Akira
Sakaiiβδ@Nj
(ResearchGate, researchmap, Visionary Scientists)
Professor in Mathematics
Contents
IV. Organizing scientific
meetings
Last updated on September 16, 2025.
I.
Research interestiϊ{κΕΝ±Ώηj
To rigorously prove
various important statistical-physics phenomena. They include phase transitions and
critical behavior, associated limit theorems, and
convergence to equilibrium measures and its application to combinatorial
optimization. The mathematical
models I have been interested in are
· Ising models (for magnets) and stochastic cellular automata,
· Σ4 model (in lattice scalar-field theory),
· self-avoiding walk (for linear polymers),
· lattice trees and lattice animals (for branched polymers),
· percolation (for random media),
· oriented percolation and the contact process (for the spread of an infectious disease),
· random walk with reinforcement.
1.
Y. Kamijima
and A. Sakai. Mean-field
behavior of the quantum Ising susceptibility and a new lace expansion for the
classical Ising model. Math. Phys. Anal. Geom. 28
(2025): Article 29 (the full-text view-only
version). arXiv:2501.06592.
2.
Akira Sakai. Hugo
Duminil-CopinΜΖΡ. w (Sugaku)
76 (2024):48–60.
3.
N. Kawamoto and A. Sakai. Spread-out
limit of the critical points for lattice trees and lattice animals in
dimensions d ˃ 8. Comb.
Probab. Comput., 33 (2024):
238–269. arXiv:2205.09451.
4.
B.H. Fukushima-Kimura, N. Kawamoto,
E. Noda and A. Sakai. Mathematical
aspects of the digital annealerfs simulated annealing algorithm. J. Stat.
Phys., 190 (2023): Article 190. arXiv:2303.08392.
5.
Y. Kamijima
and A. Sakai. Stability of the
phase transition and critical behavior of the Ising
model against quantum perturbation. RIMS
Kokyuroku, 2246 (2023): Article 2.
6.
B.H. Fukushima-Kimura, S. Handa, K.
Kamakura, Y. Kamijima, K. Kawamura and A. Sakai. Mixing
time and simulated annealing for the stochastic cellular automata. J. Stat.
Phys., 190 (2023): Article 79. arXiv:2007.11287.
7.
B.H. Fukushima-Kimura, Y. Kamijima, K. Kawamura and A. Sakai. Stochastic
optimization: Glauber dynamics versus stochastic cellular automata. Transactions
of the Institute of Systems, Control and Information Engineers
36 (2023): 9–16. arXiv:2211.06809.
8.
Akira Sakai. p[R[VΜ 2020. w (Sugaku) 74 (2022): 253–279.
9.
Akira Sakai. Correct
bounds on the Ising lace-expansion coefficients. Commun.
Math. Phys., 392 (2022):
783–823 (the full-text view-only version). arXiv:2003.09856.
10.
B.H. Fukushima-Kimura, Y. Kamijima, K. Kawamura and A. Sakai. Stochastic
optimization via parallel dynamics: rigorous results and simulations. Proceedings
of the ISCIE International Symposium on Stochastic Systems Theory and its
Applications 2022 (2022): 65–71.
11.
B.H. Fukushima-Kimura, A. Sakai,
H. Toyokawa and Y. Ueda. Stability
of energy landscape for Ising models. Physica A, 583
(2021): 126208. arXiv:2105.00449.
12.
K. Yamamoto, K. Kawamura, K. Ando,
N. Mertig, T. Takemoto, M. Yamaoka, H. Teramoto, A.
Sakai, S. Takamaeda-Yamazaki and M. Motomura. STATICA:
a 512-spin 0.25M-weight annealing processor with an all-spin-updates-at-once
architecture for combinatorial optimization with complete spin-spin interactions. IEEE Journal
of Solid-State Circuits, 56 (2021): 165–178.
13.
K. Yamamoto, K. Ando, N. Mertig, T. Takemoto, M. Yamaoka, H. Teramoto, A. Sakai, S.
Takamaeda-Yamazaki and M. Motomura. 7.3
STATICA: a 512-spin 0.25M-weight full-digital annealing processor with a
near-memory all-spin-updates-at-once architecture for combinatorial
optimization with complete spin-spin interactions. 2020 IEEE
International Solid-State Circuits Conference.
14.
Akira Sakai. Crossover
phenomena in the critical behavior for long-range models with power-law
couplings. RIMS Kokyuroku
Bessatsu, B79
(2020): 51–62. arXiv:1812.10275.
15.
S. Handa, Y. Kamijima
and A. Sakai. A
survey on the lace expansion for the nearest-neighbor models on the BCC lattice.
