1 be
a sequence of positive real numbers and {µn}n≥1 a sequence of probability



8 T. Hasebe et al.

measures on R such that (2.11) is satisfied for the array µn,k := Dbn(µk),
1 ≤ k ≤ n, 1 ≤ n. Then the following conditions are equivalent:

(1) δan ⊎Dbn(µ1 ⊎ · · · ⊎ µn)
w−→ µ for some µ ∈ P(R) as n → ∞.

(2) δan ⊞Dbn(µ1 ⊞ · · ·⊞µn)
w−→ µ′ for some µ′ ∈ P(R) as n → ∞.

(3) δan ∗Dbn(µ1 ∗ · · · ∗ µn)
w−→ µ′′ for some µ′′ ∈ P(R) as n → ∞.

The possible limit distributions µ, µ′, µ′′ in Corollary 2.6 belong to certain
subclasses of freely, Boolean and classically infinitely divisible distributions,
respectively. Those subclasses are all characterized by the respective no-
tions of selfdecomposability defined later in Definition 3.1. This fact follows
e.g. from the last part of Theorem 2.4, [GK54, Section 29, Theorem 1] and
[BNT02, Theorem 4.8] (or [CG08, Theorem 2.10]) for ∗ and ⊞. The case of ⊎
can be treated similarly to (and is actually easier than) the free case. See
also the paragraph following Definition 3.1.

3. Boolean selfdecomposable distributions

3.1. The class of Boolean selfdecomposable distributions. The
classical notion of selfdecomposability can be extended to general convolu-
tions of probability measures in the following way.

Definition 3.1. Let ◦ be a binary operation on P(R). Then a measure
µ ∈ P(R) is said to be ◦-selfdecomposable (denoted µ ∈ L(◦)) if for any
c ∈ (0, 1) there is µc ∈ P(R) such that µ = Dc(µ) ◦ µc. In particular, if
◦ = ⊎ (resp. ◦ = ⊞), then µ is said to be Boolean selfdecomposable (resp.
freely selfdecomposable).

By Lemma 2.5(2)–(3) and [BNT02, Theorem 4.6, Proposition 4.7], we
have

ΛB(L(⊎)) = L(⊞) and L(⊎) = Λ−1
B (L(⊞)).(3.1)

It is known that the free selfdecomposability has the following characteriza-
tion (see e.g. [HT16, Subsection 2.2]).

Lemma 3.2. A probability measure µ on R belongs to the class L(⊞) if and
only if µ is a freely infinitely divisible distribution whose free Lévy measure
ν is Lebesgue absolutely continuous and the function R \ {0} → [0,∞), x 7→
|x|dνdx(x), has a version with respect to the Lebesgue measure that is unimodal
with mode 0, i.e. non-decreasing on (−∞, 0) and non-increasing on (0,∞).

By the definition of ΛB, we obtain a characterization for the Boolean
selfdecomposability exactly in the same way as Lemma 3.2, in which the free
Lévy measure is replaced with the Boolean Lévy measure.

Proposition 3.3. A probability measure µ on R belongs to the class L(⊎)
if and only if its Boolean Lévy measure is Lebesgue absolutely continuous and
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the function kµ in (2.7) has a version with respect to the Lebesgue measure
that is unimodal with mode 0.

When we consider µ ∈ L(⊎), for simplicity we always take kµ itself to be
unimodal with mode 0 unless specified otherwise.

Given a probability measure µ, a typical method for proving it to be
Boolean selfdecomposable is Proposition 3.3. To check that the function kµ
is unimodal with mode 0, we can calculate kµ from Proposition 3.4. To
check that the Boolean Lévy measure is Lebesgue absolutely continuous, we
provide a practical sufficient condition in Proposition 3.5.

Proposition 3.4. Suppose that µ ∈ P(R). The function kµ : R \ {0} →
[0,∞) defined by (2.7) is then given by

kµ(x) = lim
ε→0+

1

π|x|
Im[Fµ(x+ iε)] for a.e. x ∈ R \ {0}(3.2)

and the Boolean Gaussian component of µ is given by − limε→0+ iεFµ(iε).

Proof. Both formulas are basic. Let ν be the Boolean Lévy measure for µ
and (b, τ) be the Boolean generating pair for µ. By Proposition 2.1 and
relation (2.5), the F-transform of µ has the form

(3.3) Fµ(z) = z − b−
�

R

(
1 + t2

z − t
+ t

)
τ(dt)

= z − b− a

z
+

�

R

(
1

t− z
− t

1 + t2

)
|t|2 ν(dt).

