Feb. 18, 2010 (北海道大学談話会)

超平面配置のトポロジー

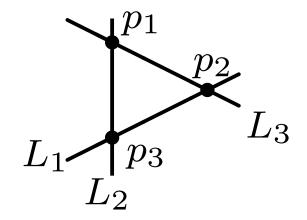
極小セル分割とその周辺

Masahiko Yoshinaga

Kyoto University

$$\mathcal{A} = \{H_1, H_2, \dots, H_n\}$$

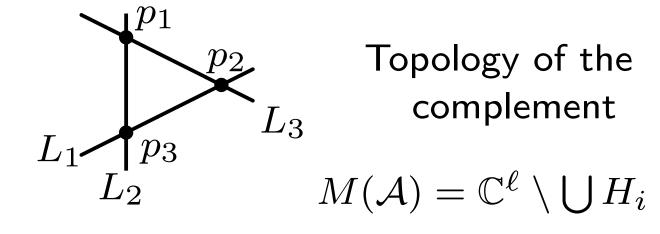
of affine hyperplanes $H_i \subset \mathbb{C}^\ell$ (or $H_i \subset \mathbb{P}^\ell$).



Combinatorics

$$\mathcal{A} = \{H_1, H_2, \dots, H_n\}$$

of affine hyperplanes $H_i \subset \mathbb{C}^\ell$ (or $H_i \subset \mathbb{P}^\ell$).

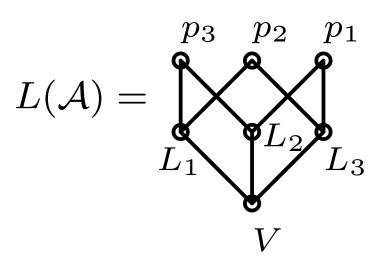


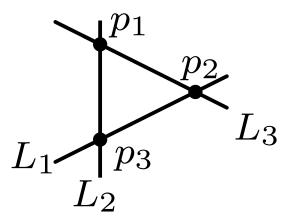
Combinatorics

$$\mathcal{A} = \{H_1, H_2, \dots, H_n\}$$

of affine hyperplanes $H_i \subset \mathbb{C}^\ell$ (or $H_i \subset \mathbb{P}^\ell$).

Combinatorial structures





Topology of the complement

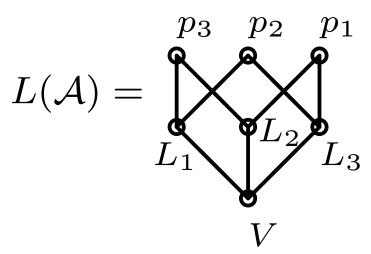
$$M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup H_i$$

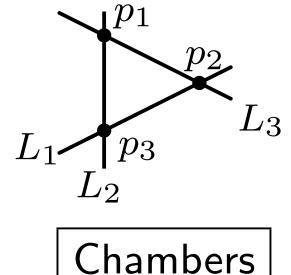
Combinatorics

$$\mathcal{A} = \{H_1, H_2, \dots, H_n\}$$

of affine hyperplanes $H_i \subset \mathbb{C}^\ell$ (or $H_i \subset \mathbb{P}^\ell$).

Combinatorial structures





Topology of the complement

$$M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup H_i$$

Combinatorics controlls geometry via chambers.

$$M(\mathcal{A}) = \mathbb{C}^{\ell} - \bigcup_{H \in \mathcal{A}} H$$

Example,

$$M(\mathcal{A}) = \mathbb{C}^{\ell} - \bigcup_{H \in \mathcal{A}} H$$

Example, $\ell = 1$: $\mathcal{A} = \{a_1, \ldots, a_n\} \subset \mathbb{C}$.

