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Abstract

We study how a property of a monotone convolution semigroup changes with
respect to time parameter. Especially we focus on “time-independent properties”:
in the classical case, there are many properties of convolution semigroups (or Lévy
processes) which are determined at an instant, and moreover, such properties are of-
ten characterized by the drift term and Lévy measure. In this paper we show such
properties of monotone convolution semigroups; an example is the concentration of
the support of a probability measure on the positive real line. Most of them are
characterized by the same conditions on drift terms and Lévy measures as known in
probability theory. These kinds of properties are mapped bijectively by a monotone
analogue of Bercovici-Pata bijection. Finally we compare such properties with classi-
cal, free, Boolean cases, which will be important in an approach to unify these notions
of independence.

1 Introduction

Muraki defined a monotone convolution as the probability distribution of the sum of two
monotone independent random variables [15, 16]. Let Gµ(z) (z ∈ C \R) be the Cauchy
transform of a probability measure µ and Hµ(z) be the reciprocal of Gµ(z). Hµ is analytic

and maps the upper half plane into itself. Moreover, infIm z>0
ImHµ(z)

Im z
= 1. Consequently,

Hµ(z) can be expressed uniquely in the form

Hµ(z) = z + b+

∫
R

1 + xz

x− z
η(dx), (1.1)

where b ∈ R and η is a positive finite measure. The reader is referred to [1]. The monotone
convolution µ� ν of probability measures µ and ν is characterized by

Hµ�ν(z) = Hµ(Hν(z)). (1.2)
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Using this characterization, Muraki classified monotone (or �- for short) infinitely divisible
distributions with compact supports. The complete classification including probability
measures with unbounded supports was proved by Belinschi [4], as follows.

Theorem 1.1. There is a one-to-one correspondence among the following four objects:

(1) a �-infinitely divisible distribution µ;

(2) a weakly continuous monotone convolution semigroup {µt} with µ0 = δ0, µ1 = µ;

(3) a composition semigroup of reciprocal Cauchy transforms {Ht}t≥0 (Ht ◦ Hs = Ht+s)
with H0 =id, H1 = Hµ, where Ht(z) is a continuous function of t ≥ 0 for any
z ∈ C \R;

(4) a vector field on the upper half plane A(z) = limt↘0
Ht(z)−z

t
which has the form A(z) =

−γ +
∫
R

1+xz
x−z

dτ(x), where γ ∈ R and τ is a positive finite measure.

The integral representation in (4) is the Lévy-Khintchine formula in monotone probabil-
ity. The correspondence of (3) and (4) is obtained through the following ordinary differential
equation (ODE):

d

dt
Ht(z) = A(Ht(z)), H0(z) = z, (1.3)

for z ∈ C \R. The fact that the solution does not explode in finite time is a consequence of
[9]. We call A(z) the associated vector field. When τ has all moments, then the coefficients
of the Laurent expansion of A coincide with cumulants [13].

In this paper, we analyze monotone convolution semigroups, especially supports and
moments, comparing with results of classical, free and Boolean cases. Results in this paper
will be important to clarify similarity and dissimilarity between monotone independence
and other kinds of independence. This work is also expected to have connections with an
operator-theoretic approach [12] and a categorical approach [11].

The contents of each section are as follows. In Section 2, we prove a condition for
a probability measure to be supported on the positive real line, and show how moments
change under the monotone convolution. In Section 3, we derive a differential equation
about the minimum of support of a monotone convolution semigroup. In Section 4, we
study how a property of a monotone convolution semigroup changes with respect to time
parameter. Time-independent property is a property of a convolution semigroup which is
determined at an instant. We show that the following properties are time-independent:
the symmetry around 0; the concentration of a support on the positive real line; the lower
boundedness of a support; the finiteness of a moment of even order. All these properties
are also time-independent in classical convolution semigroups. In Section 5, a monotone
analogue of the Bercovici-Pata bijection is defined. Many time-independent properties
in the previous section can be formulated in terms of the Bercovici-Pata bijection. In
Section 6, we study convolution semigroups in free probability and Boolean probability.
A remarkable point is that the concentration of the support on the positive real line is a
time-independent property in the monotone, Boolean and classical cases, but this is not
true in free probability.
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2 Behavior of supports and moments under monotone

convolution

We consider properties of probability measures which are conserved under the monotone
convolution. Let µ be a probability measure. Define the minimum and the maximum of
the support: a(µ) := inf{x ∈ suppµ}, b(µ) := sup{x ∈ suppµ}. Here −∞ ≤ a(µ) < ∞ and
−∞ < b(µ) ≤ ∞ hold. We say that µ contains an isolated atom at c ∈ R if µ({c}) > 0 and
c /∈ (suppµ)\{c}. In this paper we occasionally consider analytic continuations of functions
such as Gµ or Hµ from C \R to an open subset U of C which intersects R. If there are no
confusions, for simplicity, we only say that a function is analytic in U , instead of saying
that a function has an analytic continuation.

Lemma 2.1. Let µ be a probability measure. We use the notation (1.1).
(1) (suppµ)c ∪ (C \R) is the maximal domain in which Gµ(z) is analytic. Similarly,
(supp η)c ∪ (C \R) is the maximal domain in which Hµ(z) is analytic.
(2) {x ∈ (suppµ)c;Gµ(x) ̸= 0} ⊂ (supp η)c. Similarly, {x ∈ (supp η)c;Hµ(x) ̸= 0} ⊂
(suppµ)c. In particular, a(η) ≥ a(µ) since Gµ(x) ̸= 0 for x ∈ (−∞, a(µ)).

Proof. These statements easily follow from the Perron-Stieltjes inversion formula.

A classical infinitely divisible distribution necessarily has a noncompact support, except
for a delta measure. This situation is different from monotone, free and Boolean cases.
For instance, a centered arcsine law is �-infinitely divisible. The study of the maximum
or minimum of a support becomes more important for this reason. It is known that if
λ = ν � µ and λ has a compact support, then the support of µ is also compact [16]. We
generalize this and prove a basic estimate of supports.

Proposition 2.2. The following inequalities hold for probability measures ν and µ.
(1) If supp ν ∩ (−∞, 0] ̸= ∅ and supp ν ∩ [0,∞) ̸= ∅, then a(µ) ≥ a(ν�µ), b(µ) ≤ b(ν�µ).
(2) If supp ν ⊂ (−∞, 0], then a(µ) ≥ a(ν � µ), b(ν) + b(µ) ≤ b(ν � µ).
(3) If supp ν ⊂ [0,∞), then a(ν) + a(µ) ≥ a(ν � µ), b(µ) ≤ b(ν � µ).

Proof. For a probability measure ρ, we denote by ρx the probability measure δx � ρ. This
is useful since ν � µ can be expressed as

ν � µ(B) =

∫
R
µx(B)ν(dx) (2.1)

for Borel sets B [16].
Let λ := ν � µ. We prove first the following inequalities for an arbitrary probability

measure ρ: {
a(ρx) ≥ a(ρ), b(ρx) ≤ b(ρ) + x for all x > 0,

a(ρx) ≥ a(ρ)− |x|, b(ρx) ≤ b(ρ) for all x < 0.

It easy to prove that ρx can be characterized by Gρx = Gρ

1−xGρ
. If x > 0, then 1−xGρ(z) ̸= 0

for z ∈ C \[a(ρ), b(ρ) + x] and Gρ is analytic in this domain. Therefore, the first inequality
holds. The second is proved similarly.
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Let J := suppλ. In view of the relation λ(A) =
∫
R µ

x(A)dν(x), we have λ(J c) =∫
R µ

x(J c)dν(x) = 0. Hence we obtain µx(J c) = 0, ν-a.e. x ∈ R. Take any x0 such that
µx0(J c) = 0. Then we have a(µx0) ≥ a(λ) and b(µx0) ≤ b(λ). If x0 > 0, combining the
inequalities a(ρx) ≥ a(ρ)− |x| and b(ρx) ≤ b(ρ) for ρ = µx0 and x = −x0 < 0, we have

a(µ) = a(µx0−x0) ≥ a(λ)− |x0|,
b(µ) = b(µx0−x0) ≤ b(λ).