Since the Lebesgue absolutely continuous part of |t|2ν(dt) is |t|kµ(t) dt, the
desired formula for kµ is a consequence of the Stieltjes inversion formula
(see e.g. [HO07, Corollary 1.103] or [Sch12, Theorem F.6]). The formula for
the Boolean Gaussian component follows from the Dominated Convergence
Theorem.

Proposition 3.5. Let µ ∈ P(R). Suppose that there exists an at most
countable subset C of R such that

(1) 0 ∈ C,
(2) limε→0+ Im[Fµ(x+ iε)] ∈ [0,∞) exists for all x ∈ R \ C,
(3) limε→0+ εFµ(x+ iε) = 0 for all x ∈ C \ {0}.

Then the Boolean Lévy measure of µ is Lebesgue absolutely continuous.

Proof. Let ν be the Boolean Lévy measure of µ and ρ(dt) := |t|2ν(dt).
Note that ρ({0}) = 0. It suffices to show that ρ is Lebesgue absolutely con-
tinuous. Let ρ = ρsing + ρac be the decomposition of ρ into the singular part
and the absolutely continuous part with respect to the Lebesgue measure.
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From formula (3.3) and [Sch12, Theorem F.6], ρsing is supported on the set

Ssing
ρ :=

{
x ∈ R : lim

ε→0+
Im[Fµ(x+ iε)] = ∞

}
in the sense that ρsing(R \ Ssing

ρ ) = 0. By assumption (2), the set Ssing
ρ is

contained in C and hence is at most countable. This implies that ρsing is a
discrete measure. Then assumption (3) implies that ρ does not have an atom
in C, so that ρsing = 0.

Remark 3.6. It is clear that L(⊎) ⊈ L(⊞) since the Bernoulli distribution
1
2(δ1 + δ−1) is in L(⊎), but not in L(⊞).

The following example shows that L(⊞) ⊈ L(⊎). Let f1/2 be the positive
free 1/2-stable distribution defined by

φf1/2(z) =
√
−z, z ∈ C+,

where the square root above is defined as the principal branch (see [BP99,
Appendix] for details). Stability implies selfdecomposability, so f1/2 ∈ L(⊞).
To see f1/2 /∈ L(⊎), inverting F−1

f1/2
(z) = z +

√
−z yields

Ff1/2(z) =
2z − 1−

√
1− 4z

2
, z ∈ C+.

By Proposition 3.5, the Boolean Lévy measure is Lebesgue absolutely con-
tinuous. By Proposition 3.4 the function kf1/2 can be calculated as

kf1/2(x) =

√
4x− 1

2πx
· 1[1/4,∞)(x).

Since kf1/2 is not non-increasing on (0,∞), the desired conclusion f1/2 /∈ L(⊎)
follows.

Example 3.7. The probability measure having the Boolean Lévy triplet
(a, 0, γ) with a > 0 is called a Boolean Gaussian distribution and will be
denoted B(γ, a). It has mean γ, variance a and is of the form

(
1

2
− γ

2
√
γ2 + 4a2

)
δ
(γ−

√
γ2+4a2)/2

+

(
1

2
+

γ

2
√

γ2 + 4a2

)
δ
(γ+

√
γ2+4a2)/2

.

(3.4)

Because the Boolean Lévy measure is zero, B(γ, a) is Boolean selfdecompos-
able. Note that B(a, γ) can be written in the simpler form

1

β − α
(βδβ − αδα)

with parameters α = (γ −
√

γ2 + 4a2)/2 < 0 and β = (γ +
√
γ2 + 4a2)/2

> 0. In fact, the map (γ, a) 7→ (α, β) gives a bijection from R × (0,∞) to
(−∞, 0)× (0,∞).
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In particular, one can see that pδ1+(1−p)δ−1 for p ∈ (0, 1) is a Boolean
Gaussian distribution if and only if p = 1/2.

Example 3.8. The probability measure bα,ρ characterized by

ηbα,ρ(z) = −(eiρπz)α, z ∈ C−,

is called a Boolean (strictly) stable distribution, where the parameter (α, ρ)
belongs to the set

A = {(α, ρ) : α ∈ (0, 1], ρ ∈ [0, 1]} ∪ {(α, ρ) : α ∈ (1, 2], ρ ∈ [1− α−1, α−1]}.
The Boolean stable distributions satisfy the relation bα,ρ = Dc(bα,ρ) ⊎
D(1−cα)1/α(bα,ρ) for any c ∈ (0, 1), and hence are Boolean selfdecomposable.
Proposition 3.4 implies the formula

kbα,ρ(x) =
sin(αρπ)

π
x−α1(0,∞)(x) +

sin(α(1− ρ)π)

π
|x|−α1(−∞,0)(x).