Taiwanese J. Math., 24 (2020): 723–784.
arXiv:1712.05573.
16.
S. Handa, K. Kamakura, Y. Kamijima and A. Sakai.
Finding optimal solutions by stochastic cellular automata. arXiv:1906.06645.
17.
L.-C. Chen and A. Sakai. Critical
two-point function for long-range models with power-law couplings: The marginal
case for d ³
dc. Commun.
Math. Phys., 372 (2019): 543–572 (the full-text
view-only version). arXiv:1808.06789.
18.
S. Handa, M. Heydenreich and A.
Sakai. Mean-field
bound on the 1-arm exponent for Ising ferromagnets in high dimensions. A chapter in Sojourns in Probability
and Statistical Physics - I (V. Sidoravicius
ed., Springer, 2019). arXiv:1612.08809.
19.
A. Sakai and G. Slade. Spatial
moments for high-dimensional critical contact process, oriented percolation and
lattice trees. Electron. J.
Probab., 24 (2019): no. 65, 1–18. arXiv:1810.04011.
20.
Akira Sakai. Hyperscaling
for oriented percolation in 1+1 space-time dimensions. J. Stat. Phys., 171 (2018): 462–469 (the full-text view-only version). arXiv:1709.08291.
21.
T. Arae, S. Isai, A. Sakai, K.
Mineta, M.
Yokota-Hirai, Y. Suzuki, S. Kanaya, J. Yamaguchi, S. Naito and Y. Chiba.
Coordinated
regulations of mRNA synthesis and decay during cold acclimation in arabidopsis cells.
Plant Cell Physiol., 58
(2017): 1090–1102.
22.
Y. Chino and A. Sakai. The
quenched critical point for self-avoiding walk on random conductors. J. Stat. Phys., 163 (2016): 754–764. arXiv:1508.01262.
23.
Akira Sakai. Application
of the lace expansion to the Σ4 model. Commun. Math. Phys., 336 (2015): 619–648. arXiv:1403.5714.
24.
L.-C. Chen and A. Sakai. Critical
two-point functions for long-range statistical-mechanical models in high
dimensions. Ann. Probab., 43 (2015): 639–681. arXiv:1204.1180.
25.
L.-C. Chen and A. Sakai. Asymptotic
behavior of the gyration radius for long-range self-avoiding walk and
long-range oriented percolation.
Ann. Probab., 39 (2011):
507–548. arXiv:1002.0875.
26.
Akira Sakai. Large-time
asymptotics of the gyration radius for long-range statistical-mechanical models. RIMS
Kokyuroku Bessatsu, B21 (2011): 53–62. arXiv:0912.5117.
27.
R. van der Hofstad and A. Sakai. Convergence
of the critical finite-range contact process to super-Brownian motion above the
upper critical dimension: The higher-point functions. Electron. J. Probab., 15
(2010): no. 27, 801–894. arXiv:0809.1712.
28.
L.-C. Chen and A. Sakai. Critical
behavior and the limit distribution for long-range oriented percolation. II:
Spatial correlation. Probab. Theory Relat. Fields, 145 (2009): 435–458.
arXiv:0804.2039.
29.
Akira Sakai. Applications
of the lace expansion to statistical-mechanical models. A chapter in Analysis and Stochastics of Growth
Processes and Interface Models (P. Mörters et
al. eds., Oxford University Press, 2008).
30.
M. Heydenreich, R. van der Hofstad
and A. Sakai. Mean-field
behavior for long- and finite range Ising model, percolation and self-avoiding
walk. J. Stat. Phys., 132 (2008): 1001–1049.
arXiv:0712.0312.
31.
L.-C. Chen and A. Sakai. Critical
behavior and the limit distribution for long-range oriented percolation. I. Probab. Theory
Relat. Fields, 142 (2008): 151–188. arXiv:0703455.
32.
Akira Sakai. Diagrammatic
bounds on the lace-expansion coefficients for oriented percolation. arXiv:0708.2897.
33.
M. Holmes and A. Sakai. Senile
reinforced random walks. Stoch.
Proc. Appl., 117 (2007): 1519–1539.
34.
Akira Sakai. Lace
expansion for the Ising model.
Commun. Math. Phys., 272
(2007): 283–344. arXiv:math-ph/0510093.
35.
R. van der Hofstad and A. Sakai. Critical
points for spread-out self-avoiding walk, percolation and the contact process
above the upper critical dimensions. Probab. Theory
Relat. Fields, 132
(2005): 438–470. arXiv:math/0402050.
36.