$$M(\mathcal{A}) = \mathbb{C}^{\ell} - \bigcup_{H \in \mathcal{A}} H$$

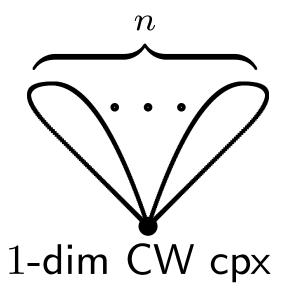
Example, $\ell = 1$: $\mathcal{A} = \{a_1, \ldots, a_n\} \subset \mathbb{C}$.

$$M(\mathcal{A}) = \mathbb{C}^{\ell} - \bigcup_{H \in \mathcal{A}} H$$

Example, $\ell = 1$: $\mathcal{A} = \{a_1, \dots, a_n\} \subset \mathbb{C}$.

$$\mathbb{C}$$
 a_1
 a_n

$$M(\mathcal{A})$$
 $\underline{\hspace{1cm}}$ Homotopy equiv.



Example, $\ell = 2$, $A = \{xy = 0\}$.

Example, $\ell = 2$, $A = \{xy = 0\}$.

$$M(\mathcal{A}) = \{(x, y) \mid xy \neq 0\}$$

Example,
$$\ell = 2$$
, $A = \{xy = 0\}$.

$$M(\mathcal{A}) = \{(x, y) \mid xy \neq 0\}$$
$$= \mathbb{C}^* \times \mathbb{C}^*$$

Example, $\ell = 2$, $A = \{xy = 0\}$.

$$M(\mathcal{A}) = \{(x, y) \mid xy \neq 0\}$$
$$= \mathbb{C}^* \times \mathbb{C}^*$$
$$\simeq S^1 \times S^1$$

Example,
$$\ell = 2$$
, $A = \{xy = 0\}$.

$$M(\mathcal{A}) = \{(x, y) \mid xy \neq 0\}$$

$$= \mathbb{C}^* \times \mathbb{C}^*$$

$$\simeq S^1 \times S^1$$

$$xy = 0$$
Attaching

1. Aomoto's observation.

- 1. Aomoto's observation.
- 2. Minimality of M(A). (Dimca, Papadima, Suciu, Randell)

- 1. Aomoto's observation.
- 2. Minimality of $M(\mathcal{A})$. (Dimca, Papadima, Suciu, Randell)
- 3. Real cases.

- 1. Aomoto's observation.
- 2. Minimality of M(A). (Dimca, Papadima, Suciu, Randell)
- 3. Real cases.
- 4. Application to local systems.

- 1. Aomoto's observation.
- 2. Minimality of M(A). (Dimca, Papadima, Suciu, Randell)
- 3. Real cases.
- 4. Application to local systems. (arXiv:1002.2038)

1 Aomoto's observation

1 Aomoto's observation

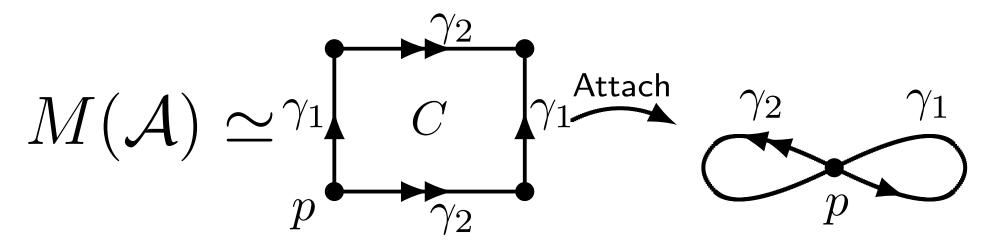
concerning dimensions of local system homology groups

$$\dim H_k(M(\mathcal{A}), \mathcal{L})$$

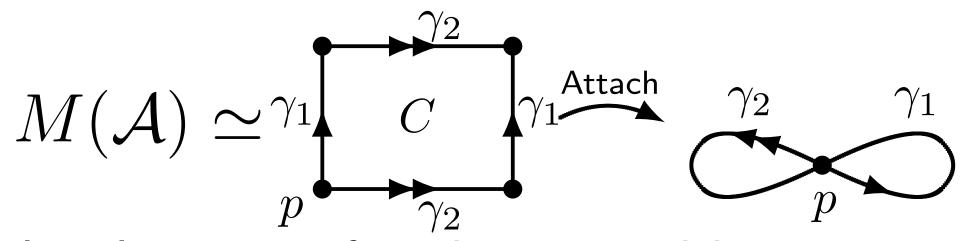
for rank one local system \mathcal{L} on $M(\mathcal{A})$.

