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Mixing time and simulated annealing for the SCA 1. Motivation (1/3)

@ Finding an optimal solution to a given problem &= finding a ground state o
€ {1}V of the corresponding Ising Hamiltonian on a finite graph G = (V, E):
Ho)=-= Z Joyo oy — Zh Ty, H(ogs) = min H(o).

\4
x}EV xeV ost=l)

@ E.g., the Traveling Salesman Problem (TSP):
@ d,,: atranspotation cost between x and y (d., =0, d, = d‘ x)
@ &uy: 1 (or0)ifthe salesman is (orisn’t) at x € V attime ¢ € { LIV
@ Find a minimizer & = {&.,} of the cost function (where ¢ = 4||d||w).

H() = Z dx.yif(r,x)f(m,y) + C(Z(Z&u) - 1) + Z(Z&m) - 1) ]

x,yeV =1 =1 xeV xeV

@ Equivalent to finding a spin configuration o = 2¢ — 1 € {—1, 1}" that minimizes
the corresponding Hamiltonian. Spnce

4 3 N

Akira Sakai (Hokkaido Univ) Probabilistic Methods in Stat. Mech. 2022 January 13, 2022 2/15



Mixing time and simulated annealing for the SCA 1. Motivation (2/3)

@ The Gibbs distribution:

x3(0) = —Zi:Hﬁ(:@ — Unif(GSs) = —i“; pad
@ A standard Gibbs sampler (the Glauber dynamics):
1 o PH@
m o BH@) 4 Bl [p=0"],
O I SR B I S
0 - [o/w].

= Yomell): @Pio. = RPme). ux (P — .

detailed balance
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@ The Gibbs distribution:

x3(0) = —Zi:Hﬁ(:@ — Unif(GSs) = —i“; pad
@ A standard Gibbs sampler (the Glauber dynamics):
1 o PH@
m o BH@) 4 Bl [p=0"],
O I SR B I S
0 - [o/w].

= Yomell): @Pio. = RPme). ux (P — .

detailed balance
@ Simulated annealing : 8, = 'clogn = p* Pg +---* P; — Unif(GSs).
by Hajek (1988), Catoni (1992) ! " nfeo
@ In reality:
@ Stopping at n < oo without knowing how close p Pgl Kook Pgn is to Unif(GSs).

@ Very slow, due to single-spin updates, log cooling schedule, convergence in
total variation, etc.
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Mixing time and simulated annealing for the SCA 1. Motivation (3/3)

@ What we want:
Faster dynamics based on multi-spin updates.

@ What we propose:
Use the stochastic cellular automata (SCA) inspired by Dai Pra et al. (2012).

@ What we have proven:
@ Mixing is much faster than Glauber in the high-temperature regime.

@ A standard cooling schedule works for the SCA, too, to find a ogs.
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Mixing time and simulated annealing for the SCA 1. Motivation (3/3)

@ What we want:
Faster dynamics based on multi-spin updates.

@ What we propose:
Use the stochastic cellular automata (SCA) inspired by Dai Pra et al. (2012).

@ What we have proven:

@ Mixing is much faster than Glauber in the high-temperature regime.

@ A standard cooling schedule works for the SCA, too, to find a ogs.

@ Ongoing work (supported by numerical evidence):

@ &-SCA, where the pinning parameters ¢q = {g,}.v are turned off and
a collection of spins is chosen by Binom(|V|, ).

@ First hit to the target states, under an exponential cooling schedule.

© convergence in total variation o logarithmic
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Mixing time and simulated annealing for the SCA 2. Introduction of SCA (1/3)
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Mixing time and simulated annealing for the SCA 2. Introduction of SCA (2/3)
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Mixing time and simulated annealing for the SCA 2. Introduction of SCA (3/3)

@ The doubled Hamiltonian and the cavity field (generalization of Dai Pra et al. (2012)):

_% ZV: Ty 0ally — % Zx: h(ory + 1) — % Z GO

—% Z hoo — % Z (Z Joyoy +hye + qXO'X)r]X.
E; X

~—
hy(o)

H(o,n)
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Mixing time and simulated annealing for the SCA 2. Introduction of SCA (3/3)

@ The doubled Hamiltonian and the cavity field (generalization of Dai Pra et al. (2012)):

H(o,n) = ——ZJUO'HI) Zh(crﬁm)——qucrmx

=__Zh o - 2Z(ZJ‘>O—‘+}Z +qX0'x)77x

ﬁ,_/
hy(o)

@ The SCA and its equilibrium distribution:

Wag(@) = 3 PP = [ 552 cosh (@) + ¢,0)).

n X
PSS o) = BT _ H e‘;(ﬁ;fonqxa;)m _ l_[ 1+, tanh(£ (h.(0) + g,0))
We.q(0) 2cosh(5(h(o) + q.0))  *, 2
multi-spin simultaneous update
Wwgq(07) N
() = o2 o) [ Ao.0) = He) - 3.

