The 26th PDE Real Analysis Seminar

(COE Partner Seminar, Department of Mathematics, Hokkaido University )

Contents

Outline

Organizers :
H.Arai (University of Tokyo) Y.Giga (University of Tokyo/Hokkaido University)
Board Members :
H.Ishii (Waseda.U) T.Kawazoe (Keio.U) N.Kenmochi (Chiba.U) M.Sakai (Tokyo Metropolitan.U) Y.Shibata (Waseda.U) K.Mochizuki (Chuo.U) A.Miyachi(Tokyo Woman's Christian.U) M.Yamazaki (Waseda.U)
Period :
September 27, 2006 (Wednesday) 10:30-11:30
Place :
Graduate School of Mathematical Sciences the University of Tokyo, Room #056
Programme :
Vakhtang Kokilashvili (A. Razmadze Mathematical Institute, Georgian Academy of Science)
TITLE:
Integral operators in the weighted Lebesgue spaces with a variable exponent
ABSTRACT:

We present a boundedness criteria of the maximal functions and the singular integral operators defined on Carleson curves in the weighted Lebesgue spaces with a variable exponent. There are also given the weighted estimates for the generalized singular integrals raised in the theory of generalized analytic functions of I.N.Vekua and the weighted Sobolev theorems for potentials on Carleson curves. The weight functions may be of power function type as well as oscillating type. The certain version of a Muckenhoupt-type condition for a variable exponent will be considered.

We also expect to treat two-weight problems for the classical integral operators in the variable Lebesgue spaces and to give some applications of the obtained results to the summability problems of Fourier series in two-weighted setting.