The special case b2,1/2 coincides with the Bernoulli distribution B(0, 1). For
further information on bα,ρ, see e.g. [SW97, HS15].

3.2. Regularity for Boolean selfdecomposable distributions. We
establish a general regularity result on Boolean selfdecomposable distribu-
tions. Note that we exclude the well understood Boolean Gaussian distribu-
tions (see Example 3.7) from the statement in order to have a non-empty
support for the function kµ.

Theorem 3.9. Let µ ∈ L(⊎) with the function kµ not identically equal
to zero. Let α := inf {x ∈ R : kµ(x) ̸= 0} ∈ [−∞, 0] and β := sup {x ∈ R :
kµ(x) ̸= 0} ∈ [0,∞]. Then

(1) µ|(α,β) is absolutely continuous with respect to the Lebesgue measure.
(2) µ|(−∞,α] is the zero measure or a delta measure if α > −∞. The same

holds for µ|[β,∞) if β < ∞.
(3) µ({0}) = 0.

In particular, µ has no singular continuous part with respect to the Lebesgue
measure and has at most two atoms.

Proof. Let us take the Pick–Nevanlinna representation of Fµ in the form

(3.5) Fµ(z) = z − b− a

z
+

β�

α

(
1

t− z
− t

1 + t2

)
|t|kµ(t) dt,

where a ≥ 0 and b ∈ R; see (3.3).
(2) It suffices to prove the statement for (−∞, α] by symmetry. We as-

sume α > −∞. Formula (3.5) enables Fµ to be extended analytically to
C+ ∪ (−∞, α). The extended function, still denoted Fµ, takes real values on
(−∞, α); hence, the value of the function Im[Gµ(z)] = − Im[Fµ(z)]/|Fµ(z)|2
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is zero on (−∞, α)\{zeros of Fµ|(−∞,α)}. By the Stieltjes inversion formula,
we conclude that

µ
(
(−∞, α) \ {zeros of Fµ|(−∞,α)}

)
= 0.

Because F ′
µ > 1 on (−∞, α), Fµ has at most one zero on (−∞, α).

If Fµ has no zeros on (−∞, α), then µ|(−∞,α] is the zero measure or a
delta measure at α.

If Fµ has a zero x0 in (−∞, α), then

µ({x0}) = lim
z→x0

z − x0
Fµ(z)

=
1

F ′
µ(x0)

> 0.

In this case we need to check that µ({α}) = 0. Because Fµ is strictly increas-
ing and Fµ(x0) = 0, we have limx→α−0 Fµ(x) ∈ (0,∞] and hence Gµ(α) :=
limx→α−0Gµ(x) ∈ [0,∞). Directly or by Lindelöf’s theorem [BCDM20, The-
orem 1.5.7], it can be verified that Gµ(α) = limε→0+ Gµ(α+ iε). Therefore,
µ({α}) = limε→0+ iεGµ(α+ iε) = 0.

(3) Because kµ is unimodal and is not identically zero, we have either
α < 0 or β > 0. Without loss of generality we may work in the latter case.
Then δ := infx∈(0,β/2) kµ(x) > 0. Because µ({0}) = limε→0+ iε/Fµ(iε), the
desired assertion µ({0}) = 0 follows from limε→0+ Im[Fµ(iε)]/ε = ∞. The
latter is the case because

Im[Fµ(iε)]

ε
= 1 +

a

ε2
+

β�

α

|t|kµ(t)
t2 + ε2

dt

≥ δ

β/2�

0

t

t2 + ε2
dt → δ

β/2�

0

1

t
dt = ∞ as ε → 0+.

(1) Let µ = µsing + µac be the decomposition of µ into the singular
part and absolutely continuous part with respect to the Lebesgue measure.
From (3), it suffices to prove µsing((α, β) \ {0}) = 0. As in the proof of
Proposition 3.5, µsing(R \ S) = 0, where

S :=
{
x ∈ R : lim

ε→0+
Im[−Gµ(x+ iε)] = ∞

}
.