Similarly if x0 < 0,

a(µ) ≥ a(λ),

b(µ) ≤ b(λ) + |x0|.

Assume that supp ν ⊂ (−∞, 0]. Then we obtain a(µ) ≥ a(λ) and b(µ) ≤ b(λ) + |b(ν)| since
there is a sequence of such x0’s converging to the point b(ν). Hence we have proved (2).
The statements (1) and (3) are proved in a similar way to (2).

Corollary 2.3. Let ν be a probability measure and let n ≥ 1 be a natural number.
(1) If supp(ν�n) ⊂ (−∞, 0], then supp ν ⊂ (−∞, 0] and |b(ν)| ≥ 1

n
|b(ν�n)|.

(2) If supp(ν�n) ⊂ [0,∞), then supp ν ⊂ [0,∞) and a(ν) ≥ 1
n
a(ν�n).

This corollary puts a restriction on the support of a �-infinitely divisible distribution.
The continuous time version of (2) will be proved in Section 4.

Proof. Let λ := ν�n.
(1) Assume that both b(ν) > 0 and b(λ) = b(ν�n) ≤ 0 hold, then there are two possible
cases: (a) supp ν ∩ [0,∞) ̸= ∅ and supp ν ∩ (−∞, 0] ̸= ∅; (b) supp ν ⊂ [0,∞) in Proposition
2.2. We apply Proposition 2.2 replacing λ and µ with ν�n and ν�n−1, respectively. In
both cases (a) and (b), it holds that b(ν�n−1) ≤ b(λ) ≤ 0. Thus we obtain b(ν�n−1) ≤ 0.
This argument can be repeated and finally we have b(ν) ≤ 0, a contradiction. Thereofre,
b(ν) ≤ 0. By the iterative use of Proposition 2.2 (2) we obtain b(ν�n) ≥ nb(ν), from which
the conclusion follows. A similar argument applies to (2).

The following theorem is well known. We will need almost the same argument in Propo-
sition 2.5.

Lemma 2.4. For a finite measure µ, limy↘0 iyGµ(a+ iy) = µ({a}) for all a ∈ R.

Proof. This claim follows from the dominated convergence theorem.

Now we prove a condition for a support to be included in the positive real line. A similar
result was obtained in [6].

Proposition 2.5. We use the notation (1.1). Then suppµ ⊂ [0,∞) if and only if supp η ⊂
[0,∞) and Hµ(−0) ≤ 0 hold. Moreover, under the condition supp η ⊂ [0,∞), the condition
Hµ(−0) ≤ 0 is equivalent to the following conditions: (∗) η({0}) = 0;

∫∞
0

1
x
dη(x) < ∞;

b+
∫∞
0

1
x
dη(x) ≤ 0.
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Proof. If supp η ⊂ [0,∞) and Hµ(−0) ≤ 0, we have Hµ(u) < 0 for all u < 0 since Hµ is
strictly increasing. Then Gµ = 1

Hµ
is analytic in C \[0,∞), which implies suppµ ⊂ [0,∞).

Conversely, we assume suppµ ⊂ [0,∞). By Lemma 2.1, we have supp η ⊂ [0,∞). If
Hµ(−0) were greater than 0, there would exist u0 < 0 such that Hµ(u0) = 0. Then µ has
an atom at u0 < 0, which contradicts the assumption. Therefore, Hµ(−0) ≤ 0.

We show the equivalence in the last claim. It is not difficult to prove that (∗) implies
Hµ(−0) ≤ 0. Now we shall prove the converse statement. Assume that λ := η({0}) > 0.
By a similar argument to Lemma 2.4, we can prove that limu↗0 uHµ(u) = −λ. Therefore,
for u < 0 sufficiently close to 0, we have Hµ(u) > − λ

2u
> 0, which contradicts the condition

Hµ(−0) ≤ 0. Then we have η({0}) = 0. Since fu(x) := 1+xu
x−u

is increasing with respect
to u, we can apply the monotone convergence theorem and obtain the two inequalities∫∞
0

1
x
dη(x) < ∞ and b+

∫∞
0

1
x
dη(x) ≤ 0.

Corollary 2.6. The monotone convolution preserves the set {µ; suppµ ⊂ [0,∞)} of prob-
ability measures.

Proof. If suppµ ⊂ [0,∞) and supp ν ⊂ [0,∞), Hµ�ν = Hµ ◦ Hν is analytic in C \[0,∞).
Since Hµ�ν is increasing in (−∞, 0), we have Hµ�ν(−0) = Hµ ◦Hν(−0) ≤ Hµ(−0) ≤ 0. By
Proposition 2.5, we obtain supp(µ� ν) ⊂ [0,∞).

Remark 2.7. The above property is also true for Boolean convolution. The proof goes
similarly. We note that the corollary follows immediately if we use the operator-theoretic
realization of monotone independent random variables in [12].

Next we consider moments. Let mn(µ) :=
∫
R x

nµ(dx) be the n-th moment of a proba-
blility measure µ.

Proposition 2.8. Let µ be a probability measure and let n ≥ 1 be a natural number. Then
the following conditions are equivalent.

(1) m2n(µ) < ∞,

(2) Hµ has the expression Hµ(z) = z+ a+
∫
R

ρ(dx)
x−z

, where a ∈ R and ρ is a positive finite
measure satisfying m2n−2(ρ) < ∞,

(3) there exist a1, · · · , a2n ∈ R such that

Hµ(z) = z + a1 +
a2
z

+ · · ·+ a2n
z2n−1

+ o(|z|−(2n−1)) (2.2)

for z = iy (y → ∞).

If (3) holds, for any δ > 0 the expansion (2.2) holds for z → ∞ satisfying Im z > δ|Re z|.
Moreover, we have ak+2 = −mk(ρ) (0 ≤ k ≤ 2n− 2).

Proof. The equivalence (1) ⇔ (3) follows from Theorem 3.2.1 in [1] by calculating the
reciprocals. The implication (2) ⇒ (3) is not difficult. The proof of (3) ⇒ (2) runs by the
same technique as in Theorem 3.2.1 in the book [1].
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Proposition 2.9. Let µ and ν be probability measures and let n ≥ 1 be a natural number.
If m2n(µ) < ∞ and m2n(ν) < ∞, then m2n(µ� ν) < ∞. Moreover, we have

ml(µ� ν) = ml(µ) +ml(ν) +
l−1∑
k=1

∑
j0+j1+···+jk=l−k,

0≤jp, 0≤p≤k

mk(µ)mj0(ν) · · ·mjk(ν) (2.3)

for 1 ≤ l ≤ 2n.

Proof. We note that ImHν(z) ≥ Im z. For any δ > 0, there exists M = M(δ) > 0 such
that

ImHν(iy) ≥ y > δ|ReHν(iy)| for y > M. (2.4)

By (2.2), we obtain

Hµ(Hν(iy)) = Hν(iy) + a1 + a2Gν(iy) + · · ·+ a2nGν(iy)
2n−1 +R(Hν(iy)), (2.5)

where z2n−1R(z) =
∫
R

x2n−1

x−z
ρ(dx) → 0 as z → ∞ satisfying Im z > δ|Re z| for a fixed δ > 0.