 $\ell = 2$, $A = \{xy = 0\}$.

$$\ell = 2$$
, $A = \{xy = 0\}$.



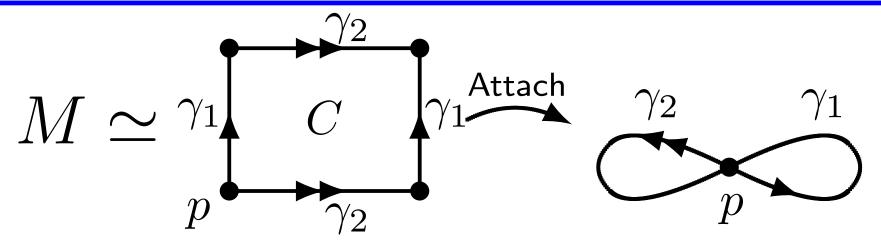
$$\ell = 2$$
, $A = \{xy = 0\}$.



A local system \mathcal{L} is determined by

$$\rho: \pi_1(M(\mathcal{A})) \to \mathbb{C}^*,$$

i.e. by
$$\rho([\gamma_1]) = t_1, \rho([\gamma_2]) = t_2 \in \mathbb{C}^*$$
.

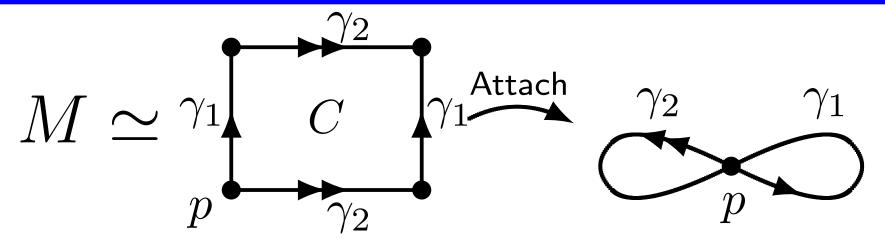


Chain complex

$$C_{2} \xrightarrow{\partial} C_{1} \xrightarrow{\partial} C_{0}$$

$$[C] \longmapsto \begin{array}{c} [\gamma_{2}] + [\gamma_{1}] \\ -[\gamma_{2}] - [\gamma_{1}] \end{array}$$

$$\begin{array}{c} [\gamma_{1}] \longmapsto [p] - [p] \\ [\gamma_{2}] \longmapsto [p] - [p] \end{array}$$



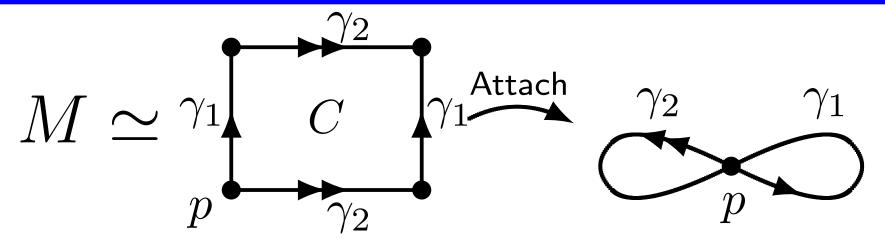
Chain complex (Twisted by \mathcal{L}):

$$C_{2} \xrightarrow{\partial_{\mathcal{L}}} C_{1} \xrightarrow{\partial_{\mathcal{L}}} C_{0}$$