Let us assume that β > 0; otherwise we need not work on the interval
(0, β). Because kµ is unimodal with mode 0, for every 0 < β′ < β the number
δ′ := infx∈(0,β′] kµ(x) is positive. For every ε > 0 and x ∈ (0, β′) we have

Im[Fµ(x+ iε)] = ε+
a

ε
+

β�

α

ε|t|kµ(t)
(t− x)2 + ε2

dt

≥ δ′x

β′�

x

ε

(t− x)2 + ε2
dt = δ′x arctan

β′ − x

ε
,
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which tends to δ′xπ/2 as ε tends to 0. This implies that

lim sup
ε→0+

Im[−Gµ(x+ iε)] = lim sup
ε→0+

Im[Fµ(x+ iε)]

|Fµ(x+ iε)|2

≤ lim sup
ε→0+

1

Im[Fµ(x+ iε)]
≤ 2

δ′xπ
< ∞

for all x ∈ (0, β′). We can thus conclude that (0, β) ⊆ R \S, i.e. µsing((0, β))
= 0. Similarly or by symmetry, we get µsing((α, 0)) = 0 if α < 0.

Remark 3.10. The delta measures and Boolean Gaussian distributions
are obviously singular distributions. Other Boolean selfdecomposable distri-
butions may also have a non-zero singular part; see e.g. Example 3.17(3, 4).
By contrast, all classical selfdecomposable distributions and free distribu-
tions except for the delta measures are Lebesgue absolutely continuous (see
[Sat13, Theorem 27.13] and [HT16, Remark 2], respectively).

Remark 3.11. In the setting of Theorem 3.9, the points α and β may
or may not be atoms of µ. To see this let µ be the Boolean selfdecomposable
probability measure defined by

Fµ(z) = z − b+

1�

0

1

t− z
|t|(1− t)p

|t|
dt, z ∈ C+,

where p > 0 is a parameter and b ∈ R is defined so that Fµ(1) := 1 − b −	1
0(1− t)p−1 dt = 0. One sees that

Fµ(z)

z − 1
=

Fµ(z)− Fµ(1)

z − 1
= 1 +

1�

0

(1− t)p−1

z − t
dt

→ q := 1 +

1�

0

(1− t)p−2 dt ∈ (1,∞]

as z → 1 satisfying Re[z] ≥ 1. This implies that µ({1}) = 1/q, which is
positive if p > 1 and zero if 0 < p ≤ 1.

Example 3.12 (Mixture of a Cauchy distribution and δ0). Let us set

κp =
p

π(1 + x2)
1R(x) dx+ (1− p)δ0

for p ∈ [0, 1]. Its reciprocal Cauchy transform is given by

Fκp(z) =
1

p
z+i +

1−p
z

=
z(z + i)

z + (1− p)i
, z ∈ C+.

By Proposition 3.5, the Boolean Lévy measure is Lebesgue absolutely con-
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tinuous. By Proposition 3.4, the function kκp is given by

kκp(x) =
1

π
· p|x|
x2 + (1− p)2

· 1R\{0}(x).

As long as p ∈ (0, 1), this is not unimodal with mode 0 and hence κp is not
Boolean selfdecomposable (cf. Theorem 3.9(3)).

According to Theorem 3.9, every Boolean selfdecomposable distribution
µ with kµ ̸= 0 has at most two atoms. Here we completely determine the
two-point measures which are Boolean selfdecomposable.

Proposition 3.13. A two-point probability measure on R belongs to L(⊎)
if and only if it is a Boolean Gaussian distribution.

Proof. The Boolean Gaussian distribution B(γ, a) is a Boolean selfde-
composable two-point probability measure for all γ ∈ R and a > 0; see (3.4).

Conversely, we assume that a two-point probability measure µ belongs
to L(⊎). By Proposition 3.4 we get kµ(x) = 0 for a.e. x ∈ R \ {0} because
Fµ is of the form (z2 + pz + q)/(z − r), p, q, r ∈ R. Therefore µ has a
Boolean Lévy triplet (a, 0, γ) for some γ ∈ R and some a ≥ 0. The Boolean
Gaussian component a is non-zero; otherwise µ would be a Dirac measure.
Consequently, we have µ = B(γ, a) for γ ∈ R and a > 0.

3.3. Boolean selfdecomposability of shifted probability mea-
sures. For any a ∈ R, “the Boolean shift” µ 7→ µ ⊎ δa preserves the class
L(⊎). On the other hand, the usual shift µ 7→ µ ∗ δa does not preserve L(⊎),
which can be observed from Proposition 3.13. This phenomenon is investi-
gated in detail below. The function ℓλ defined in (2.7) plays a key role.

Lemma 3.14. Suppose that λ ∈ P(R) satisfies the condition

(C) the Boolean Gaussian component is zero and the Boolean Lévy measure
is Lebesgue absolutely continuous.

Then for any m ∈ R the measure λ ∗ δm also satisfies condition (C) and

(3.6) ℓλ∗δm(t) = ℓλ(t−m) for a.e. t ∈ R.