Akira Sakai. Mean-field
behavior for the survival probability and the percolation point-to-surface
connectivity. J. Stat. Phys.,
117 (2004): 111–130.
37.
R. van der Hofstad and A. Sakai. Gaussian
scaling for the critical spread-out contact process above the upper critical
dimension. Electron. J.
Probab., 9 (2004): no. 24, 710–769. arXiv:math/0402049.
38.
M. Holmes, A.A. Járai, A. Sakai and G. Slade. High-dimensional
graphical networks of self-avoiding walks. Canad. J.
Math., 56 (2004): 77–114.
39.
Akira Sakai.
Hyperscaling
inequalities for the contact process and oriented percolation. J. Stat. Phys., 106 (2002):
201–211.
40.
Akira Sakai. Mean-field
critical behavior for the contact process. J. Stat. Phys., 104
(2001): 111–143.
Year 2025
1.
TBA.
· Kansai
Probability Seminar (???). Kyoto University, Japan.
· Probability
Seminar (???). Tohoku University, Japan.
2.
Critical points for various spread-out statistical-mechanics
models in high dimensions.
· The 3rd Taiwan-Japan
Joint Workshop on Applied Mathematics (May 1–2). Hokkaido University, Japan.
Year 2024
1.
The
lace expansion in the past, present and future [YouTube].
· Math
Colloquia (October 31). Seoul National University, South Korea.
2.
Mathematical foundation of ground-state search MCMC methods.
· Taiwan Probability Workshop 2024 (June 3–7).
Institute of Mathematics, Academia Sinica, Taiwan.
· Forest
Workshop 2024 (March 29–31). TKP Garden City Premium Sapporo Odori, Japan.
3.
Mathematical
foundation of various MCMC methods [YouTube].
· French Japanese Conference on
Probability & Interactions (March 6–8). IHES, France.
Year 2023
1.
Mathematical foundation of various MCMC methods.
· Mathematics
of Random Systems Summer School 2023 (September 11–15). RIMS, Kyoto
University, Japan.
2.
Stability of the critical behavior
of the Ising model against quantum perturbation.
· Workshop
on Probabilistic Methods in Statistical Mechanics of Random Media and Random
Fields 2023 (January 9–13). Kyushu University, Japan.
Year 2022
1.
Stability of the critical behavior
of the Ising model against quantum perturbation.
· Tokyo
Probability Seminar (December 26). Keio University, Japan.
2.
Stability of the phase transition and critical behavior of the Ising model against quantum perturbation.
· Probability Symposium (December
19–22). RIMS, Kyoto University, Japan.
3.
Spread-out
limit of the critical points for various statistical-mechanics models.
· Probability
and Analysis on Random Structures and Related Topics (August 8–10). RIMS,
Kyoto University, Japan.
4.
Mixing
time and simulated annealing for the stochastic cellular automata, and beyond.
· Workshop
on Probabilistic Methods in Statistical Mechanics of Random Media and Random
Fields 2022 (January 11–14). Kyushu University, Japan.
Year 2021
1.
Mixing time and simulated annealing for the stochastic
cellular automata, and beyond.
· The
Annual Probability Symposium (December 14–17). Kyoto University, Japan.
2.
Stochastic optimization via parallel dynamics: rigorous results and simulations.
· The 53rd ISCIE
International Symposium on Stochastic Systems Theory and Its Applications (October
30–31). Ritsumeikan University, Japan.
IV.
Organizing scientific meetings
Year 2025
·
The RIMS Workshop gRigorous
Statistical Mechanics and Related Topics VIh (November 10–13, 2025). RIMS, Kyoto University,
Japan.
·
The
18th HU-SNU Joint Symposium on Mathematics (October 31, 2025). Science
Bldg 3-205 & 4-501, Hokkaido University, Japan.
·
Far East
Probability Workshop 2025 (June 16–20,
2025). Hokkaido University, Japan.
·
Hokkaido
Math-Sci Seminar (February 21, 2025). Hokkaido University, Japan.
Year 2024 & before
·
AgiΊCxguΠοΕv£·ιwviw@Ewj (December
5, 2024). Hokkaido University, Japan.
·
The RIMS Workshop gRigorous
Statistical Mechanics and Related Topics Vh (November 11–14, 2024). RIMS, Kyoto University,
Japan.
·
The
17th SNU-HU Joint Symposium on Mathematics (November 1, 2024). Seoul
National University, South Korea.
·
2024
Open Japanese-German Conference on Stochastic Analysis (September 9–13, 2024). Hokkaido University, Japan.
·
AgiΊCxguΟ»πσ―όκιν|Mac OS XΜaΆ©ηiPhoneΜ΄iΦviw@Ewj (July 12,
2024). Hokkaido University, Japan.