$$[C] \xrightarrow{[\gamma_{2}] + t_{2}[\gamma_{1}]} -t_{1}[\gamma_{2}] - [\gamma_{1}]$$

$$[\gamma_{1}] \xrightarrow{[\gamma_{2}]} t_{1}[p] - [p]$$

$$[\gamma_{2}] \xrightarrow{[\gamma_{2}]} [p] - [p]$$



Chain complex (Twisted by \mathcal{L}):

$$C_{2} \xrightarrow{\partial_{\mathcal{L}}} C_{1} \xrightarrow{\partial_{\mathcal{L}}} C_{0}$$

$$[C] \xrightarrow{(t_{2}-1)[\gamma_{1}]} (t_{1}-1)[\gamma_{2}]$$

$$[\gamma_{1}] \xrightarrow{(t_{2}-1)[p]} (t_{2}-1)[p]$$

$$C_{2} \xrightarrow{\partial_{\mathcal{L}}} C_{1} \xrightarrow{\partial_{\mathcal{L}}} C_{0}$$

$$[C] \xrightarrow{(t_{2}-1)[\gamma_{1}]} (t_{1}-1)[\gamma_{2}]$$

$$\begin{bmatrix} \gamma_{1} \\ \gamma_{2} \end{bmatrix} \xrightarrow{(t_{2}-1)[p]} (t_{2}-1)[p]$$

$$\mathcal{L} \qquad H_{0} \mid H_{1} \mid H_{2}$$

$$Trivial (t_{i}=1) \mid \mathbb{C} \mid \mathbb{C}^{2} \mid \mathbb{C}$$

$$not trivial \mid 0 \mid 0 \mid 0$$

Remark:

Remark: $X \simeq \{x^2 - y^3 \neq 0\}$.

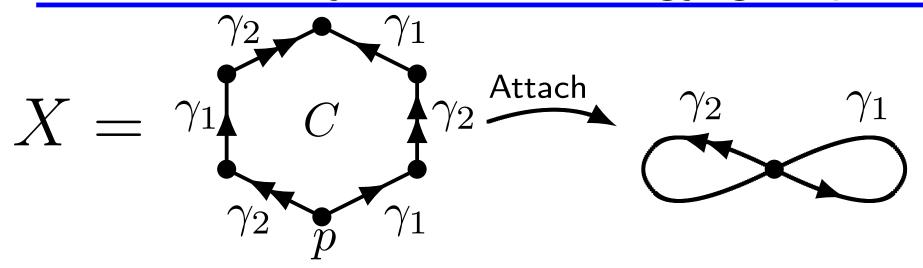
Example. $X = \gamma_1 \xrightarrow{\gamma_2} C \xrightarrow{\gamma_1} \gamma_2 \xrightarrow{\text{Attach}} \gamma_2 \xrightarrow{\gamma_1} \gamma_1$

Remark: $X \simeq \{x^2 - y^3 \neq 0\}$.

Since $\partial([C]) = [\gamma_1] - [\gamma_2]$, a local system

 \mathcal{L}_t is determined by

$$\rho([\gamma_1]) = \rho([\gamma_2]) =: t \in \mathbb{C}^*.$$



Chain complex with \mathcal{L}_t -coefficients:

$$C_{2} \xrightarrow{\partial_{\mathcal{L}_{t}}} C_{1} \xrightarrow{\partial_{\mathcal{L}_{t}}} C_{0}$$

$$[C] \longmapsto (1 - t + t^{2})[\gamma_{1}] \\ -(1 - t + t^{2})[\gamma_{2}]$$

$$[\gamma_{1}] \longmapsto (t - 1)[p]$$

$$[\gamma_{2}] \longmapsto (t - 1)[p]$$

$$C_{2} \xrightarrow{\partial_{\mathcal{L}_{t}}} C_{1} \xrightarrow{\partial_{\mathcal{L}_{t}}} C_{0}$$