Proof. According to (2.7), formula (3.3) can be expressed in the form

Fλ(z) = z − b− a

z
+

�

R\{0}

(
1

t− z
− t

1 + t2

)
ℓλ(t) dt,(3.7)

where a is the Boolean Gaussian component, which is now 0. This yields

(3.8) Fλ∗δm(z) = Fλ(z −m)

= z − bm +
�

R\{0}

(
1

t− z
− t

1 + t2

)
ℓλ(t−m) dt
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for some bm ∈ R. Therefore, the Boolean Gaussian component of λ ∗ δm
is zero and its Boolean Lévy measure equals t−2ℓλ(t − m)1R\{0}(t) dt, as
desired.

For a clear statement, we define Q to be the set of probability measures
λ on R such that

(H1) the Boolean Gaussian component of λ is zero,
(H2) the Boolean Lévy measure of λ has the form t−2ℓλ(t)1R\{0}(t) dt, where

ℓλ : R → [0,∞) is right continuous on R \ {mλ} for some mλ ∈ R.

Theorem 3.15.

(1) If λ ∈ P(R) \ Q then λ ∗ δm /∈ L(⊎) for any m ∈ R \ {0}.
(2) If λ ∈ Q and there exist a, b ∈ R \ {mλ} with a < b and ℓλ(a) < ℓλ(b)

then λ ∗ δm /∈ L(⊎) for any m > bℓλ(a)−aℓλ(b)
ℓλ(b)−ℓλ(a)

.
(3) If λ ∈ Q and there exist c, d ∈ R \ {mλ} with c < d and ℓλ(c) > ℓλ(d)

then λ ∗ δm /∈ L(⊎) for any m < cℓλ(d)−dℓλ(c)
ℓλ(c)−ℓλ(d)

.
(4) If λ ∈ Q and ℓλ is constant on R \ {mλ} then λ ∗ δm ∈ L(⊎) for all

m ∈ R.

Proof. (1) Suppose first that λ does not satisfy (H1), i.e. it has a positive
Boolean Gaussian component a. Similarly to (3.8), we obtain

(3.9) Fλ∗δm(z) = z−bm+
a

m− z
+

�

R\{0}

(
1

t− z
− t

1 + t2

)
(t−m)2 dν(t−m)

for some bm ∈ R, where ν is the Boolean Lévy measure of λ. This implies
that for m ̸= 0, the Boolean Lévy measure of λ ∗ δm is given by am−2δm +
t−2(t −m)2dν(t −m). Because this is not Lebesgue absolutely continuous,
λ ∗ δm is not Boolean selfdecomposable.

To complete the proof of (1), it suffices to prove that if λ satisfies (H1)
and λ ∗ δm0 ∈ L(⊎) for some m0 ∈ R then λ satisfies (H2). According to
Lemma 3.14, λ has a Lebesgue absolutely continuous Boolean Lévy measure
and

(3.10) ℓλ(t) = ℓ(λ∗δm0 )∗δ−m0
(t) = ℓλ∗δm0

(t+m0)

= |t+m0|kλ∗δm0
(t+m0) for a.e. t ∈ R \ {0}.

Because kλ∗δm0
is unimodal with mode 0, it has a version that is right con-

tinuous on R \ {0}. Therefore, ℓλ has a version that is right continuous on
R \ {−m0}, i.e. (H2) holds.

(2) For all m > M := bℓλ(a)−aℓλ(b)
ℓλ(b)−ℓλ(a)

, observe that 0 < m+ a < m+ b and,
by Lemma 3.14,

kλ∗δm(m+ a)− kλ∗δm(m+ b) =
ℓλ(a)

m+ a
− ℓλ(b)

m+ b
< 0.(3.11)
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Because ℓλ is right continuous at a and b, inequality (3.11) still holds when
a, b are replaced with a+ ε, b+ ε for sufficiently small ε > 0; hence, for any
m > M , kλ∗δm does not have a version that is non-increasing on (0,∞), and
consequently λ ∗ δm is not in L(⊎). The proof of (3) is similar.

(4) In this case, the distribution λ ∗ δm is a delta measure (when ℓλ = 0)
or a Cauchy distribution (when ℓλ is a positive constant function) for any
m ∈ R, which is Boolean selfdecomposable.

Remark 3.16. In case (2) it might happen that λ ∗ δm is in L(⊎) for all
sufficiently small m. To obtain such an example, the function ℓλ needs to be
non-decreasing on R; otherwise case (3) would apply. Let λ be a probability
measure with Boolean Lévy triplet (0, kλ(t) dt, 0), where

kλ(t) =
1

|t|

[
arctan t+

π

2

]
, t ∈ R \ {0}.

