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Mixing time and simulated annealing for the SCA 1. Motivation (1/3)

Finding an optimal solution to a given problem
equiv
⇐⇒ finding a ground state σGS

∈ {±1}V of the corresponding Ising Hamiltonian on a finite graph G = (V, E):

H(σ) = −1
2

∑
x,y∈V

Jx,yσxσy −
∑
x∈V

hxσx, H(σGS) = min
σ∈{±1}V

H(σ).

E.g., the Traveling Salesman Problem (TSP):
dx,y: a transpotation cost between x and y (dx,x = 0, dx,y = dy,x).
ξ(t,x): 1 (or 0) if the salesman is (or isn’t) at x ∈ V at time t ∈ {1, . . . , |V |}.
Find a minimizer ξ = {ξ(t,x)} of the cost function (where c = 1

4 ∥d∥∞):

H(ξ) =
∑
x,y∈V

dx,y

|V |∑
t=1

ξ(t,x)ξ(t+1,y) + c

 |V |∑
t=1

(∑
x∈V
ξ(t,x) − 1

)2
+
∑
x∈V

( |V |∑
t=1

ξ(t,x) − 1
)2 .

Equivalent to finding a spin configuration σ = 2ξ − 1 ∈ {−1, 1}V that minimizes
the corresponding Hamiltonian.
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Mixing time and simulated annealing for the SCA 1. Motivation (2/3)

The Gibbs distribution:

πG
β (σ) =

e−βH(σ)∑
σ e−βH(σ) −−−→β↑∞ Unif(GSs) =

1{σ is a GS}

# of GSs
.

A standard Gibbs sampler (the Glauber dynamics):

(σx)y =

−σy [y = x],
σy [y , x],

PG
β (σ, η) =



1
|V |

e−βH(σx)

e−βH(σ) + e−βH(σx) [η = σx],

1 −
∑
x∈V

PG
σ,σx [η = σ],

0 [o/w].

=⇒ ∀σ, η ∈ {±1}V : πG
β (σ)PG

β (σ, η) = π
G
β (η)P

G
β (η,σ)︸                                   ︷︷                                   ︸

detailed balance

, ∀µ ∗ (PG
β )
∗n −−−→

n↑∞
πG
β .

Simulated annealing
by Hajek (1988), Catoni (1992)

: βn =
∃c log n =⇒ µ ∗ PG

β1
∗ · · · ∗ PG

βn
−−−→
n↑∞

Unif(GSs).

In reality:

Stopping at n ≪ ∞ without knowing how close µ ∗ PG
β1
∗ · · · ∗ PG

βn
is to Unif(GSs).

Very slow, due to single-spin updates, log cooling schedule, convergence in
total variation, etc.

Akira Sakai (Hokkaido Univ) Probabilistic Methods in Stat. Mech. 2022 January 13, 2022 3 / 15



Mixing time and simulated annealing for the SCA 1. Motivation (2/3)

The Gibbs distribution:

πG
β (σ) =

e−βH(σ)∑
σ e−βH(σ) −−−→β↑∞ Unif(GSs) =

1{σ is a GS}

# of GSs
.

A standard Gibbs sampler (the Glauber dynamics):

(σx)y =

−σy [y = x],
σy [y , x],

PG
β (σ, η) =



1
|V |

e−βH(σx)

e−βH(σ) + e−βH(σx) [η = σx],

1 −
∑
x∈V

PG
σ,σx [η = σ],

0 [o/w].

=⇒ ∀σ, η ∈ {±1}V : πG
β (σ)PG

β (σ, η) = π
G
β (η)P

G
β (η,σ)︸                                   ︷︷                                   ︸

detailed balance

, ∀µ ∗ (PG
β )
∗n −−−→

n↑∞
πG
β .

Simulated annealing
by Hajek (1988), Catoni (1992)

: βn =
∃c log n =⇒ µ ∗ PG

β1
∗ · · · ∗ PG

βn
−−−→
n↑∞

Unif(GSs).

In reality:

Stopping at n ≪ ∞ without knowing how close µ ∗ PG
β1
∗ · · · ∗ PG

βn
is to Unif(GSs).

Very slow, due to single-spin updates, log cooling schedule, convergence in
total variation, etc.

Akira Sakai (Hokkaido Univ) Probabilistic Methods in Stat. Mech. 2022 January 13, 2022 3 / 15



Mixing time and simulated annealing for the SCA 1. Motivation (3/3)

What we want:
Faster dynamics based on multi-spin updates.

What we propose:
Use the stochastic cellular automata (SCA) inspired by Dai Pra et al. (2012).