We have
y2n−1|R(Hν(iy))| ≤ |Hν(iy)|2n−1|R(Hν(iy))| → 0

as y → ∞ by the condition (2.4). Thus R(Hν(iy)) = o(y−(2n−1)). Expanding Hν(z)
in the form (2.2), we can see that there exist c1, · · · , c2n ∈ R such that Hµ(Hν(z)) =
z + c1 +

c2
z
+ · · · + c2n

z2n−1 + o(|z|−(2n−1)) for z = iy (y → ∞). Then the 2n-th moment
of µ � ν is finite by Proposition 2.8. The equality (2.3) is obtained by the expansion of
Gµ�ν(z) = Gµ(

1
Gν(z)

).

3 Differential equations arising from monotone con-

volution semigroups

Let {µt}t≥0 be a weakly continuous �-convolution semigroup with µ0 = δ0. We denote
Hµt by Ht for simplicity. We sometimes write H(t, z) to express explicitly that Ht(z) is a
function of two variables. By (1.1), Ht can be expressed as

Ht(z) = bt + z +

∫
R

1 + xz

x− z
dηt(x), (3.1)

where, for each t > 0, at is a real number and ηt is a finite positive measure. We denote by
A(z) the associated vector field throughout this paper.

Throughout this section, we will prove the following properties of the minimum of the
support of a convolution semigroup.

Theorem 3.1. Let {µt}t≥0 be a weakly continuous �-convolution semigroup with µ0 = δ0.
We assume that for every t > 0 µt is not a delta measure. We have such a form µt =
λ(t)δθ(t) + νt with θ(t) /∈ supp νt, θ(t) = a(µt) and λ(t) ≥ 0.
(1) Assume a(τ) > 0. Then there are four cases:
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(A) If A(u0) = 0 for some u0 ∈ [−∞, 0) and A(u) < 0 on (−∞, u0) and A(u) > 0 on
(u0, 0) (when u0 = −∞, we understand the condition as A > 0), then λ(t) > 0.
Moreover, the inequality u0 < θ(t) < 0 holds for all t > 0.

(B) If A(u) < 0 on (−∞, 0) and A(0) = 0, then θ(t) = 0 and λ(t) > 0 for all t > 0.

(C) If there exists u0 ∈ (0, a(τ)) such that A(u) < 0 on (−∞, u0) and A(u) > 0 on
(u0, a(τ)), then it follows that θ(t) ∈ (0, u0) and λ(t) > 0 for 0 < t < ∞ and λ(t) > 0
for t > 0.

(D) If A(u) < 0 on (−∞, a(τ)), then there exists t0 ∈ (0,∞] such that λ(t) > 0 for all
0 < t < t0 and λ(t) = 0 for t0 ≤ t < ∞.

If A(0) ̸= 0 and λ(t) > 0, the weight of the delta measure is written as λ(t) = A(θ(t))
A(0)

. If

A(0) = 0 (case(B)), then we have λ(t) = e−A′(0)t. Concerning the position of the delta
measure, the following ODE holds:{

d
dt
θ(t) = −A(θ(t)),

θ(0) = 0.
(3.2)

(2) We assume a(τ) > −∞. There are three cases in terms of the signs of the associated
vector field:

(a) A(u) > 0 on (−∞, a(τ));

(b) A(u0) = 0 for some u0 ∈ (−∞, a(τ)) and A(u) < 0 on (−∞, u0) and A(u) > 0 on
(u0, a(τ));

(c) A(u) < 0 on (−∞, a(τ)).

In case (a) and case (b), we have the following ODE for a(νt):{
d
dt
a(νt) = −A(a(νt)),

a(ν0) = a(τ).
(3.3)

In case (c), the equality a(νt) = a(τ) holds for a.e. t and a(νt) ≥ a(τ) for all t ∈ [0,∞).
Moreover, if limu↗a(τ) A(u) < 0, we have a(νt) = a(τ) for all t.

Example 3.2. We can confirm the validity of the ODEs of θ(t) and a(νt), and the validity
of the formula of the weight of a delta measure in each example.

· Arcsine law: µt =
1

π
√
2t−x21(−

√
2t,

√
2t)(x)dx, A(z) = −1

z
, a(τ) = 0, a(µt) = −

√
2t.

· A deformation of α-strictly stable distributions (0 < α < 2) with parameter c ∈ C,
Im c = 0,Re c ≥ 0 (see [14]): µt = µt,ac, suppµt,ac = (−∞, c + t

1
α ], A(z) = − 1

α
(z −

c)1−α. We can check that the solution of the ODE (3.3) is c+ t
1
α (the same ODE (3.3)

holds for b(µt)).

· The monotone Poisson distribution with parameter λ > 0: µt(dx) = µt,ac + µt,sing,
A(z) = λz

1−z
, where µt,sing is a delta measure at 0. , and hence, it holds that A(0) = 0

and A′(0) = λ. This is the case (B). Therefore, we have µt,sing = e−λtδ0.

7



3.1 Differential equation of delta measure

We summarize three equalities, some of which were used by Muraki in [16].

Lemma 3.3. Let {µt}t≥0 be a weakly continuous �-convolution semigroup with µ0 = δ0.
Then we have three equalities on C \R:
(1) A(Ht(z)) = A(z)∂Ht

∂z
(z);

(2) ∂
∂t
Gt(z) = A(z) ∂

∂z
Gt(z);

(3) ∂
∂t
Ht(z) = A(z) ∂

∂z
Ht(z).

Proof. Since Ht(z) is a flow in C \R, Ht ◦ Hs = Ht+s for t, s ≥ 0. (1) follows from the
derivative ∂

∂s
|s=0. (3) follows from (1) and (1.3). (2) follows from (3) immediately.

First we treat a distribution which contains a delta measure at the minimum of the
support. Suppose that {µt}t≥0 is a weakly continuous �-convolution semigroup with µ0 =
δ0. Then µ can be written as µ = λδθ + ν with θ ∈ (supp ν)c and 0 < λ < 1. We use the
integral representation in Theorem 1.1 (4) for the associated vector field A(z). Throughout
this subsection, we assume that A is not a real constant which means that µt is not a delta
measure for any t > 0 and that a(τ) > 0. We shall show that there exists a delta measure
at the minimum point of the support for some (finite or infinite) time interval. Moreover,
the weight of a delta measure is calculated.

The derivative of A satisfies A′(u) > 0 for all u ∈ (−∞, 0). This implies that there are
five possible cases:

(A) A(u) > 0 on (−∞, 0);

(A’) A(u0) = 0 for some u0 ∈ (−∞, 0) and A(u) < 0 on (−∞, u0) and A(u) > 0 on (u0, 0);

(B) A(u) < 0 on (−∞, 0) and A(0) = 0;

(C) there exists u0 ∈ (0, a(τ)) such that A(u) < 0 on (−∞, u0) and A(u) > 0 on (u0, a(τ));

(D) A(u) < 0 on (−∞, a(τ));

We consider the solution of the ODE (1.3) also on the real line as well as on C \R.

Case (A) and case (A’)
Case (A) is reduced to case (A’) if we define u0 := −∞. Since H(t, u) is an increasing
function of u ∈ (supp ηt)

c, there is a unique point θ(t) satisfying u0 < θ(t) < 0 and

H(t, θ(t)) = 0. (3.4)

θ(t) is a zero point of Ht of degree 1 since ∂uH(t, u) ≧ 1. Therefore, by lemma 2.4, there is
a delta measure λ(t)δθ(t) in µt with u0 < θ(t) < 0. By the implicit function theorem, θ(t) is
in Cω class. Differentiating the equation H(t, θ(t)) = 0 and using Lemma 3.3, we obtain

θ′(t) = −
∂H
∂t
(t, θ(t))

∂H
∂z

(t, θ(t))
= −A(θ(t)). (3.5)

The initial condition is θ(0) = 0.
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Case (B)
In case (B), the same differential equation (3.5) holds. Since A(0) = 0, we have θ(t) = 0
for all t. This is true for a monotone Poisson distribution.