$$[C] \longmapsto (1 - t + t^{2})([\gamma_{1}] - [\gamma_{2}])$$

$$\begin{bmatrix} \gamma_{1} \\ \gamma_{2} \end{bmatrix} & \longmapsto & (t - 1)[p] \\ [\gamma_{2}] & \longmapsto & (t - 1)[p] \end{bmatrix}$$

$$\mathcal{L}_{t} \qquad H_{0} \mid H_{1} \mid H_{2}$$

$$\boxed{Trivial \ (t = 1)} \quad \mathbb{C} \quad \mathbb{C} \quad 0$$

$$\boxed{t = e^{\pm \pi i/3}} \quad 0 \quad \mathbb{C} \quad \mathbb{C}$$

$$\boxed{others} \qquad 0 \quad 0$$

1.2 Aomoto's observation

[ma/ O	<u>ן</u> ו	<i>TT</i>	l <i>TT</i>	<i>TT</i>		H_0	H_1	H_2
$\underbrace{xy \neq 0}_{}$	- 	H_0	H_1	H_2	$\mathcal{L}_t:Trivial$	\mathbb{C}	\mathbb{C}	0
$\mathcal{L}:trivia$	al		\mathbb{C}^2	\mathbb{C}	$\pm \frac{\pi i}{2}$	0		
not trivia	al l	0	0	0	t = e 3	U		
	I	I	I	I	others	0	0	0

[max / n]	<i>TT</i>	l <i>11</i>	<i>TT</i>	$\{x^2 \neq y^3\}$	$\mid H_0 \mid$	H_1	H_2
$\{xy \neq 0\}$	Π_0	H_1	H_2	\mathcal{L}_t : Trivial	\mathbb{C}	\mathbb{C}	0
$_{oldsymbol{\mathcal{L}}}$: trivial	\mathbb{C}	\mathbb{C}^2	\mathbb{C}	$\frac{\pm \pi i}{2}$			
not trivial	0	0	0	$t = e^{-3}$	U		
ı	1	I	I	others	0	0	0

 \mathcal{A} : a hyperplane arrangement, \mathcal{L} : a rank one local system on the complement $M(\mathcal{A})$. Aomoto conjectured:

(may / n)	<i>TT</i>	<i>TT</i>	l <i>TT</i>	$\{x^2 \neq y^3\}$	$\mid H_0 \mid$	H_1	H_2
$\{xy \neq 0\}$	Π_0	H_1	Π_2	\mathcal{L}_t : Trivial	\mathbb{C}	\mathbb{C}	0
$\mathcal{L}:trivial$	\mathbb{C}	$igcup \mathbb{C}^2$	\mathbb{C}	$\frac{-\frac{\pi i}{1}}{1}$			
not trivial	0	0	0	$t = e^{-3}$	U		
ı	1	l	I	others	0	0	0

 \mathcal{A} : a hyperplane arrangement, \mathcal{L} : a rank one local system on the complement $M(\mathcal{A})$. Aomoto conjectured:

$$\dim H_i(M(\mathcal{A}), \mathcal{L}) \leq b_i(M(\mathcal{A})).$$

Aomoto's conjecture:

$$\dim H_i(M(\mathcal{A}), \mathcal{L}) \leq b_i(M(\mathcal{A}))$$

Aomoto's conjecture:

$$\dim H_i(M(\mathcal{A}), \mathcal{L}) \le b_i(M(\mathcal{A}))$$

was proved by D. Cohen.

Aomoto's conjecture:

$$\dim H_i(M(\mathcal{A}), \mathcal{L}) \leq b_i(M(\mathcal{A}))$$

was proved by D. Cohen.

(Stronger result):

Aomoto's conjecture:

$$\dim H_i(M(\mathcal{A}), \mathcal{L}) \leq b_i(M(\mathcal{A}))$$

was proved by D. Cohen.