What we have proven:

Mixing is much faster than Glauber in the high-temperature regime.

A standard cooling schedule works for the SCA, too, to find a σGS.

Ongoing work (supported by numerical evidence):

ε-SCA, where the pinning parameters q = {qx}x∈V are turned off and
a collection of spins is chosen by Binom(|V |, ε).

First hit to the target states
↔ convergence in total variation

, under an exponential
↔ logarithmic

cooling schedule.
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Mixing time and simulated annealing for the SCA 2. Introduction of SCA (1/3)
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Mixing time and simulated annealing for the SCA 2. Introduction of SCA (3/3)

The doubled Hamiltonian and the cavity field (generalization of Dai Pra et al. (2012)):

H̃(σ, η) = −1
2

∑
x,y

Jx,yσxηy −
1
2

∑
x

hx(σx + ηx) −
1
2

∑
x

qxσxηx

= −1
2

∑
x

hxσx −
1
2

∑
x

(∑
y

Jx,yσy + hx︸            ︷︷            ︸
h̃x(σ)

+ qxσx

)
ηx.

The SCA and its equilibrium distribution:

wβ,q(σ) =
∑
η

e−βH̃(σ,η) =
∏

x

e
β
2 hxσx 2 cosh

(
β

2

(
h̃x(σ) + qxσx

))
,

PSCA
β,q (σ, η) =

e−βH̃(σ,η)

wβ,q(σ)
=
∏

x

e
β
2 (h̃x(σ)+qxσx)ηx

2 cosh( β2 (h̃x(σ) + qxσx))︸                                ︷︷                                ︸
multi-spin simultaneous update

=
∏

x

1 + ηx tanh( β2 (h̃x(σ) + qxσx))
2

πSCA
β,q (σ) =

wβ,q(σ)∑
σ wβ,q(σ)

−−−−−−→
min qx↑∞

πG
β (σ)

[
∵ H̃(σ,σ) = H(σ) − 1

2

∑
x qx

]
=⇒ ∀σ, η ∈ {±1}V : πSCA

β,q (σ)PSCA
β,q (σ, η) = πSCA

β,q (η)PSCA
β,q (η,σ)︸                                             ︷︷                                             ︸

detailed balance

, ∀µ ∗ (PSCA
β,q )∗n −−−→

n↑∞
πSCA
β,q .
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Mixing time and simulated annealing for the SCA 3. Fast mixing in the high-temperature regime (1/3)

Proposition 1 (Okuyama, Sonobe, Kawarabayashi and Yamaoka, PRE 100 (2019))

If minx qx ≥
λ

2
, where λ is the largest eigenvalue of the matrix [−Jx,y]V×V , then

min
σ,η

H̃(σ, η) = min
σ

H̃(σ,σ), arg min
σ

H̃(σ,σ) = GS.

N.b., qx does not have to be so large, if the minimum is taken over a smaller set of spin
configurations (Kawamoto).

Theorem 2 (with Fukushima-Kimura, Handa, Kamakura, Kamijima, Kawamura (2021))

If

r = max
x

(
tanh

βqx

2
+
∑

y

tanh
β|Jx,y|

2

)
< 1,

then, for any ε > 0,

T SCA
mix (ε) = min

{
n : max

σ

∥∥∥δσ ∗ (PSCA
β,q )n − πSCA

β,q

∥∥∥
TV
≤ ε
}
≤ log |V | + log(1/ε)

log(1/r)
.

C.f., Levin, Peres, Wilmer (2008) for the Glauber dynamics:

T G
mix(ε) ≥

( |V |
2
− 1
)

log
1
2ε
.
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Mixing time and simulated annealing for the SCA 3. Fast mixing in the high-temperature regime (2/3)

Idea of the proof of Theorem 2:

Suppose that the transportation metric, defined by

ρTM(µ, ν) = inf
(X,Y):coupling

Eµ,ν

[∑
y

1{Xy,Yy}

] (
n.b., Eµ,ν

[
1{X,Y}

] ≥ ∥µ − ν∥TV

)
,

satisfies

ρTM

(
δσ ∗ PSCA

β,q , δσx ∗ PSCA
β,q

)
≤ r. (1)

Then, by repeated use of the triangle inequality,

ρTM

(
δσ ∗ PSCA

β,q , δη ∗ PSCA
β,q

)
≤ · · · ≤ r

∑
y

1{σy, ηy} ≤ |V |r.