Case (C) and case (D)
Case (C) and case (D) can be treated at the same time. We define

u1 :=

{
u0, in case (C),

a(τ), in case (D),

to treat the two cases at the same time. In the cases (C) and (D),Ht is analytic in C \[u1,∞)
(see Subsection 3.2 for details). Then there exists t0 ∈ (0,∞] such that µt includes a delta
measure in (0, u1) for 0 < t < t0. We can prove that t0 = ∞ in case (C). In case (D), we
have an example, where t0 < ∞ holds (see the section of Example in [14]). t0 = ∞ may
occur if limu↗a(τ)A(u) = 0. µt has the form

µt =

{
λ(t)δθ(t) + νt, 0 ≤ t < t0,

νt, t0 ≤ t < ∞,

where it holds that 0 < λ(t) ≤ 1 and 0 ≤ θ(t) < a(τ) for 0 ≤ t < t0, and a(νt) ≥ a(τ) for
all 0 < t < ∞. The differential equation (3.5) holds also in this case.

Weight λ(t) in the cases (A), (A’), (C) and (D)
It is possible to calculate the weight λ(t). First we exclude case (B). Then we have A(0) ̸= 0.
We expand Ht(z) in a Taylor series around θ(t) as Ht(z) =

∑∞
n=1 an(t)(z − θ(t))n with

a1(t) =
1

λ(t)
. Also we expand A(z) as

∑∞
n=0 bnz

n with bn ∈ R. If we compare the coefficients

of the constant term in the ODE (1.3), we obtain −θ′(t)a1(t) = b0 = A(0). Hence it holds
that

λ(t) =
A(θ(t))

A(0)
.

Weight λ(t) in the case (B)
In case (B), we express the Taylor expansions of Ht and A(z) at 0 respectively by Ht(z) =∑∞

n=1 an(t)z
n and A(z) =

∑∞
n=1 bnz

n with a1(t) =
1

λ(t)
and b1 = A′(0) > 0. Comparing the

coefficients of zn in the ODE (1.3), we obtain the equation a′1(t) = A′(0)a1(t). Therefore,
we get a1(t) = eA

′(0)t because of the initial condition a1(0) = 1. Thus we obtain

λ(t) = e−A′(0)t.

3.2 Differential equation of non-atomic part

In the previous subsection we considered the case a(τ) > 0. Now we consider a more general
case. We investigate a(µt) including the case where there is no isolated delta measure at
a(µt). Assume that the lower bound a(τ) of the Lévy measure τ is finite: −∞ < a(τ).
There are three cases:

(a) A(u) > 0 on (−∞, a(τ));
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(b) A(u0) = 0 for some u0 ∈ (−∞, a(τ)) and A(u) < 0 on (−∞, u0) and A(u) > 0 on
(u0, a(τ));

(c) A(u) < 0 on (−∞, a(τ)).

µt may contain an isolated delta measure at a(µt). If so, we write as µt = λ(t)δθ(t) + νt.
We can understand that λ(t) = 0 if µt does not contain an atom at a(µt), or if µt contains
an atom at a(µt) but it is not isolated. The motion of the position θ(t) of a delta measure
was clarified in the previous subsection. To investigate a(νt), we introduce a function E:
[0,∞) −→ (−∞, a(τ)] by

E(t) :=

{
sup{u ≤ a(τ);Ht(u) = a(τ)} in case (a) and case (b),

a(τ) in case (c)

for t ∈ [0,∞). The definition in the cases (a) and (b) may seem to be unclear since Ht(z)
was only defined in C \R. The precise definition is as follows. Since case (a) and case (b)
can be treated in the same way, we explain only case (b). If u is in the interval (u0, a(τ)),
let R(u) be defined so that Ht(u) exists for all t ∈ (0, R(u)) and limt↗R(u) Ht(u) = a(τ).
We observe that R is a function of u which satisfies 0 < R(u) < ∞ on (u0, a(τ)). R is
a bijection from (u0, a(τ)) to (0,∞). Therefore, we can define a bijection E(t) := R−1(t),
which we have denoted simply as sup{u ≤ a(τ);Ht(u) = a(τ)}.

a(νt) is characterized by the following result.

Lemma 3.4. Let µ be a �-infinitely divisible distribution. µ can be expressed in the form
µ = λδθ + ν, where θ = a(µ) is an isolated atom. We understand that µ = ν or λ = 0 if
µ does not contain an atom at a(µ) or if µ contains an atom at a(µ) but it is not isolated.
Then the equalities

a(ν) = a(η) = sup{x ∈ R;Hµ has an analytic continuation to C \[x,∞)}

hold under the notation (1.1).

Proof. The latter equality follows from Lemma 2.1 (1) immediately and we only need to
prove that a(ν) = a(η). First, if λ = 0 we can easily prove a(µ) = a(η) by Lemma 2.1
(2). Second, we assume that λ > 0. We show that a(ν) ̸= a(η) causes a contradiction. We
notice first that the difference a(ν) ̸= a(η) comes from the zero points of Hµ(x) or Gµ(x)
by Lemma 2.1 (2). If a(ν) < a(η), then Hν(a(ν)) = 0. This implies, however, Gµ contains
two atoms at a(ν) and θ. This contradicts infinite divisibility (see Theorem 3.5 in [14]). If
a(ν) > a(η), then Gν(a(η)) = 0. Since d

dx
Hµ(x) ≥ 1 in (suppµ)c ⊂ R, Hµ(x) is increasing.

Therefore limx↗a(η)Hµ(x) = ∞ and limx↘a(η) Hµ(x) = −∞. Also, limx→−∞Hµ(x) = −∞.
These imply that there exist x1 < a(η) and x2 > a(η) such that Hµ(x1) = Hµ(x2). By
Rouche’s theorem, there exist distinct points z1, z2 ∈ C with positive imaginary parts such
that Hµ(z1) = Hµ(z2) (this argument is similar to the proof of Theorem 3.5 in [14]); this
contradicts the infinite divisibility again since the solution of (1.3) defines a flow of injective
mappings.

Remark 3.5. If µ is not �-infinitely divisible, the above property does not hold. For
instance, if µ = 1

2
(δ−1 + δ1), a(ν) = 1 but a(η) = 0.
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We define a(ν0) := a(τ) in order that a(νt) becomes a continuous function around 0.

Theorem 3.6. In case (a) and case (b), the equality E(t) = a(νt) holds for all t ∈ [0,∞).
In case (c), the equality holds under the further assumption limu↗a(τ)A(u) < 0.

Proof. We can prove this equality by considering the region in which Ht(z) is analytic. We
first consider case (a) and case (b). We prove that

E(t) = sup{x ∈ R;Ht has an analytic continuation to C \[x,∞)}. (3.6)

By reductio ad absurdum we show that Ht never has an analytic continuation beyond E(t).
If Ht(z) has an analytic continuation to C \[E(t) + δ,∞) for some t > 0 and δ > 0, then
we find the following three facts: the image of Ht(u) includes the point a(τ) since ∂H

∂u
≥ 1

and H(t, E(t)) = a(τ); Ht is injective in C \[E(t) + δ,∞); we can take δ > 0 small enough
so that A(z) is analytic in C \[E(t) + δ,∞) since E(t) < a(τ). Then by the equality
A(Ht(z)) = A(z)∂Ht

∂z
(z) in C \R, we conclude that A(z) has an analytic continuation to

the image of Ht. In particular, A is analytic around the point a(τ); this is a contradiction.
Therefore, Ht cannot have an analytic continuation beyond E(t).