·
Hokkaido
Math-Sci Seminar (February 14, 2024). Hokkaido University, Japan.
·
The IMS Program gRandom
Interacting Systems, Scaling Limits, and Universalityh (December 4–22, 2023). IMS, National University
of Singapore, Singapore.
·
The
16th HU-SNU Joint Symposium on Mathematics (November 11, 2023).
Hokkaido University, Japan.
·
One-day
Workshop on Mathematical Analysis (July 11, 2023). Hokkaido University, Japan.
·
AgiΊCxguΠοΕv£·ιwv
(December 2, 2022). Hokkaido University, Japan.
·
The RIMS Workshop gRigorous Statistical
Mechanics and Related Topics IVh (November 15–18, 2022). RIMS, Kyoto University, Japan.
·
Pacific Workshop
on Probability and Statistical Physics (December 9–11, 2021). PIMS, University of British Columbia, Canada.
·
The RIMS Workshop gRigorous Statistical
Mechanics and Related Topics IIIh (November 16–19, 2021). RIMS, Kyoto University, Japan.
·
The 10th World
Congress in Probability and Statistics (July 19–23, 2021). Seoul National University, South Korea.
·
The RIMS Workshop gRigorous
Statistical Mechanics and Related Topics IIh (November 24–27, 2020). RIMS, Kyoto University, Japan.
·
The RIMS Workshop gRigorous Statistical
Mechanics and Related Topicsh (November 18–21, 2019). RIMS, Kyoto
University, Japan.
·
The 1-day workshop gRecent Progress
in Probability Theory and Its Applicationsh (July 28, 2017). Hokkaido
University, Japan.
·
2017
Spring Probability Workshop (March 6–8, 2017). Academia Sinica,
Taiwan.
·
The 2nd
workshop on Universality and Scaling Limits in Probability and Statistical
Mechanics (August 5–9, 2013).
Hokkaido University, Japan.
·
International
Workshop on Potential Theory (February 4, 2013). Hokkaido University, Japan.
·
The RIMS workshop gApplications
of Renormalization Group Methods in Mathematical Sciencesh (September 12–14, 2011). Kyoto University, Japan.
·
The SPA Satellite workshop gUniversality
and Scaling Limits in Probability and Statistical Mechanicsh (August 30–September 3, 2010). Hokkaido
University, Japan.
V.
Teaching (April 2025 – February 2026)
2nd semester |
Monday |
Tuesday |
Wednesday |
Thursday |
Friday |
8:45 – 10:15 |
N.A. |
N.A. |
N.A. |
N.A. |
πΝwF |
10:30 – 12:00 |
N.A. |
N.A. |
N.A. |
SAW on RC |
N.A. |
13:00 – 14:30 |
N.A. |
N.A. |
χͺΟͺwII |
G.S. |
G.S. |
14:45 – 16:15 |
N.A. |
N.A. |
N.A. |
G.S.{wuΗ |
G.S. |
16:30 – 18:00 |
N.A. |
N.A. |
Q-Ising lace |
F.M. |
G.S. |
18:15 – 19:30 |
N.A. |
N.A. |
Q-Ising lace |
F.M. |
O.H. |
(Research Meetings; Lectures; Group Seminars; Faculty Meetings; Office
Hour; Not
Available )
1. Research meetings (Wednesdays 16:30–19:30,
Thursdays 10:30–12:00)
2. Lectures
·
χͺΟͺwII; WeBWorK
(Wednesdays 13:00–14:30) @ Multimedia Education Bldg ????
·
πΝwF (Fridays 8:45–10:15)
@ Science Bldg 3-309
·
wuΗ (???days ??:??–??:??) @ Science Bldg 4-509
3.
Group Seminars
@ Science Bldg 4-509
·
M2 seminar (‘δ)
on Hyperscaling for the 1-dimensional contact process in an evolving
environment (???days ??:??–??:??)
·
M2 seminar (|ΰ)
on Nonintersection probability of random walks in high dimensions (???days
??:??–??:??)
·
M2 seminar (ίA)
on The 1-arm exponent for percolation
& the Ising model in high dimensions (???days
??:??–??:??)
·
M2 seminar (©)
on Sufficient condition for the
mean-field behavior of oriented percolation (???days
??:??–??:??)
·
B4 seminar ({c)
on Percolation (???days
??:??–??:??)
·
B4 seminar (R{)
on Random walk and stochastic analysis (???days
??:??–??:??)