(Stronger result):

"Minimality of $M(\mathcal{A})$ "

2.1 Minimal CW-complex

2.1 Minimal CW-complex

 $\underline{\mathsf{Def.}}$ A finite CW-cpx X is minimal if

$$\sharp(k\text{-cells})=b_k(X), \text{ for } k\geq 0.$$

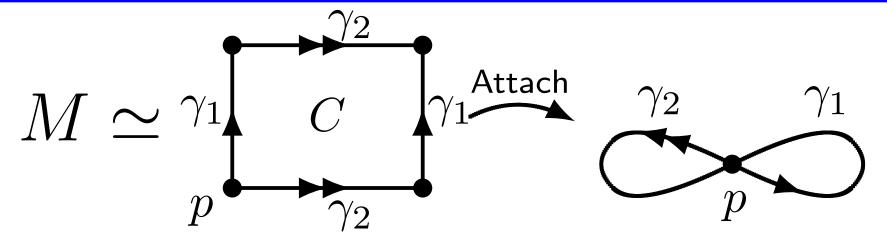
2.1 Minimal CW-complex

 $\underline{\mathsf{Def.}}\ \mathsf{A}\ \mathsf{finite}\ \mathsf{CW}\text{-}\mathsf{cpx}\ X\ \mathsf{is}\ \mathit{minimal}\ \mathsf{if}$

$$\sharp(k\text{-cells})=b_k(X), \text{ for } k\geq 0.$$

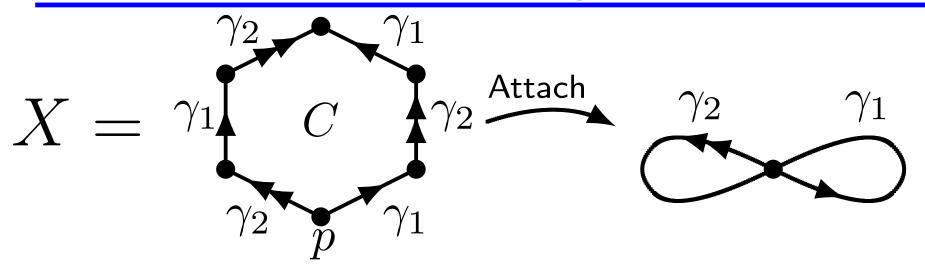
Rem. In general,

$$\sharp(k\text{-cells}) \geq b_k(X).$$



M is minimal. Indeed

k	$\mid 0$	1	2
$b_k(M)$	1	2	1
\sharp of k -cells	1	2	1



X is not minimal.

k	$\mid 0$	$\mid 1 \mid$	2
$b_k(M)$	1	1	0
\sharp of k -cells	1	2	1

Prop.

Prop. X: a minimal CW-cpx. Then Aomoto's conj holds, i.e.,

$$\dim H_i(X,\mathcal{L}) \le b_i(X).$$

Prop. X: a minimal CW-cpx. Then Aomoto's conj holds, i.e.,

$$\dim H_i(X,\mathcal{L}) \leq b_i(X).$$

$$::) H_i(X,\mathcal{L}) = H_i(C_{\bullet}(X,\mathcal{L}),\partial_{\mathcal{L}}), \text{ and }$$

$$\dim C_i(X,\mathcal{L}) = b_i(X).$$

 ${\mathcal A}$ is arrangement in ${\mathbb C}^\ell$.

 ${\mathcal A}$ is arrangement in ${\mathbb C}^\ell$.

Thm. (DPSR) $M(\mathcal{A})$ has the homotopy type of a ℓ -dim minimal CW-cpx. i.e., there is an ℓ -dim minimal CW-cpx X such that

$$M(\mathcal{A}) \simeq X$$
.

Proof is based on two results:

Proof is based on two results:

Lefschetz Theorem on hyperplane section.

Proof is based on two results:

- Lefschetz Theorem on hyperplane section.
- Combinatorial description of cohomology ring $H^{\bullet}(M(\mathcal{A}), \mathbb{Z})$ (Orlik-Solomon).