Conversely, for any u < E(t), Ht(z) has an analytic continuation to the region C \[u+
δ,∞) for some δ > 0 by the solution of the ODE (1.3). Then the equality (3.6) holds.

The proof of the equality E(t) = a(νt) in case (c) under the assumption limu↗a(τ)A(u) <
0 is similar to the above. For all t > 0, we have limu↗a(τ) Ht(u) < a(τ). Assume that Ht(z)
has an analytic continuation to C \[E(t) + δ,∞) for some t > 0 and δ > 0. We can take δ
small enough such that Ht(u) ∈ (−∞, a(τ)) for all u ∈ (−∞, a(τ) + δ). This contradicts
the equality A(Ht(z)) = A(z)∂Ht

∂z
(z).

In case (c), if limu↗a(τ)A(u) = 0, the question as to whether the relation E(t) = a(νt)
holds for all t > 0 or not, has not been clarified yet. A partial answer is shown in the
following proposition.

Proposition 3.7. We consider the case (c). Then a(νt) = a(τ) a.e. with respect to the
Lebesgue measure on [0,∞) and a(νt) ≥ a(τ) for all t > 0.

Proof. Step 1. First, we prove the following fact: if lim supt→t0,t̸=t0 a(νt) ≥ a(νt0), then
A(z) is analytic in the region (−∞, a(νt0)) and moreover, a(νt0) = a(τ) (= E(t0). Fix an
arbitrary number ϵ ∈ (0, 1). Take a sequence {tn}∞n=1 such that a(νtn) ≥ a(νt0) − ϵ

2
for all

n ≥ 1 and define the sequence of analytic functions in (−∞, a(νt0)− ϵ) by

Aϵ
n(z) :=

Htn(z)−Ht0(z)

tn − t0

for n ≥ 1. For any compact set K ⊂ C \[a(τ) − ϵ,∞), we can prove that the sequence
{Aϵ

n} is uniformly bounded on K for sufficiently large n. Hence we obtain the analyticity
of ∂tH(t0, z) in (−∞, a(νt0)− ϵ). Since 1 > ϵ > 0 is arbitrary, we conclude that ∂tH(t0, z) is
analytic in (−∞, a(νt0)). A(z) has an analytic continuation from C \R to C \[a(νt0),∞) by

the equality A(z) = ∂tH(t0,z)
∂zH(t0,z)

. Now we show a(τ) = a(νt0). As explained before, the solution

Ht(z) of the ODE exists for all time and for any initial position z ∈ C \[a(τ),∞). Therefore,
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we obtain a(νt) ≥ a(τ) for all t ∈ [0,∞). Moreover, we can prove that a(τ) ≥ a(νt0) by the
analyticity of A(z) in (−∞, a(νt0)).

Step 2. We note that a(νt) is Borel measurable. This is easy since the coefficients of
the Taylor expansion of Ht is measurable (by the Cauchy integral formula), and a(νt) can
be expressed by the limit supremum of them. We define a Borel set B by

B := {t ∈ [0,∞); there exist ϵ = ϵ(t) > 0 and η = η(t) > 0 such that

|a(νt)− a(νs)| > ϵ for all s satisfying 0 < |s− t| < η}.

If t ∈ Bc, a(νt) = E(t) by Step 1. It is known that a Borel measurable function on an
interval is continuous except for an open set with arbitrary small Lebesgue measure by
Lusin’s theorem (see [10]). Therefore, the Lebesgue measure of the set B is 0. a(νt) ≥ a(τ)
was already mentioned in the proof of Step 1.

So far we have proved that E(t) = a(νt) in generic cases. Next we show an ODE for the
function E(t). Define by

Eϵ(t) := sup{u ≤ a(τ);Ht(u) = a(τ)− ϵ}

an approximate family for ϵ > 0. This approximation is needed to use the implicit function
theorem in the proof of Theorem 3.9.

Lemma 3.8. In case (a) and case (b), Eϵ and E enjoy the following properties.
(1) Eϵ < E for all ϵ ∈ (0, 1). In addition, Eϵ converges to E pointwise as ϵ → 0.
(2) supϵ>0,t∈I |Eϵ(t)| < ∞ for any compact set I ⊂ [0,∞)

The above lemma is easily proved and we omit its proof.

Theorem 3.9. We consider case (a) and case (b). Then E(t) satisfies the ODE{
d
dt
E(t) = −A(E(t)) for 0 < t < ∞,

E(0) = a(τ).

In particular, E is in Cω(0,∞) ∩ C[0,∞).

Proof. We note that the inequality ∂H
∂u

≥ 1 holds. Then Implicit Function Theorem is
applicable to the equation H = a(τ) − ϵ because H is defined in the open set {(t, u); 0 <
t < ∞,−∞ < u < E(t)} which contains (t, Eϵ(t)) for all t. Therefore, Eϵ is in class
Cω(0,∞) and its derivative is

dEϵ

dt
(t) = − ∂tH(t, Eϵ(t))

∂uH(t, Eϵ(t))
= −A(Eϵ(t))

by Lemma 3.3. After integrating the above, we take the limit ϵ → 0 using Lemma 3.8, to
obtain

E(t) =

∫ t1

t

A(E(s))ds+ E(t1).

This implies that E is in class Cω(0,∞) and the ODE holds. The right continuity of E at
0 follows from the fact limt↘0 Ht(z) = z.
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4 Time-dependent and time-independent properties

of monotone convolution semigroup

In classical probability theory, it is often true that a property of a convolution semigroup
µt is completely determined at an instant. Such a property is called a time-independent
property. In this section, we prove such properties for monotone convolution semigroups.

Lemma 4.1. Let {µt}t≥0 be a weakly continuous �-convolution semigroup with µ0 = δ0,
and A(z) be the associated vector field. If there exists t0 > 0 such that suppµt0 ⊂ [0,∞),
then A(z) is analytic in C \[0,∞).

Proof. We have suppµ t0
n
⊂ [0,∞) by Corollary 2.3 (1). Let An(z) be defined by An(z) :=

(H t0
n
(z) − z)/ t0

n
. An is analytic in C \[0,∞). By definition A(z) = limn→∞ An(z) for

z ∈ C \R. By Montel’s theorem, it suffices to show that the RHS is uniformly bounded
on each compact subset of C \[0,∞). Fix an arbitrary compact set K ⊂ C \[0,∞). By
Lemma 2.1, supp η t0

n
⊂ [0,∞). Since Ht(i) = bt + i(1 + ηt(R)) is differentiable, there exist

M,M ′ > 0 such that ηt(R)
t

≤ M and
∣∣∣ btt ∣∣∣ ≤ M ′ for all t ∈ [0, t0]. Then

|An(z)| ≤
∣∣∣ n
t0
b t0

n

∣∣∣+ ∣∣∣∣∣
∫ ∞

0

1 + xz

x− z

n

t0
η t0

n
(x)

∣∣∣∣∣
≤ M ′ + L′

for all n and z ∈ K. L′ > 0 is a constant dependent only on K.

Using Proposition 2.5 and Lemma 4.1, one can prove the monotone analogue of sub-
ordinator theorem. For the classical version, the reader is referred to Theorem 24.11 of
[17].

Theorem 4.2. . Let {µt}t≥0 be a weakly continuous �-convolution semigroup with µ0 = δ0.
Then the following statements are equivalent:

(1) there exists t0 > 0 such that suppµt0 ⊂ [0,∞);

(2) suppµt ⊂ [0,∞) for all 0 ≤ t < ∞;

(3) supp τ ⊂ [0,∞), τ({0}) = 0,
∫∞
0

1
x
dτ(x) < ∞ and γ ≥

∫∞
0

1
x
dτ(x).