It can be checked by calculus that the function

kλ∗δm(t) :=
1

|t|

[
arctan(t−m) +

π

2

]
, t ∈ R \ {0},

is unimodal with mode 0 if and only if m ≤ π/2, and hence λ ∗ δm ∈ L(⊎)
for any such m.

3.4. Several examples of Boolean selfdecomposable distribu-
tions. We observe distributional properties of Boolean selfdecomposable
distributions through several examples.

Example 3.17. We give several examples in the class L(⊎).
(1) The free Poisson (or Marchenko–Pastur) distribution MPλ is a prob-

ability measure defined by

max{1− λ, 0}δ0 +
1

2πx

√
(λ+ − x)(x− λ−) · 1(λ−,λ+)(x) dx, λ > 0,

where λ± = (1±
√
λ)2. Its F-transform is given by

FMPλ
(z) =

z + 1− λ+
√

(z − λ−)(z − λ+)

2
, z ∈ C+,

where the square root
√
w is defined continuously on the angles argw ∈

(0, 2π). By Propositions 3.5 and 3.4, the Boolean Lévy measure is Lebesgue
absolutely continuous and the function kMPλ

is given by

kMPλ
(x) =

√
(x− λ−)(λ+ − x)

2πx
· 1(λ−,λ+)(x),

and therefore MPλ ∈ L(⊎) if and only if λ = 1. Consequently, L(⊎) is not
closed under the free convolution since MP1 ⊞MP1 = MP2 /∈ L(⊎), for
example.
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(2) Let S(m,σ2) be Wigner’s semicircle law, that is, its probability den-
sity function is defined by

1

2πσ2

√
4σ2 − (x−m)2 · 1[m−2σ,m+2σ](x), m ∈ R, σ > 0.

Its F-transform is known to be

FS(m,σ2)(z) =
z −m+

√
(z −m)2 − 4σ2

2
, z ∈ C+.

By Proposition 3.5 the Boolean Lévy measure is Lebesgue absolutely con-
tinuous and by Proposition 3.4 we have

kS(m,σ2)(x) =

√
4σ2 − (x−m)2

2π|x|
· 1[m−2σ,m+2σ]\{0}(x),

and therefore S(m,σ2) ∈ L(⊎) if and only if m− 2σ ≤ 0 ≤ m+ 2σ.
(3) For any t > 1, the measure B(0, 1)⊞t is given by

max

{
2− t

2
, 0

}
(δt + δ−t) +

1

2π
·
t
√
4(t− 1)− x2

t2 − x2
· 1[−2

√
t−1,2

√
t−1](x) dx.

It is called the Kesten distribution. The F-transform is given by

FB(0,1)⊞t(z) =
(t− 2)z + t

√
z2 − 4(t− 1)

2(t− 1)
, z ∈ C+.

By Propositions 3.5 and 3.4, the Boolean Lévy measure is Lebesgue abso-
lutely continuous and

kB(0,1)⊞t(x) =
t
√
4(t− 1)− x2

2π(t− 1)|x|
· 1[−2

√
t−1,2

√
t−1]\{0}(x).

Because kB(0,1)⊞t is unimodal with mode 0 for all t > 1, we conclude that
B(0, 1)⊞t ∈ L(⊎) for all t > 1.

(4) Let µ(p, r) be the 2-parameter Fuss–Catalan distribution. Recall that
µ(p, r) ∈ I(⊞) if and only if either 0 < r ≤ min{p/2, p− 1} or 1 ≤ p = r ≤ 2
(see [MSU20, Theorem 4.1]). Then we can define µ̃(p, r) := Λ−1

B (µ(p, r)) for
such pairs (p, r). Since µ(p, r) ∈ L(⊞) if and only if 1 ≤ p = r ≤ 2 (see
[MSU20, Theorem 4.3]), we have µ̃(p, p) ∈ L(⊎) for 1 ≤ p ≤ 2 by (3.1). In
particular, µ̃(2, 2) = B(2, 1) is a Boolean Gaussian distribution. By Lemma
2.5(1) and [MSU20, Proposition 3.6], for 1 ≤ p < 2 the Boolean Lévy triplet
of µ̃(p, p) is given by (0, |x|−1kµ(p,p)(x) dx, p), where

kµ(p,p)(x) = −sin(pπ)

π

(
1 + x

−x

)p

· 1(−1,0)(x).