Consequently∥∥∥δσ ∗ (PSCA
β,q )∗n − πSCA

β,q

∥∥∥
TV
≤ ρTM

(
δσ ∗ (PSCA

β,q )∗n, πSCA
β,q

)
= ρTM

(
δσ ∗ (PSCA

β,q )∗n, πSCA
β,q ∗ (PSCA

β,q )∗n
)

≤
∑
η

πSCA
β,q (η) ρTM

(
δσ ∗ (PSCA

β,q )∗n, δη ∗ (PSCA
β,q )∗n

)
≤ |V |rn.
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Mixing time and simulated annealing for the SCA 3. Fast mixing in the high-temperature regime (3/3)

To show (1), use the [0, 1]-uniform random variables {Uy}y∈V and defineXy = 21{Uy≤p+y (σ)} − 1,
Yy = 21{Uy≤p+y (σx)} − 1,

where p+y (σ) =
1 + tanh( β2 (h̃y(σ) + qyσy))

2
.

Since | tanh(a + b) − tanh(a − b)| ≤ 2 tanh |b| holds for any a, b ∈ R,

|p+x (σ) − p+x (σx)| ≤ tanh
βqx

2
,

∑
y∼x

|p+y (σ) − p+y (σx)| ≤
∑

y

tanh
β|Jx,y|

2
.

Therefore

Eδσ ,δσx

[∑
y

1{Xy,Yy}

]
=
∑

y

Pδσ ,δσx (Xy , Yy)

=
∑

y

|p+y (σ) − p+y (σx)|

= |p+x (σ) − p+x (σx)| +
∑
y∼x

|p+y (σ) − p+y (σx)|

≤ max
x

(
tanh

βqx

2
+
∑

y

tanh
β|Jx,y|

2

)
= r.

Akira Sakai (Hokkaido Univ) Probabilistic Methods in Stat. Mech. 2022 January 13, 2022 10 / 15



Mixing time and simulated annealing for the SCA 3. Fast mixing in the high-temperature regime (3/3)

To show (1), use the [0, 1]-uniform random variables {Uy}y∈V and defineXy = 21{Uy≤p+y (σ)} − 1,
Yy = 21{Uy≤p+y (σx)} − 1,

where p+y (σ) =
1 + tanh( β2 (h̃y(σ) + qyσy))

2
.

Since | tanh(a + b) − tanh(a − b)| ≤ 2 tanh |b| holds for any a, b ∈ R,

|p+x (σ) − p+x (σx)| ≤ tanh
βqx

2
,

∑
y∼x

|p+y (σ) − p+y (σx)| ≤
∑

y

tanh
β|Jx,y|

2
.

Therefore

Eδσ ,δσx

[∑
y

1{Xy,Yy}

]
=
∑

y

Pδσ ,δσx (Xy , Yy)

=
∑

y

|p+y (σ) − p+y (σx)|

= |p+x (σ) − p+x (σx)| +
∑
y∼x

|p+y (σ) − p+y (σx)|

≤ max
x

(
tanh

βqx

2
+
∑

y

tanh
β|Jx,y|

2

)
= r.

Akira Sakai (Hokkaido Univ) Probabilistic Methods in Stat. Mech. 2022 January 13, 2022 10 / 15



Mixing time and simulated annealing for the SCA 4. Simulated annealing for the SCA (1/2)

Simulated annealing for the SCA:

Theorem 3 (with Fukushima-Kimura, Handa, Kamakura, Kamijima, Kawamura (2021))

Γx = qx + |hx| +
∑

y

|Jx,y|, βn =
log n∑

x Γx
, PSCA

[β j ,βn],q
j≤n
= PSCA

β j ,q ∗ PSCA
β j+1 ,q ∗ · · · ∗ PSCA

βn ,q

⇒ ∀ j ∈ N, sup
µ

∥∥∥µ ∗ PSCA
[β j ,βn],q − Unif(GSs)

∥∥∥
TV
−−−→
n↑∞

0. (2)

N.b., βn ∝ log n for a single-spin flip MCMC (the Metropolis sampler).
Idea of the proof of Theorem 3:

According to Brémaud (1999), a sufficient condition for the strong ergodicity (2) is
(i) the weak ergodicity of {PSCA

βn ,q}n∈N: sup
µ,ν

∥∥∥µ ∗ PSCA
[β j ,βn],q − ν ∗ PSCA

[β j ,βn],q

∥∥∥
TV
−−−→
n↑∞

0.

(ii)
∑∞

n=1

∥∥∥πSCA
βn+1 ,q

− πSCA
βn ,q

∥∥∥
TV
< ∞.