Remark 4.3. (i) The equality τ({0}) = 0 in condition (3) means that there is no component
of a Brownian motion in the Lévy-Khintchine formula.
(ii) The equivalence also holds in the classical and Boolean Lévy-Khintchine formulae. In
the free case, however, (1) and (2) are not equivalent (see Section 6).

Proof. We note that (3) is equivalent to (3’): A is analytic in C \[0,∞) and A < 0 on
(−∞, 0), by an argument in Proposition 2.5.

(1) ⇒ (2), (3′): If {µt} is a delta measure, then the statement follows immediately. We
assume that µt is not a delta measure for some t > 0. This is equivalent to assuming that
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µt is not a delta measure for all t > 0. Then τ is a nonzero positive finite measure. A(z) is
analytic in C \[0,∞) by Lemma 4.1, and hence, supp τ ∈ [0,∞). There are three possible
cases: (a) A(u) > 0 on (−∞, 0); (b) A(u0) = 0 for some u0 ∈ (−∞, 0) and A(u) < 0 on
(−∞, u0) and A(u) > 0 on (u0, 0); (c) A(u) < 0 on (−∞, 0).

In case (a) and case (b), we have a(µt) < 0 for all t > 0 by Theorem 3.1 (2). In case
(c), we have a(µt) ≥ a(τ) ≥ 0 again by Theorem 3.1 (2). Hence only case (c) has no
contradiction to the assumption.

(3′) ⇒ (1): This proof was actually done in the end of the proof of (1) ⇒ (2).

We can prove that the lower boundedness of the support is determined at one instant.

Theorem 4.4. Let {µt}t≥0 be a weakly continuous �-convolution semigroup with µ0 = δ0.
Then the following statements are equivalent:

(1) there exists t0 > 0 such that suppµt0 is bounded below;

(2) suppµt is bounded below for all 0 ≤ t < ∞;

(3) supp τ is bounded below.

Remark 4.5. The same kind of theorem also holds in the free and Boolean cases. The
classical case is exceptional since the condition (3) needs to be replaced by supp τ ⊂ [0,∞),

τ({0}) = 0 and
∫ 1

−1
1
|x|dτ(x) < ∞ [17]. Therefore, the boundedness below is not mapped

bijectively by the monotone analogue of Bercovici-Pata bijection defined in Section 5.

Proof. (1) ⇒ (3): When a(µt0) ≥ 0, the claim follows from Theorem 4.2. We consider the
case a(µt0) < 0. By Proposition 2.2, we have a(µt) ≥ a(µt0) > −∞ for all t ≤ t0. By the
same argument as in Lemma 4.1, one can show that A is analytic in (−∞, a(µt0)).
(3) ⇒ (2): The lower boundedness of the support of µt for all t ≥ 0 comes from Theorem
3.1.

Next we consider the symmetry around the origin. We say that a measure µ on the real
line is symmetric if µ(dx) = µ(−dx). The proof depends on the assumption of compact
support. We could not prove the result for all probability measures.

Theorem 4.6. Let {µt}t≥0 be a weakly continuous �-convolution semigroup with µ0 = δ0.
We assume that the support of each µt is compact (this is a time-independent property).
Then the following statements are all equivalent.

(1) There exists t0 > 0 such that µt0 is symmetric.

(2) µt is symmetric for all t > 0.

(3) γ = 0 and τ is symmetric.

Proof. We prove this theorem in terms of moments. We use the representation of the vector
field A(z) = −γ+

∫
1

x−z
dσ(x), dσ(x) = (1+ x2)dτ(x), where σ has a compact support. We

use the notation mn(t) = mn(µt) for simplicity. We notice that the symmetry is equivalent
to the vanishment of odd moments for a compactly supported measure. Define a sequence

14



{rn}∞n=1 by r1 := γ, rn := mn−2(σ) for n ≥ 2. Then A(z) = −
∑∞

n=1
rn

zn−1 . By Lemma 3.3

(2), we get differential equations dm0(t)
dt

= 0 and

dmn(t)

dt
=

n∑
k=1

krn−k+1mk−1(t) for n ≥ 1 (4.1)

with initial conditions m0(0) = 1 and mn(0) = 0 for n ≥ 1.
Now we prove the implications (1) ⇒ (2) and (1) ⇒ (3). We can easily prove that

m2n+1(t0) = 0 and r2n+1 = 0 for n ≥ 0, and then m2n+1(t) = 0 for all t > 0 and n ≥ 0.
Then σ and µt are both symmetric for all t > 0. The proof of the implication (3) ⇒ (2)
runs by a similar argument.

We show some time-dependent properties.

Proposition 4.7. (1) Absolute continuity is a time-dependent property.
(2) Existence of an atom is a time-dependent property.

Proof. There is an example [14]. Let {µt}t≥0 be the monotone convolution semigroup
defined by

H
(α,1,c)
t (z) = c+ {(z − c)α + t}

1
α for 0 < α < 1. (4.2)

Then µt contains an atom for 0 ≤ t < |c|α and µt is absolutely continuous for t ≥ |c|α.

The property m2n(µ) =
∫
R x

2nµ(dx) < ∞ is also time-independent. That is, we prove
the following theorem which is also true in classical and free probabilities [5, 18]. In addition,
this also extends Theorem 4.9 in [16] to higher order moments.

Theorem 4.8. Let {µt}t≥0 be a weakly continuous �-convolution semigroup with µ0 = δ0
and let n ≥ 1 be a natural number. Then the following statements are equivalent:

(1) there exists t0 > 0 such that m2n(t0) < ∞;

(2) m2n(t) < ∞ for all 0 < t < ∞;

(3) m2n(τ) < ∞.

Proof. (1) ⇒ (2): We use the notation µy
t := δy � µt introduced in (2.1). For 0 ≤ t ≤ t0,

we set λ = µt0−t and ν = µt. Then we obtain
∫ ∫

x2nµy
t (dx)µt0−t(dy) =

∫
R x

2nµt0(dx) < ∞,
which implies m2n(µ

y
t ) < ∞ for some y ∈ R. By Proposition 2.8, we obtain m2n(t) < ∞ for

0 ≤ t ≤ t0. For arbitrary 0 < s < ∞, we can write s = kt0 + t with k ∈ N and 0 ≤ t < t0.
Then we have m2n(s) < ∞ by Proposition 2.9.
(2) ⇒ (3): We first note that mk(t) is a Borel measurable function of t ≤ 0 since µt is
weakly continuous. Moreover, we show that there exist r1, · · · , r2n ∈ R such that

ml(t) =
l∑

k=1

∑
1=i0<i1<···<ik−1<ik=l+1

tk

k!

k∏
p=1

ip−1rip−ip−1 (4.3)
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for 1 ≤ l ≤ 2n. For the proof we use the equality

ml(t+ s) = ml(t) +ml(s) +
l−1∑
k=1

∑
j0+j1+···+jk=l−k,

0≤jp, 0≤p≤k

mk(t)mj0(s) · · ·mjk(s) (4.4)

for 1 ≤ l ≤ 2n. For l = 1, (4.4) becomes m1(t + s) = m1(t) + m1(s). This is Cauchy’s
functional equation and there exists r1 ∈ R such that m1(t) = r1t by the measurability
(for a simple proof of Cauchy’s functional equation, see [2]). We assume that there exist
r1, · · · , rq ∈ R such that (4.3) holds for 1 ≤ l ≤ q. For an arbitrary r′q+1 ∈ R, we define

m̃q+1(t) := r′q+1t+

q+1∑
k=2

∑
1=i0<i1<···<ik−1<ik=q+2

tk

k!

k∏
p=1

ip−1rip−ip−1 . (4.5)

Then the equality

m̃q+1(t+ s) = m̃q+1(t) + m̃q+1(s) +

q∑
k=1

∑
j0+j1+···+jk=q+1−k,

0≤jl, 0≤l≤k

mk(t)mj0(s) · · ·mjk(s) (4.6)

holds; this will be proved soon later in Proposition 4.10. Therefore, (4.4) and (4.6) im-
ply that mq+1(t + s) − m̃q+1(t + s) = mq+1(t) − m̃q+1(t) + mq+1(s) − m̃q+1(s). This is
again Cauchy’s functional equation, and hence, there exists r′′q+1 ∈ R such that mq+1(t) =
m̃q+1(t) + r′′q+1t. The above argument runs until q = 2n − 1, and then we conclude that
there exist r1, · · · , r2n ∈ R such that (4.3) holds for 1 ≤ l ≤ 2n.