2o Wpg(0) ming.feo

= Yonell): mY@PLN @ = WP ). (P — mi.

detailed balance
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Mixing time and simulated annealing for the SCA 3. Fast mixing in the high-temperature regime (1/3)

Proposition 1 (Okuyama, Sonobe, Kawarabayashi and Yamaoka, PRE 100 (2019))

A , , ,
If min, g, > 5 where A is the largest eigenvalue of the matrix [—-Jy,]vxy, then

min A(c, ) = min H(o, o), argmin H(o, o) = GS.
on o o

N.b., ¢, does not have to be so large, if the minimum is taken over a smaller set of spin
configurations (Kawamoto).
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Proposition 1 (Okuyama, Sonobe, Kawarabayashi and Yamaoka, PRE 100 (2019))

A
If min, g, > 5 where A is the largest eigenvalue of the matrix [—-Jy,]vxy, then

min A(c, ) = min H(o, o), argmin H(o, o) = GS.
on o o

N.b., ¢, does not have to be so large, if the minimum is taken over a smaller set of spin
configurations (Kawamoto).

Theorem 2 (with Fukushima-Kimura, Handa, Kamakura, Kamijima, Kawamura (2021))

If
I,
r=max(tanh + E tan ﬁ' ‘|) 1,

X

then, for any & > 0,

log |V| +log(1/e)

T3%(g) = min {n - max ”6,, * (P;f:;)" - nquAHTV < 8} < Tog(1/r)

mix

C.f., Levin, Peres, Wilmer (2008) for the Glauber dynamics:
V]| 1

S (8) > (— - 1)1 .
le(S) 2 Og 28
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Mixing time and simulated annealing for the SCA 3. Fast mixing in the high-temperature regime (2/3)

Idea of the proof of Theorem 2:

@ Suppose that the transportation metric, defined by
o, v) = (nyggﬁp"ng Eﬂ,v[ Z ]l(xyﬂy)] (n.b., Euy[Lixsn] = [lu - V||Tv),
3
satisfies
pru(0o * PSP, S P) < 7 (1)
@ Then, by repeated use of the triangle inequality,

(0% P, 0y % Pia) < -o- <7 Tigyy < IV
y

Akira Sakai (Hokkaido Univ) Probabilistic Methods in Stat. Mech. 2022 January 13, 2022 9/15



Mixing time and simulated annealing for the SCA 3. Fast mixing in the high-temperature regime (2/3)

Idea of the proof of Theorem 2:

@ Suppose that the transportation metric, defined by
P, v) = (ny)?gﬁp"ng Eﬂ,v[ Z ﬂ(xyﬂy)] (n.b., E/J,V[]l(XiY}] > |lu - V||Tv),
3

satisfies
pr(00 * Py, Sor % P <. (1)
@ Then, by repeated use of the triangle inequality,

(0% P, 0y % Pia) < -o- <7 Tigyy < IV
y

Consequently
SCA\*n SCA SCA\*n SCA
”61’ * (P/iq ~ By ||TV = pTM((S” * (P/iq > Tggq )
- SCA\*n SCA SCA\*n
—pTM(50 *(Ppg)™s mpg * (Pgy )

< D) (O % (B, 6% (PED™) < IVIF.
n
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Mixing time and simulated annealing for the SCA 3. Fast mixing in the high-temperature regime (3/3)

@ To show (1), use the [0, 1]-uniform random variables {U,},ey and define

X, =21 ycprion — 1, 1 + tanh(& (B, (o) + g, 07,
{y Wyt whers p}(o) = )+ 400

Yy =21y, iy — 1,

@ Since |tanh(a + b) — tanh(a — b)| < 2 tanh || holds for any a,b € R,

|p (o) — pl(0)] < tanh ﬁ Ly Z P} (@) — pi(o)] < Z tanh ’y
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@ To show (1), use the [0, 1]-uniform random variables {U,},ey and define

X, =21 ycprion — 1, 1 + tanh(& (B, (o) + g, 07,
{y Wyt whers p}(o) = )+ 400

Yy =21y, iy — 1,

@ Since |tanh(a + b) — tanh(a — b)| < 2 tanh || holds for any a,b € R,

|p (o) — pl(0)] < tanh ﬁ Ly Z P} (@) — pi(o)] < Z tanh ’y

@ Therefore

B | 2 Lo | = ZP@Y e (X, # 1,
4
= Z Ip; (@) = pl @)l
-

= |pi(@) = pi@)l+ ) Ipi (@) = pl (@)l

B B\
< m}'flx(tanh > + ;tanh 2 ) =
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Mixing time and simulated annealing for the SCA 4. Simulated annealing for the SCA (1/2)