 $M = M(\mathcal{A})$,

 $F \subset \mathbb{C}^{\ell}$: a generic hyperplane.

 $M=M(\mathcal{A})$,

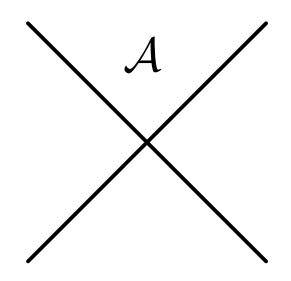
 $F \subset \mathbb{C}^{\ell}$: a generic hyperplane.

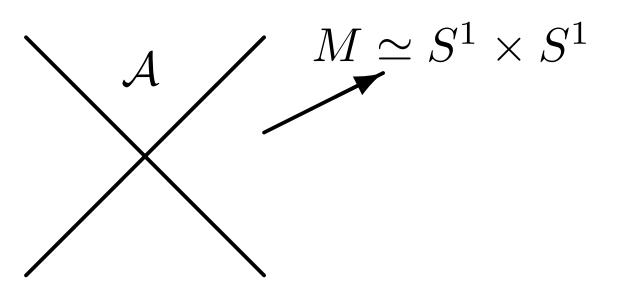
Thm.(Lefschetz)

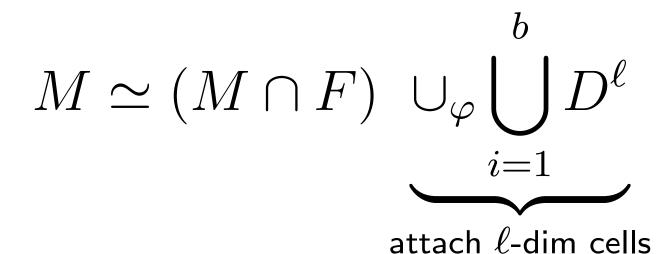
$$M\simeq (M\cap F)$$
 $\cup_{\varphi}\bigcup_{i=1}^{b}D^{\ell}$ attach ℓ -dim cells

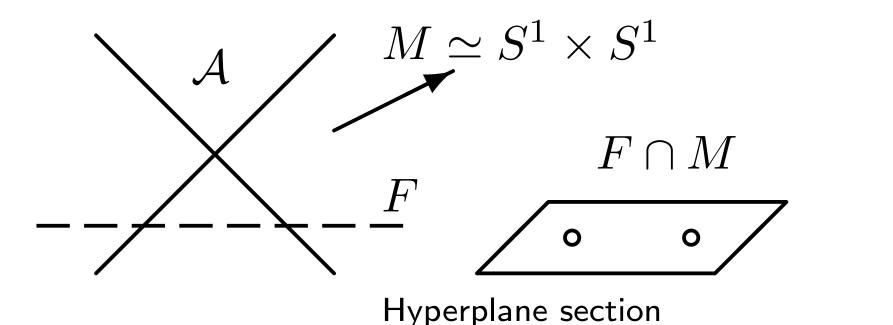
$$M \simeq (M \cap F) \ \cup_{\varphi} \bigcup_{i=1}^b D^\ell$$
 attach ℓ -dim cells

$$M \simeq (M \cap F) \ \cup_{\varphi} \bigcup_{i=1}^b D^\ell$$
 attach ℓ -dim cells