By the equality ∂G
∂t
(t, z) = A(z)∂G

∂z
(t, z) we obtain A(z) =

G(1,z)− 1
z∫ 1

0
∂G
∂z

(s,z)ds
, which implies

A(z) = −
m1(1)
z2

+ · · ·+ m2n(1)
z2n+1 + o(|z|−(2n+1))

1
z2

+
2
∫ 1
0 m1(s)ds

z3
+ · · ·+ (2n+1)

∫ 1
0 m2n(s)ds

z2n+2 +
∫ 1

0
Rs(z)ds

, (4.7)

where Rs(z) is defined by Rs(z) = 2n+1
z2n+2

∫
R

x2n+1

z−x
µs(dx) +

1
z2n+1

∫
R

x2n+1

(z−x)2
µs(dx). We prove

a property of Rs(z) here. Since m2n(s) is a polynomial, x2n is integrable with respect to

the measure µs(dx)ds on R×[0, t]. Easily we can show that
∫ 1

0
Rs(iy)ds = o(y−(2n+2))

by the dominated convergence theorem. Therefore, there exist u1, · · · , u2n ∈ R such that
A(iy) = u1 +

u2

iy
+ · · · + u2n

(iy)2n−1 + o(y−(2n−1)). By Proposition 2.8, we have m2n(τ) < ∞
(the equivalence between (2) and (3) in Proposition 2.8 is true for A(z). The proof needs
no changes).
(3) ⇒ (2): Since m2n(τ) < ∞, we have the expansion A(z) = u1 +

u2

z
+ · · ·+ u2n

z2n−1 +Q(z),

where Q(z) := 1
z2n−1

∫
R

x2n−1

x−z
(1 + x2)τ(dx). We obtain

Ht(z) = z + u1t+

∫ t

0

u2

Hs(z)
ds+ · · ·+

∫ t

0

u2n

Hs(z)2n−1
ds+

∫ t

0

Q(Hs(z))ds (4.8)

from the equality d
dt
Ht(z) = A(Ht(z)). We can prove that

∑2n−1
k=p

∫ t

0

uk+1

Hs(iy)k
ds+

∫ t

0
Q(Hs(iy))ds =

o(y−(p−1)) since |
∫ t

0
1

Hs(iy)k
ds| ≤ t

yk
. In addition,

∫ t

0
Q(Hs(iy))ds = o(y−(2n−1)) for any t > 0
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by the dominated convergence theorem. Now we show by induction that there exist poly-
nomials ck(t) of t (1 ≤ k ≤ 2n) such that

Ht(z) = z + c1(t) +
c2(t)

z
+ · · ·+ c2n(t)

z2n−1
+ o(|z|−(2n−1)) (z = iy, y → ∞) (4.9)

for any t > 0. First Ht(iy) = iy + u1t +
u2t
iy

+ o( 1
y
) holds by (4.8). Next we assume that

there exist polynomials ck(t) of t (1 ≤ k ≤ 2q) such that

Ht(z) = z + c1(t) +
c2(t)

z
+ · · ·+ c2q(t)

z2q−1
+ Pt(z), (4.10)

where Pt(iy) = o(y−(2q−1)) for any t > 0. We can write Pt(z) =
1

z2q−1

∫
R

x2q−1

x−z
ρt(dx), where

ρt is the positive finite measure in Proposition 2.8 (2). Then we obtain the asymptotic
behavior

∫ t

0
Ps(iy)ds = o(y−(2q−1)). Substituting (4.10) into the right hand side of (4.8), we

obtain the expansion

Ht(z) = z + b1(t) +
b2(t)

z
+ · · ·+ b2q+2(t)

z2q+1
+ o(|z|−(2q+1)), (4.11)

where bk(t) is a polynomial of t (we note that bk(t) = ck(t) holds for 1 ≤ k ≤ 2q by the
uniqueness of the expansion). This induction goes until q = n−1 and we obtain (4.9). The
conclusion follows from Proposition 2.8.

Remark 4.9. We have proved that mk(t) is a polynomial of t in the proof of (2) ⇒ (3).
This property might seem to be too strong: what we needed was the integrability ofmk(t) in
a finite interval. The author however could not find an alternative proof of the integrability.

The following result completes the above theorem.

Proposition 4.10. For any complex numbers rn, n ≥ 1, mn(t) defined by

mn(t) =
n∑

k=1

∑
1=i0<i1<···<ik−1<ik=n+1

tk

k!

k∏
p=1

ip−1rip−ip−1 (4.12)

satisfy the equality

mn(t+ s) = mn(t) +mn(s) +
n−1∑
k=1

∑
j0+j1+···+jk=n−k,

0≤jp, 0≤p≤k

mk(t)mj0(s) · · ·mjk(s) (4.13)

for any n ≥ 1.

Proof. Every series in this proof is a formal power series. We define A(z) = −
∑∞

z=1
rn

zn−1 .
We solve the differential equation (1.3) in the sense of formal power series. Then the

solution Ht(z) of the form Ht(z) =
∑∞

n=−1
an(t)
zn

uniquely exists. It is easy to prove that
Ht+s(z) = Ht(Hs(z)) in the sense of formal power series with respect to t, s, z. If we define
Gt(z) by

1
Ht(z)

, then Lemma 3.3 holds by the same proof. We can easily prove that mn(t)

are given by Gt(z) =
∑∞

n=0
mn(t)
zn+1 using the equality (2) in Lemma 3.3. (4.13) follows from

the power series expansion of Gt+s(z) = Gt(
1

Gs(z)
).
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5 Connection to infinite divisibility in classical prob-

ability theory

Now we consider the correspondence between classical probability theory and monotone
probability. The usual Lévy-Khintchine formula is given by

µ̂(u) = exp
(
iγu+

∫
R

(
eixu − 1− ixu

1 + x2

)1 + x2

x2
τ(dx)

)
, (5.1)

where γ ∈ R and τ is a positive finite measure. We show that identification of (γ, τ) in
Theorem 1.1 and in (5.1) is important. For instance, the support of a classical infinitely
divisible distribution is concentrated on the positive real line in and only if (see Theorem
24.11 in [17])

supp τ ⊂ [0,∞),

∫ 1

0

1

x
τ(dx) < ∞, τ({0}) = 0, γ ≥

∫ ∞

0

1

x
τ(dx). (5.2)

These conditions are completely the same as in Theorem 4.2. Then it is natural to define
the monotone analogue of the Bercovici-Pata bijection (for the details of the Bercovici-
Pata bijection in free probability, the reader is referred to [7]). Let ID(�) be the set of all
�-infinitely divisible distributions; let ID(∗) be the set of all classical infinitely divisible
distributions. We define a map ΛM : ID(∗) → ID(�) by sending the pair (γ, τ) in (5.1) to
the pair (γ, τ) in Theorem 1.1 (4). This map enjoys nice properties. Let Dλ be the dilation
operator defined by ∫

R
f(x)Dλµ(dx) =

∫
R
f(λx)µ(dx)

for all probability measures µ and all bounded continuous functions f .

