List of Papers
*For accepted or published article, the latest version on arXiv is equivalent to the published version [possibly up to typos and styles].
*Since 2017, I stopped submitting to Elsevier Journals.
- [1]Haagerup property for C*-algebras and rigidity of C*-algebras with property (T)
J. Funct. Anal. 265 (2013), 1778--1799. doi:10.1016/j.jfa.2013.06.007, arXiv:1212.5030
- [2]Amenable minimal Cantor systems of free groups arising from diagonal actions
J. reine angew. Math. 722 (2017), 183--214. doi:10.1515/crelle-2014-0071, arXiv:1312.7098
- [3](With M. Mimura, N. Ozawa, and H. Sako)Group approximation in Cayley topology and coarse geometry, Part III: Geometric property (T)
Algebr. Geom. Topol. 15 (2015), no.2, 1067--1091. doi:10.2140/agt.2015.15.1067, arXiv:1402.5105
- [4]Group C*-algebras as decreasing intersection of nuclear C*-algebras
Amer. J. Math. 139 (2017), number 3, 681--705. doi:10.1353/ajm.2017.0018, arXiv:1410.8347(Original version is available here.)
- [5]Construction of minimal skew products of amenable minimal dynamical systems
Groups Geom. Dyn. 11 (2017), 75--94. doi:10.4171/GGD/388 arXiv:1503.01317
- [6]Minimal ambient nuclear C*-algebras
Adv. Math. 304 (2017), 421--433. doi:10.1016/j.aim.2016.09.002, arXiv:1510.05592
- [7]Elementary constructions of non-discrete C*-simple groups
Proc. Amer. Math. Soc. 145 (2017), 1369--1371. doi:10.1090/proc/13301, arXiv:1604.03032
- [8]Almost finiteness for general etale groupoids and its applications to stable rank of crossed products
Int. Math. Res. Not., 2020 (2020), 6007--6041, doi:10.1093/imrn/rny187, arXiv:1702.04875
Comment:Non-amenable minimal almost finite groupoids are constructed by Gabor Elek (arxiv:1812.07511).
By our results, their (non-amenable) reduced groupoid C*-algebras have stable rank one, real rank zero, and strict comparison.
- [9]Simple equivariant C*-algebras whose full and reduced crossed products coincide
J. Noncommut. Geom. 13 (2019), 1577--1585, doi:10.4171/JNCG/356 arXiv:1801.06949
- [10]Complete descriptions of intermediate operator algebras by intermediate extensions of dynamical systems
Commun. Math. Phys. 375 (2020), 1273--1297, doi:10.1007/s00220-019-03436-1, online free view, arXiv:1805.02077
Citation omission: The Main Theorem in the W*-case has been obtained by Packer
under the additional assumption on the existence of normal conditional expectations, by a different von Neumann algebraic method.
- [11]Rigid sides of approximately finite dimensional simple operator algebras in non-separable category
Int. Math. Res. Not. 2021 (2021), 2166--2190, doi:10.1093/imrn/rnz079, arXiv:1809.08810
Typo: Prop 2.4 (2), "countably generated" -> "countably decomposable".
- [12]The approximation property and exactness of locally compact groups
J. Math. Soc. Japan 73 Number 1 (2021), 263-275, doi:10.2969/jmsj/83368336, arXiv:1901.07430
- [13]On pathological properties of fixed point algebras in Kirchberg algebras
Proc. Roy. Soc. Edinburgh Section A: Mathematics 150, Issue 6 (2020), 3087--3096, doi:10.1017/prm.2019.47, arXiv:1905.13004
Remark:Numbers (A, B, C) of theorem etc. are deleted in the published version due to the style of the publisher.
- [14]Non-amenable tight squeezes by Kirchberg algebras
Math. Ann. 382 (2022), 631--653, doi:10.1007/s00208-021-02262-y, online free view, arXiv:1908.02971
- [15]Equivariant O_2-absorption theorem for exact groups
Compos. Math. 157 (2021), Volume 7, 1492--1506, doi:10.1112/S0010437X21007168, arXiv:2004.09461
A slide on this work.
- [16](With N. Ozawa)On characterizations of amenable C*-dynamical systems and new examples
Selecta Math.(N.S.) 27 (2021), Article number 92, 29pp, doi:10.1007/s00029-021-00699-2[open access], arXiv:2011.03420
-Correction in Proposition 3.5(06 Feb.2022): replace S(A) with Q(A) \setminus {0} in the non-unital case.
-Correction: The equivalence "amenability <=> QAP" is a new result of this paper even for discrete groups,
as the referred article contained a fatal error, and the authors of that article retracted the original statement.
Note that our proof is independent from the said work, hence is not affected by their errors.
- [17]C*-simplicity has no local obstruction
Forum Math. Sigma 10 (2022) e18, 8 pages, doi:10.1017/fms.2022.5[open access], arXiv:2103.10404
A slide on this work.
- [18]Simplicity and tracial weights on non-unital reduced crossed products
Internat. J. Math. 35, no.6 (2024), 16 pages, doi:10.1142/S0129167X24500216, arXiv:2109.08606
A short slide on this work.
- [19]Every countable group admits amenable actions on stably finite simple C*-algebras
Amer. J. Math. (accepted), arXiv:2204.04480
- [20]Amenable actions on finite simple C*-algebras arising from flows on Pimsner algebras
To appear in Muenster J. Math., special issue in honour of Eberhard Kirchberg (invited), arXiv:2305.13056
- [21]Amenable actions on ill-behaved simple C*-algebras
Int. Math. Res. Not. (accepted), arXiv:2405.10191
- [--]Crossed product splitting of intermediate operator algebras via 2-cocycles
Preprint, arXiv:2406.00304
Back to the main Index. ホームページに戻る.