From computations similar to [MSU20, Proposition 3.6], we obtain

ηµ̃(p,p)(z) = (1 + z)p − 1, z ∈ C−.
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Then the Cauchy transform is as follows:

Gµ̃(p,p)(z) =
1

z[2− (1 + z−1)p]
, z ∈ C+.

By the Stieltjes inversion formula, the measure µ̃(p, p) for 1 ≤ p < 2 has the
following explicit form:

1

p(2− 21−1/p)
δap +

sin(pπ)
∣∣1+x

x

∣∣p
πx(4− 4 cos(pπ)

∣∣1+x
x

∣∣p + ∣∣1+x
x

∣∣2p) · 1(−1,0)(x) dx,

where ap = (21/p − 1)−1. According to this example, the discrete parts
of Boolean selfdecomposable distributions come from not only the Boolean
Gaussian component but also its Boolean Lévy measure.

4. Boolean selfdecomposability for normal distributions. In this
section, we investigate Boolean selfdecomposability for normal distributions
N(m, v). The question is unimodality of kN(m,v) with mode 0. It turns out
that kN(m,v) has an explicit formula. To compute it, we make use of the
following differential equation (see [K98, (8.1.6)]), which can be derived by
integration by parts.

Lemma 4.1. The following differential equation holds:

G′
N(0,1)(z) = 1− zGN(0,1)(z), z ∈ C+.

Using the above lemma, we can explicitly compute the functions GN(0,1)

and kN(0,1).

Proposition 4.2. Let h(z) =
	z
0 e

t2 dt, z ∈ C. Then

(4.1) GN(0,1)(z) = e−
1
2
z2
[
−i

√
π

2
+
√
2h

(
z√
2

)]
, z ∈ C+,

and the Boolean Lévy triplet for N(0, 1) is (0, kN(0,1)(x) dx, 0), where

kN(0,1)(x) =
1

π

√
2

π
· 1

|x|e−x2/2
[
1 + 4

πh
(

x√
2

)2] · 1R\{0}(x).(4.2)

Proof. The standard variation of constants method for the differential
equation in Lemma 4.1 yields the solution

GN(0,1)(z) = e−z2/2
[
C +

z�

0

et
2/2 dt

]
, z ∈ C+,

for some C ∈ C. Because N(0, 1) is symmetric about 0, Re[GN(0,1)(iy)] = 0
for all y > 0 and so Re[C] = 0. In order that the density of N(0, 1) is obtained
as the limit (−1/π) limε→0+ GN(0,1)(x+ iε), we must have Im[C] = −

√
π/2,

proving the desired formula (4.1). Because FN(0,1) has a continuous extension
to C+ ∪ R, the Stieltjes inversion (2.3) implies that the Boolean Gaussian
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component is zero and the Boolean Lévy measure is Lebesgue absolutely
continuous. By Proposition 3.4 we have (4.2). By (2.2) and Re[FN(0,1)(i)] = 0

we obtain b = 0. Finally, because τ(dx) =
|x|kN(0,1)(x)

1+x2 dx is symmetric about
zero, (2.5) yields γ = 0.

Analyzing the function kN(0,1) we are able to demonstrate the following.

Theorem 4.3. For all v > 0, we have N(0, v) ∈ L(⊎).
Proof. Since D√

v(N(0, 1)) = N(0, v), it suffices to show N(0, 1) ∈ L(⊎).
To do so, we prove unimodality for kN(0,1) with mode 0 using Proposition 4.2.
Because the function kN(0,1) is symmetric with respect to 0, it is enough to
prove that kN(0,1)(x) is non-increasing on (0,∞). For this it suffices to show
that ℓN(0,1) is non-increasing on (0,∞), i.e. the function

(4.3) f(x) = e−x2/2

[
1 +

4

π
h

(
x√
2

)2]
is non-decreasing on (0,∞). For concise calculations, let us instead work
with the rescaled function g(x) = f(

√
2x).

To begin we compute

g′(x) = −2xe−x2

[
1 +

4

π
h(x)2

]
+

8

π
h(x)

= −8xe−x2

π

[
h(x)2 − ex

2

x
h(x) +

π

4

]
.

The desired inequality, g′ ≥ 0 on (0,∞), is therefore equivalent to

(4.4)
1

2

[
ex

2

x
−

√(
ex2

x

)2

− π

]
≤ h(x) ≤ 1

2

[
ex

2

x
+

√(
ex2

x

)2

− π

]
.

Note here that (ex
2
/x)2 ≥ 2e > π for all x > 0.

For the upper bound of (4.4), we use the supplementary inequality

(4.5) h(x) <
ex

2 − 1

x
, x > 0.