Simulated annealing for the SCA:

Theorem 3 (with Fukushima-Kimura, Handa, Kamakura, Kamijima, Kawamura (2021))

logn SCA  JSM psca . psca SCA
Lo=aetld+ Yok b= Pliang = PEa Piia < Piy
S
= Yjen, sup |l PigR, .4 — UNif(GSS))| —0. @)

N.b., B, o< logn for a single-spin flip MCMC (the Metropolis sampler).
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Simulated annealing for the SCA:

Theorem 3 (with Fukushima-Kimura, Handa, Kamakura, Kamijima, Kawamura (2021))

logn

- _ SCA  JS" psca . psca SCA
L _q‘+|hX|+Z|J”|’ P = > T, Bibda T Pajg* Pojig* % Ppy
y o
= Yjen, sup [l Pigh,.q = UNif(GSs))|,, —0. @)

N.b., B, o< logn for a single-spin flip MCMC (the Metropolis sampler).
Idea of the proof of Theorem 3:

@ According to Brémaud (1999), a sufficient condition for the strong ergodicity (2) is
(i) the weak ergodicity of (P}, sup ”;1 * P[ﬁj g~V Pfﬁ/ Sl q”w 0.

nteo

C. SCA
” 1 ||ﬂﬁn+l 4 ﬁn q

| < oo
v
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Simulated annealing for the SCA:

Theorem 3 (with Fukushima-Kimura, Handa, Kamakura, Kamijima, Kawamura (2021))

logn SCA  JSM psca . psca SCA
Lo=aetld+ Yok b= Pliang = PEa Piia < Piy
S
= Yjen, sup [l Pigh,.q = UNif(GSs))|,, —0. @)

N.b., B, o< logn for a single-spin flip MCMC (the Metropolis sampler).
Idea of the proof of Theorem 3:

@ According to Brémaud (1999), a sufficient condition for the strong ergodicity (2) is
() the weak ergodicity of {P5 },c: sl%) ”;1 * Pﬁgﬁﬂ”]’q — v P‘Fgﬁﬁn]’qnw —0.

1.4 nteo
H L SCA _ SCA
(“) Z"Zl ||ﬂﬁn+ls‘1 nﬁnsq

e P[Sﬁ(jé?n],q - ”ic,z?”'rv == (P?ﬁ(;-A,ﬁn],q - Hgo(;?)”'rv

SCA SCA\ pSCA
< e (Pl oy = Tagg P

< oo

|TV

T panaliry + s O3 g P g =T Dl + [l (1505 ~ Ty -

n P
< 26(PSCA ): Dobrushin’s ergodic coeff. SCA _ SCA\pSCA —0 mingyzy
. T ~IT P,
1Bebnla = Z HW( Bi-1-9 iq ) [ﬁnJ«‘I”TV
—0 (i) i=l+

:
< 3 bty —o -
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Mixing time and simulated annealing for the SCA 4. Simulated annealing for the SCA (2/2)

@ Dobrushin’s ergodic coefficient:

o(P) = H‘}_EIX H50' *P— 6” * P“TV =1- n{}’iJIZP(O',T) AP

@ Block criterion of weak ergodicity:

)

SCA _ SCA
2(1-6F) =0 = AP, =0
n=1

@ The left is easy to show because

1 el pl
Pfo;(O',T)Zl_[— 21_[ =—.
X

1+ ébn [h(@)+qrox]
X
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Mixing time and simulated annealing for the SCA 4. Simulated annealing for the SCA (2/2)

@ Dobrushin’s ergodic coefficient:

o(P) = H‘}_EIX H50' *P— 6” * P“TV =1- n{}’iJIZP(O',T) AP

@ Block criterion of weak ergodicity:

)

2(-aE) =0 = 8P =0

n=1

@ The left is easy to show because

1 Pl gl
SCA = —
P 2 U 1 + eBulhx(@)+axon z g2 s
@ For (i), let m = min,, H(co, n) and
e—ﬁI:I(o',l]) min z/\Z% e‘ﬁ(ﬁ(“"’)_’") G
o.n) = _ & _ — o (07) O -
:uﬁ,q( " Zo—.n e PH@.m |GS| + ZU,H:FI(O’,me e AH@m=m) - freo ( N
Aig (0, . >0 YB<oo if Ho,n) =m,
Since Hpa @) _ (E;,ﬁ [H] —H(O'»'I))#ﬁq("'»'?) -'B ” (~ v
a8 " ) <0 if B>»1 & H(o,n)>m,
BT—)m