1st semester |
Monday |
Tuesday |
Wednesday |
Thursday |
Friday |
8:45 – 10:15 |
N.A. |
ΘEZΜ’E |
N.A. |
N.A. |
m¦Evόε |
10:30 – 12:00 |
N.A. |
N.A. |
N.A. |
SAW on RC |
N.A. |
13:00 – 14:30 |
N.A. |
G.S. |
ΘwTΰ |
G.S. |
N.A. |
14:45 – 16:15 |
N.A. |
G.S. |
G.S. |
G.S.{wuΗ |
χͺΟͺwI |
16:30 – 18:30 |
N.A. |
G.S. |
Q-Ising lace |
F.M. |
O.H. |
(Research Meetings; Lectures; Group Seminars; Faculty Meetings; Office
Hour; Not
Available )
1.
Research meetings
(Wednesdays 16:30–18:30, Thursdays 10:30–12:00)
2.
Lectures
·
ΘwEZpΜ’EFwΜ½Μ΅έ
(Tuesdays 8:45–10:15) @ Multimedia
Education Bldg E205
·
ΘwTΰ
(Wednesdays 13:00–14:30) @ Science Bldg 3-202
·
m¦Evόε
(Fridays 8:45–10:15) @ Science Bldg 3-309
·
χͺΟͺwI;
WeBWorK
(Fridays 14:45–16:15) @ Multimedia Education Bldg E201
·
wuΗ (Thursdays 15:20–16:20) @ Science Bldg 4-509
3.
Group Seminars
@ Science Bldg 4-509
·
M2 seminar (‘δ)
on Hyperscaling for the 1-dimensional contact process (Tuesdays
13:00–14:00)
·
M2 seminar (ίA)
on The 1-arm exponent for percolation
& the Ising model in high dimensions (Tuesdays
14:10–15:10)
·
M2 seminar (|ΰ)
on Intersection probability of random
walks (Tuesdays 15:20–16:20)
·
B4 seminar (R{)
on Random walk and stochastic analysis (Tuesdays
16:30–17:30)
·
M2 seminar (©)
on Phase transition & critical behavior of oriented percolation (Thursdays
13:00–14:00)
·
B4 seminar ({c)
on Percolation (Thursdays
14:10–15:10)
·
HSI seminar (Huang) on Markov
Chains and Mixing Times (Wednesdays 14:45–16:15 @ 4-401)
·
February 2020 – present
Professor in Mathematics, Faculty of
Science, Hokkaido University, Japan.
Ø Head of the Department (April 2024 – March 2025)
Ø Vice head of the
Department (April 2023 – March 2024)
Ø Department head of the
Academic Affairs Committee (April 2022
– March 2023)
·
March 2020 – present
Associate editor of Mathematical Physics, Analysis
and Geometry.
·
Excellent Teachers:
2023,
2022,
2021,
2018,
2015,
2012,
2011
The Hokkaido University Presidentfs Award for Teaching Excellence in 2013 and in 2012.
·
August 2020 – October 2023
Associate editor of Taiwanese Journal of Mathematics.
·
September 2015 – August
2019
Councilor of the Bernoulli Society.
·
April 2011 – January 2020
Associate professor in Mathematics, Faculty of
Science, Hokkaido University, Japan.
·
March 2008 – March 2011
Tenure-track assistant professor
of L-Station, Hokkaido University, Japan.
·
April 2006 – February 2008
Lecturer in Probability of
the
Department of Mathematical Sciences, the University of Bath, UK.
·
April 2004 – March 2006
Postdoctoral researcher of
Wiskunde
en Informatica, Technische Universiteit Eindhoven
(TU/e), the Netherlands.
·
January 2003 – March 2004
Postdoctoral researcher of
the Interacting Stochastic Systems (ISS) group, EURANDOM, the Netherlands.
·
January 2001 – December
2002
Postdoctoral researcher of
the Department of Mathematics, the University
of British Columbia, Canada.
·
April 1996 – December 2000
Ph.D. study in Applied
Physics, Tokyo Institute of Technology, Japan.
Awarded Ph.D. for the
thesis gAnalyses of the Critical Behavior for the
Contact Process based on a Percolation Structureh supervised by Takashi
Hara.
·
April 1994 – March 1996
Master study in Applied
Physics, Tokyo Institute of Technology, Japan.
Awarded M.Sc. for the
thesis gApproach to Fractal Growth Phenomenah supervised by Takashi
Hara.
·
April 1990 – March 1994
Undergraduate study in Applied
Physics, Tokyo Institute of Technology, Japan.
Awarded B.Sc. for the thesis
gRecurrent in the Plane, Transient in Spaceh supervised by Kohei
Uchiyama.