Theorem 5.1. ΛM satisfies following properties.

(1) ΛM is continuous;

(2) ΛM(δa) = δa for all a ∈ R;

(3) Dλ ◦ ΛM = ΛM ◦Dλ for all λ > 0.

(4) ΛM maps the Gaussian with mean 0 and variance σ2 to the arcsine law with mean 0
and variance σ2;

(5) ΛM maps the Poisson distribution with parameter λ to the monotone Poisson distri-
bution with parameter λ;

(6) ΛM gives a one-to-one correspondence between the set {µ ∈ ID(∗); suppµ ⊂ [0,∞)}
and the set {ν ∈ ID(�); supp ν ⊂ [0,∞)}.

(7) For all α ∈ (0, 2), ΛM gives a one-to-one correspondence between strictly α-stable
distributions and monotone strictly α-stable distributions.
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(8) If supp τ is compact, the symmetry of µ ∈ ID(∗) is equivalent to the symmetry of
ΛM(µ).

(9) For each n ≥ 1, ΛM gives a one-to-one correspondence between the set {µ ∈ ID(∗);
∫
R x

2nµ(dx) <
∞} and the set {ν ∈ ID(�);

∫
R x

2nν(dx) < ∞}.

Remark 5.2. Since monotone convolution is non-commutative, ΛM does not preserve the
structure of convolutions: ΛM(µ ∗ λ) ̸= ΛM(µ)� ΛM(λ) for some µ, λ.

Proof. (1) It is known that the convergence of a sequence {µn} ⊂ ID(∗) to some µ implies
the convergence of the corresponding pair (γn, τn) to some (γ, τ). Now we have the family
of ODEs driven by

An(z) = −γn +

∫
R

1 + xz

x− z
dτn(x);

we denote the flow by {Hn,t}. Since (γn, τn) converges to (γ, τ), An converges locally
uniformly to A. By the basic result of the theory of ODE, it holds that Hn,1(z) → H1(z)
locally uniformly, which implies that µn converges weakly to µ.

(2), (4) and (5) are proved easily by using the Lévy-Khintchine formulae [16, 17].
(3) and (7) follow from direct computations of the Lévy-Khintchine formula. See [14]

and [17].
The property (6) follows from Theorem 4.2.
(8) and (9) are direct consequences of the theorems 4.6 and 4.8.

6 Time-independent properties of free and Boolean

convolution semigroups

We prepare tools to study convolution semigroups in free and and Boolean probabilities.
Notation is chosen in order that the correspondence becomes clear among the Bercovici-
Pata bijections in free, monotone and Boolean probability theories. We define

Kµ(z) := z −Hµ(z) = γ −
∫

1 + xz

x− z
dτ(x). (6.1)

As proved in [19], the Boolean convolution µ ⊎ ν of probability distributions µ and ν is
characterized by

Kµ⊎ν = Kµ +Kν . (6.2)

Every probability measure is Boolean infinitely divisible.
We summarize results of infinitely divisible distributions in free probability (see [3, 8]

for instance). For a probability measure µ, there exists some η > 0 and M > 0 such that
Hµ has an analytic right inverse H−1

µ defined on the region

Γη,M := {z ∈ C; |Re z| < η| Im z|, | Im z| > M}.

The Voiculescu transform ϕµ is defined by ϕµ(z) := H−1
µ (z) − z in a region where H−1

µ is
defined. For probability measures µ and ν, the free convolution of µ and ν is characterized
by the relation

ϕµ⊞ν = ϕµ + ϕν . (6.3)
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Theorem 6.1. Let µ be a probability measure on R. µ is ⊞-infinitely divisible if and only
if there exist a finite measure τ and a real number γ such that

ϕµ(z) = γ +

∫
R

1 + xz

z − x
dτ(x) for z ∈ C \R . (6.4)

In this section we prove time-independent properties of free and Boolean convolution
semigroups to clarify similarity and dissimilarity of the Bercovici-Pata bijections for the
free, Boolean and monotone convolutions. First we show that the subordinator theorem is
valid in the Boolean case but is not valid in the free case.

Theorem 6.2. Let {µt}t≥0 be a weakly continuous Boolean convolution semigroup with
µ0 = δ0. Then the following statements are equivalent:

(1) there exists t0 > 0 such that suppµt0 ⊂ [0,∞);

(2) suppµt ⊂ [0,∞) for all 0 ≤ t < ∞;

(3) supp τ ⊂ [0,∞), τ({0}) = 0,
∫∞
0

1
x
dτ(x) < ∞ and γ ≥

∫∞
0

1
x
dτ(x).

This type of theorem does not hold in free probability: Condition (1) is not equivalent to
condition (2).

Proof. In the Boolean case, the proof is easy by Proposition 2.5. In free probability, we show
an example of a convolution semigroup where (1) does not imply (2). Since the problem is
symmetric around the origin, we show a counter example concerning the condition suppµt ⊂
(−∞, 0]. We define ϕµ(z) := a−(z−c)

1
2 with a, c ∈ R. Then the corresponding convolution

semigroup {µt}t≥0 with µ1 = µ, µ0 = δ0 is characterized by

Ht(z) = z − at+
t2

2
+ t

√
z −

(
at− t2

4
+ c

)
. (6.5)

It is easy to show that suppµt ⊂ (−∞, 0] for sufficiently large t, but suppµt ⊈ (−∞, 0] for
small t.

The symmetry around the origin is a time-independent property also in the cases of
Boolean and free independence. The proof is easy.

Proposition 6.3. Let {µt}t≥0 be a weakly continuous Boolean (free) convolution semigroup
with µ0 = δ0. Then the following statements are all equivalent.

(1) There exists t0 > 0 such that µt0 is symmetric.

(2) µt is symmetric for all t > 0.

(3) γ = 0 and τ is symmetric.

We can also show that the property
∫
R x

2ndµt(x) < ∞ is time-independent in Boolean
case. In free probability, this result is recently obtained in [5].
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Proposition 6.4. Let n ≥ 1 be a natural number. For a weakly continuous Boolean con-
volution semigroup {µt}t≥0, the following statements are equivalent.

(1)
∫
R x

2ndµt(x) < ∞ for some t > 0.

(2)
∫
R x

2ndµt(x) < ∞ for all t > 0.

(3)
∫
R x

2ndτ(x) < ∞.

Proof. The proof follows from Proposition 2.8.

Now we can compare the properties of Bercovici-Pata bijections in free, monotone and
Boolean probability theories. Boolean (strictly) stable distributions have been classified
in [19], and they have the same characterization as the monotone case. Considering the
contents in this section, we obtain the Boolean analogue of properties (1)-(9) in Theorem
5.1. It might be fruitful to consider the validity of property (6) in the Boolean and monotone
cases in terms of the embeddings into tensor independence [11]. In free probability, most
of the results of Theorem 5.1 are already known (see [3, 7]) except for the failure of free
analog of property (6).

Another similarity between free and monotone independences is that the number of
atoms in a ⊞-infinitely divisible distribution is restricted in a similar way to the case of a
�-infinitely divisible distribution (see Theorem 3.5 in [14] and Proposition 2.8 in [4]).
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Poincaré Probab. Stat. Available in arXiv:0907.4896v3.

[14] T. Hasebe, Monotone convolution and monotone infinite divisibility from complex

analytic viewpoint, Infin. Dim. Anal. Quantum Probab. Relat. Topics 13 (2010), no. 1,

111–131.

[15] N. Muraki, Monotonic independence, monotonic central limit theorem and monotonic

law of small numbers, Infin. Dim. Anal. Quantum Probab. Relat. Topics 4 (2001),

39–58.

[16] N. Muraki, Monotonic convolution and monotonic Lévy-Hinčin formula, preprint,
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