(o)
we can show Z st =ty < 3 for N> 1
n=N
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Mixing time and simulated annealing for the SCA 5. Attempt for improvement (1/2)

@ Isolate the effect of ¢ = {g.}.ev @s

Bgeo B7
275 cosh(E (o)

P =]]

x

x€Dg p YEV\Dg

where £,(0) = O, (e =) and D, ,, = {x € V : oy # ).
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Mixing time and simulated annealing for the SCA 5. Attempt for improvement (1/2)

@ Isolate the effect of ¢ = {g.}.ev @s

o5 axon; cosh(g (o) e’%irx(zr):zx

P (g, ) = — 7
pa (1) 1_[ cosh(5 (A, (o) + q.,)) 2 cosh(S (o)

x

=[] e@pio [] (1-2@pe),

xeDgy YeV\Dry

where £,(0) = O, (e =) and D, ,, = {x € V : oy # ).
@ &-SCA: g,(o) is uniformly replaced by a temperature-free ¢ € [0, 1].

PESCA(O', n) = 1_[ ep.(0) 1_[ (1 - 5[7);(0'))

x€Dg p YeV\Dg 5
S VAS
= > fa-9" [ p@ [] (1-pu0).
S:DgycScv x€Dg g YES\Dg 5

@ Initially motivated to reduce the memory size for generating random numbers.

@ Pros: the pinning effect is lighter, especially in the low-temperature regime.

@ Cons: there is no theoretical justification so far, an equilibrium measure is
unknown, etc.
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Mixing time and simulated annealing for the SCA 5. Attempt for improvement (2/2)

Application to the TSP (Fukushima-Kimura):
@ V| =10, {diy}vxy: iid.uniformon [0, 1].
@ B, = Boe™ (exponential cooling) with @ = 0.0001, By = 0.001.
@ 100 samples, a 120000-step MC each.

Histogram of minimal energy (SCA) Histogram of minimal energy (e = 0.4)
— 2 -
] )
24
g 4 g o |
9
° od —
r T T T T 1 r T T T 1
-1440 1438 -1436 1434 1432 -1430 -144.20 -144.19 -144.18 14417 -144.16
Minimal energy Minimal energy

@ SCA: the minimum-energy (= —143.9403) spin configuration is not legitimate.

@ £-SCA with £ = 0.4: the minimum-energy (= —144.2006, success rate 54%) spin
configuration is legitimate.
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Mixing time and simulated annealing for the SCA 5. Concluding remark

@ What we wanted: faster dynamics based on multi-spin updates.
@ What we proposed: use the stochastic cellular automata (SCA):

P = |

X

e g (e (0)+qx o)

2 cosh(’;(ﬁx(v) +q.0y)) )

[ eowio) [T (1-g@p,@).

XE€Dgy YeV\Dg 5

@ What we have shown:
@ Mixing is much faster than Glauber in the high-temperature regime:

! o log|V]| +1
. Byl < g
r:mfx(tanhﬁ%+;tanh7’)<l = T;?:(%)Sk)g(—l/”
@ A standard cooling schedule works for the SCA, too, to find a ogs:
logn .
= sup |[ux P «- - - P3cA —Unif(GSs)|| — 0.
b= S I+ 5, 100D WD Ba ™ g vt
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@ What we wanted: faster dynamics based on multi-spin updates.
@ What we proposed: use the stochastic cellular automata (SCA):

P = |

X

e g (e (0)+qx o)

2 cosh(g(ﬁx(O') +q.0y)) )

[ eowio) [T (1-g@p,@).

XE€Dgy YeV\Dg 5

@ What we have shown:
@ Mixing is much faster than Glauber in the high-temperature regime:

! o log|V]| +1
. Byl < g
r:mfx(tanhﬁ%+;tanh7’)<l = T;?:(%)Sk)g(—l/”
@ A standard cooling schedule works for the SCA, too, to find a ogs:
logn .
= sup |[ux P «- - - P3cA —Unif(GSs)|| — 0.
b= S I+ 5, 100D WD Ba ™ g vt

@ Ongoing work (supported by numerical evidence):
@ &-SCA, where the pinning parameters ¢ = {q,}.v are turned off and
a collection of spins is chosen by Binom(|V|, ):
PiNom = ) Lla-o"™ ] pe [ (1-pte)
S:DgycScV x€Dg g YES\Dg 5

@ First hit to the target states, under an exponential cooling schedule.
© convergence in total variation < logarithmic
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