This can be easily verified with calculus: H(x) := (ex
2 −1)/x−h(x) satisfies

H ′ > 0 on (0,∞) and H(+0) = 0. Thanks to (4.5), for the upper bound
of (4.4) it suffices to show that

1

2

[
ex

2

x
+

√(
ex2

x

)2

− π

]
≥ ex

2 − 1

x
,

or equivalently √(
ex2

x

)2

− π ≥ ex
2 − 2

x
.
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The latter is obvious if ex
2 − 2 < 0. In the case ex

2 − 2 ≥ 0 the desired
inequality is equivalent to(

ex
2

x

)2

− π ≥ e2x
2 − 4ex

2
+ 4

x2
,

or equivalently
4ex

2 − πx2 − 4 ≥ 0.

By calculus, this is the case. Thus we are done.
The lower bound of (4.4) can also be proved by calculus. Let

J(x) := 2h(x)−
[
ex

2

x
−

√(
ex2

x

)2

− π

]
.

It is elementary to see that J(+0) = 0. It then suffices to show that J ′ > 0.
To begin, we compute

J ′(x) = 2ex
2 −

[
−ex

2

x2
+ 2ex

2 − −2e2x
2
/x3 + 4e2x

2
/x

2
√

(ex2/x)2 − π

]
=

e2x
2

x3

[
xe−x2

+
−1 + 2x2√
(ex2/x)2 − π

]
.

Hence J ′ is obviously positive on [1/
√
2,∞). Suppose that J ′(x) = 0 held

for some 0 < x < 1/
√
2. This would imply

x2e−2x2

[(
ex

2

x

)2

− π

]
= (2x2 − 1)2,

or equivalently
πe−2x2

+ 4x2 − 4 = 0.

However, by elementary calculus the left hand side of the last equation must
be negative, a contradiction.

Next, we show the failure of Boolean selfdecomposablity for normal dis-
tributions.

Theorem 4.4. There exists M > 0 such that |m/
√
v| > M implies that

N(m, v) /∈ L(⊎).

Proof. It suffices to find M > 0 such that N(m, 1) /∈ L(⊎) for |m| > M
thanks to the fact that dilation preserves L(⊎). Recall

ℓN(0,1)(x) = |x|kN(0,1)(x) =
c

f(x)
,

where c = π−1
√
2/π and f is defined in (4.3). Because N(0, 1) has no

Boolean Gaussian component by Proposition 4.2 and the function ℓN(0,1)
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is not constant on (0,∞) and is symmetric on R, the desired conclusion
follows by Theorem 3.15.

Remark 4.5 (Estimate of M). According to Theorem 3.15, N(m, 1) is
not in L(⊎) if |m| > M0, where

(4.6) M0 = inf

{
bℓN(0,1)(a)− aℓN(0,1)(b)

ℓN(0,1)(b)− ℓN(0,1)(a)
:
−∞ < a < b < ∞,

ℓN(0,1)(a) < ℓN(0,1)(b)

}
.

With some inspection helped by the identity
bℓN(0,1)(a)− aℓN(0,1)(b)

ℓN(0,1)(b)− ℓN(0,1)(a)
=

(b− a)ℓN(0,1)(a)

ℓN(0,1)(b)− ℓN(0,1)(a)
− a

=
(b− a)ℓN(0,1)(b)

ℓN(0,1)(b)− ℓN(0,1)(a)
− b,

the infimum (4.6) turns out to be achieved in the limit |b− a| → 0 and only
when a, b are both negative, so that we obtain

M0 = inf {p(a) : −∞ < a < 0}, where p(a) :=
ℓN(0,1)(a)

ℓ′N(0,1)(a)
− a.

In order to find the infimum of the function p, observe that

p′(a) =
−ℓN(0,1)(a)ℓ

′′
N(0,1)(a)

ℓ′N(0,1)(a)
2

.

According to simulations, it is likely that ℓ′′N(0,1) in (−∞, 0) has a unique
zero (denoted a0 below) and hence p takes its minimum at a0; see Figure 1.
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12
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Fig. 1. p(a)

The values a0 and M0 = p(a0) are approximately −2.03 and 3.09, respec-
tively. Moreover, simulations also suggest that M0 is the precise threshold,
i.e. N(m, 1) is Boolean selfdecomposable if and only if |m| ≤ M0; see Fig-
ures 2, 3. Those simulations are performed on Mathematica Version 12.1.1,
Wolfram Research, Inc., Champaign, IL.
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Fig. 2. kN(3.05,1)(a)
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Fig. 3. kN(3.2,1)(a)
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