∴
∥∥∥µ ∗ PSCA

[β j ,βn],q − π
SCA
∞,q
∥∥∥TV =

∥∥∥µ ∗ (PSCA
[β j ,βn ],q − Π

SCA
∞,q
)∥∥∥TV

≤
∥∥∥µ ∗ (PSCA

[β j ,βℓ ],q
− ΠSCA
βℓ ,q
)
PSCA

[βℓ ,βn ],q
∥∥∥TV︸                                             ︷︷                                             ︸

≤ 2δ
(
PSCA

[βℓ ,βn ],q

)
: Dobrushin’s ergodic coeff.

−→0 ∵(i)

+
∥∥∥µ ∗ (ΠSCA

βℓ ,q
PSCA

[βℓ ,βn ],q − Π
SCA
βn ,q
)∥∥∥TV︸                                        ︷︷                                        ︸

≤
n∑

i=ℓ+1

∥∥∥µ∗(ΠSCA
βi−1 ,q

−ΠSCA
βi ,q
)
PSCA

[βi ,βn ],q

∥∥∥TV

≤
n∑

i=ℓ+1

∥∥∥πSCA
βi−1 ,q

−πSCA
βi ,q
∥∥∥TV −→0 ∵(ii)

+
∥∥∥µ ∗ (ΠSCA

βn ,q − Π
G
∞
)∥∥∥TV︸                        ︷︷                        ︸

−→0 ∵min qx≥ λ2

.
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−πSCA
βi ,q
∥∥∥TV −→0 ∵(ii)

+
∥∥∥µ ∗ (ΠSCA

βn ,q − Π
G
∞
)∥∥∥TV︸                        ︷︷                        ︸

−→0 ∵min qx≥ λ2

.
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Mixing time and simulated annealing for the SCA 4. Simulated annealing for the SCA (1/2)

Simulated annealing for the SCA:

Theorem 3 (with Fukushima-Kimura, Handa, Kamakura, Kamijima, Kawamura (2021))

Γx = qx + |hx| +
∑

y

|Jx,y|, βn =
log n∑

x Γx
, PSCA

[β j ,βn],q
j≤n
= PSCA

β j ,q ∗ PSCA
β j+1 ,q ∗ · · · ∗ PSCA

βn ,q

⇒ ∀ j ∈ N, sup
µ

∥∥∥µ ∗ PSCA
[β j ,βn],q − Unif(GSs)

∥∥∥
TV
−−−→
n↑∞

0. (2)

N.b., βn ∝ log n for a single-spin flip MCMC (the Metropolis sampler).
Idea of the proof of Theorem 3:
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βn ,q}n∈N: sup
µ,ν

∥∥∥µ ∗ PSCA
[β j ,βn],q − ν ∗ PSCA

[β j ,βn],q

∥∥∥
TV
−−−→
n↑∞

0.

(ii)
∑∞

n=1

∥∥∥πSCA
βn+1 ,q

− πSCA
βn ,q

∥∥∥
TV
< ∞.

∴
∥∥∥µ ∗ PSCA

[β j ,βn],q − π
SCA
∞,q
∥∥∥TV =

∥∥∥µ ∗ (PSCA
[β j ,βn ],q − Π

SCA
∞,q
)∥∥∥TV

≤
∥∥∥µ ∗ (PSCA

[β j ,βℓ ],q
− ΠSCA
βℓ ,q
)
PSCA

[βℓ ,βn ],q
∥∥∥TV︸                                             ︷︷                                             ︸

≤ 2δ
(
PSCA

[βℓ ,βn ],q

)
: Dobrushin’s ergodic coeff.

−→0 ∵(i)

+
∥∥∥µ ∗ (ΠSCA

βℓ ,q
PSCA

[βℓ ,βn ],q − Π
SCA
βn ,q
)∥∥∥TV︸                                        ︷︷                                        ︸
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Mixing time and simulated annealing for the SCA 4. Simulated annealing for the SCA (2/2)

Dobrushin’s ergodic coefficient:

δ(P) = max
σ,η

∥∥∥δσ ∗ P − δη ∗ P
∥∥∥

TV
= 1 −min

σ,η

∑
τ

P(σ, τ) ∧ P(η, τ)

Block criterion of weak ergodicity:
∞∑

n=1

(
1 − δ(PSCA

βn ,q
))
= ∞ ⇒ δ

(
PSCA

[βℓ ,βn],q
) −−−→

n↑∞
0.

The left is easy to show because

PSCA
βn ,q(σ, τ) ≥

∏
x

1
1 + eβn |h̃x(σ)+qxσx |

≥
∏

x

e−βnΓx

2
=

n−1

2|V |
.

