※このページは北大数学COEで作成しています

第26回PDE実解析研究会 (北大数学COE協賛)

PDE Real Analysis Seminar

Contents

Program

組織委員:
新井仁之(東大),儀我美一(東大/北大)
幹事:
石井仁司(早大),河添 健(慶大),剣持信幸(千葉大),酒井 良(都立大),柴田良弘(早大),望月 清(中央大),宮地晶彦(東女大),山崎昌男(早大)
日  時:
2006年9月27日(水) 10:30-11:30
場  所:
東京大学大学院 数理科学研究科056号室
※会場へのアクセスは下記にてご確認下さい。
駒場アクセスマップ
http://www.u-tokyo.ac.jp/campusmap/map02_02_j.html
駒場キャンパス数理科学研究科棟
http://www.u-tokyo.ac.jp/campusmap/cam02_01_27_j.html
講 演 者:
Vakhtang Kokilashvili 氏 (A. Razmadze Mathematical Institute, Georgian Academy of Science)
演  題:
Integral operators in the weighted Lebesgue spaces with a variable exponent
ABSTRACT:

We present a boundedness criteria of the maximal functions and the singular integral operators defined on Carleson curves in the weighted Lebesgue spaces with a variable exponent. There are also given the weighted estimates for the generalized singular integrals raised in the theory of generalized analytic functions of I.N.Vekua and the weighted Sobolev theorems for potentials on Carleson curves. The weight functions may be of power function type as well as oscillating type. The certain version of a Muckenhoupt-type condition for a variable exponent will be considered.

We also expect to treat two-weight problems for the classical integral operators in the variable Lebesgue spaces and to give some applications of the obtained results to the summability problems of Fourier series in two-weighted setting.