For (ii), let m = minσ,η H̃(σ, η) and

µβ,q(σ, η) =
e−βH̃(σ,η)∑
σ,η e−βH̃(σ,η)

min qx≥ λ2
=

e−β(H̃(σ,η)−m)

|GS| +∑σ,η:H̃(σ,η)>m e−β(H̃(σ,η)−m)
−−−→
β↑∞
πG
∞(σ) δσ,η.

Since
∂µβ,q(σ, η)
∂β

=
(
Eµβ,q [H̃]︸   ︷︷   ︸
−−−→
β↑∞

m

−H̃(σ, η)
)
µβ,q(σ, η)

> 0 ∀β < ∞ if H̃(σ, η) = m,
< 0 if β ≫ 1 & H̃(σ, η) > m,

we can show
∞∑

n=N

∥πSCA
βn+1
− πSCA

βn
∥TV ≤ 3

2 for N ≫ 1
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Mixing time and simulated annealing for the SCA 5. Attempt for improvement (1/2)

Isolate the effect of q = {qx}x∈V as

PSCA
β,q (σ, η) =

∏
x

e
β
2 qxσxηx cosh( β2 h̃x(σ))

cosh( β2 (h̃x(σ) + qxσx))

e
β
2 h̃x(σ)ηx

2 cosh( β2 h̃x(σ))

=
∏

x∈Dσ,η

εx(σ)px(σ)
∏

y∈V\Dσ,η

(
1 − εy(σ)py(σ)

)
,

where εx(σ) = Oσ(e−βqx ) and Dσ,η = {x ∈ V : σx , ηx}.

ε-SCA: εx(σ) is uniformly replaced by a temperature-free ε ∈ [0, 1].

P ε-SCA
β (σ, η) =

∏
x∈Dσ,η

εpx(σ)
∏

y∈V\Dσ,η

(
1 − εpx(σ)

)
=

∑
S :Dσ,η⊂S⊂V

ε|S |(1 − ε)|V\S |
∏

x∈Dσ,η

px(σ)
∏

y∈S \Dσ,η

(
1 − px(σ)

)
.

Initially motivated to reduce the memory size for generating random numbers.
Pros: the pinning effect is lighter, especially in the low-temperature regime.
Cons: there is no theoretical justification so far, an equilibrium measure is
unknown, etc.
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Mixing time and simulated annealing for the SCA 5. Attempt for improvement (2/2)

Application to the TSP (Fukushima-Kimura):

|V | = 10, {dx,y}V×V : i.i.d. uniform on [0, 1].

βn = β0eαn (exponential cooling) with α = 0.0001, β0 = 0.001.

100 samples, a 120000-step MC each.

Histogram of minimal energy (SCA)
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Histogram of minimal energy (ε = 0.4)
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SCA: the minimum-energy (= −143.9403) spin configuration is not legitimate.

ε-SCA with ε = 0.4: the minimum-energy (= −144.2006, success rate 54%) spin
configuration is legitimate.
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Mixing time and simulated annealing for the SCA 5. Concluding remark

What we wanted: faster dynamics based on multi-spin updates.
What we proposed: use the stochastic cellular automata (SCA):

PSCA
β,q (σ, η) =

∏
x

e
β
2 (h̃x(σ)+qxσx)ηx

2 cosh( β2 (h̃x(σ) + qxσx))
=
∏

x∈Dσ,η

εx(σ)px(σ)
∏

y∈V\Dσ,η

(
1 − εy(σ)py(σ)

)
.

What we have shown:
Mixing is much faster than Glauber in the high-temperature regime:

r = max
x

(
tanh βqx

2 +
∑

y

tanh β|Jx,y |
2

)
< 1 ⇒ T SCA

mix ( 1
e ) ≤ log |V | + 1

log(1/r)
.

A standard cooling schedule works for the SCA, too, to find a σGS:

βn =
log n∑

x(qx + |hx| +
∑

y |Jx,y|)
⇒ sup

µ

∥∥∥∥µ∗PSCA
β1 ,q∗· · ·∗P

SCA
βn ,q−Unif(GSs)

∥∥∥∥
TV
−−−→
n↑∞

0.

Ongoing work (supported by numerical evidence):
ε-SCA, where the pinning parameters q = {qx}x∈V are turned off and
a collection of spins is chosen by Binom(|V |, ε):

P ε-SCA
β (σ, η) =

∑
S :Dσ,η⊂S⊂V

ε|S |(1 − ε)|V\S |
∏

x∈Dσ,η

px(σ)
∏

y∈S \Dσ,η

(
1 − px(σ)

)
.

First hit to the target states
↔ convergence in total variation

, under an exponential
↔ logarithmic

cooling schedule.
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