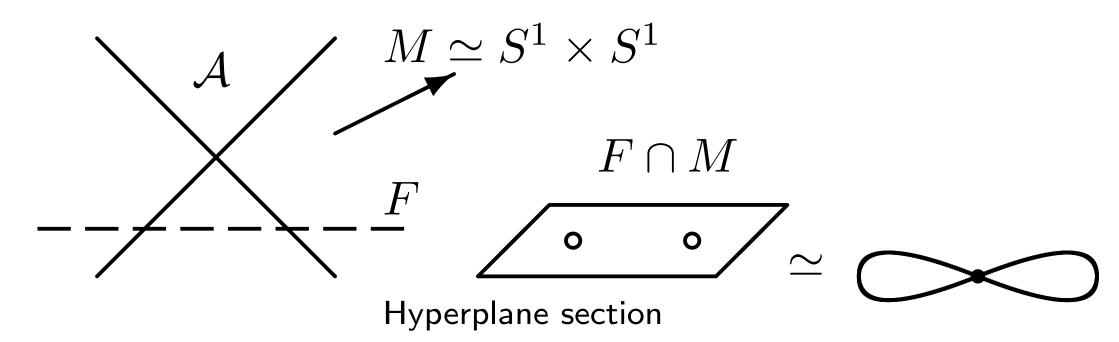


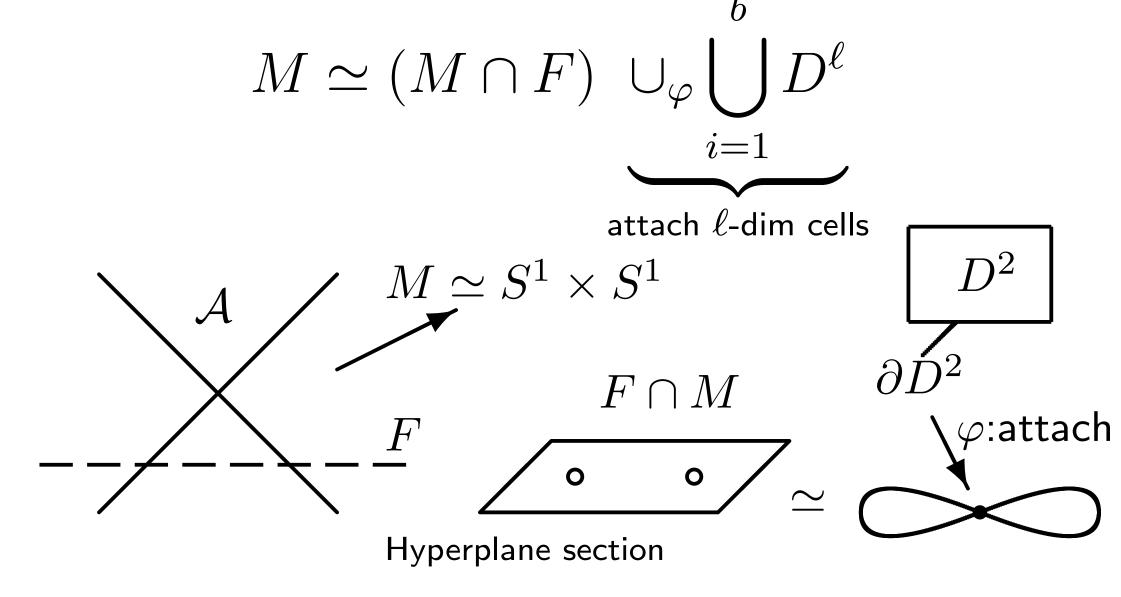




$$M \simeq (M \cap F) \cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell}$$

attach ℓ -dim cells





$$M \simeq (M \cap F) \ \cup_{\varphi} \bigcup_{i=1}^b D^\ell$$
 attach ℓ -dim cells

$$M \simeq (M \cap F) \ \cup_{\varphi} \bigcup_{i=1}^b D^\ell$$
 attach ℓ -dim cells

How many ℓ-dim cells to attach?

$$M \simeq (M \cap F) \ \cup_{\varphi} \bigcup_{i=1}^b D^\ell$$
 attach ℓ -dim cells

How many ℓ-dim cells to attach?

$$\Longrightarrow b = \dim H_{\ell}(M, M \cap F; \mathbb{C}).$$

$$M \simeq (M \cap F) \ \cup_{\varphi} \bigcup_{i=1}^b D^\ell$$
 attach ℓ -dim cells

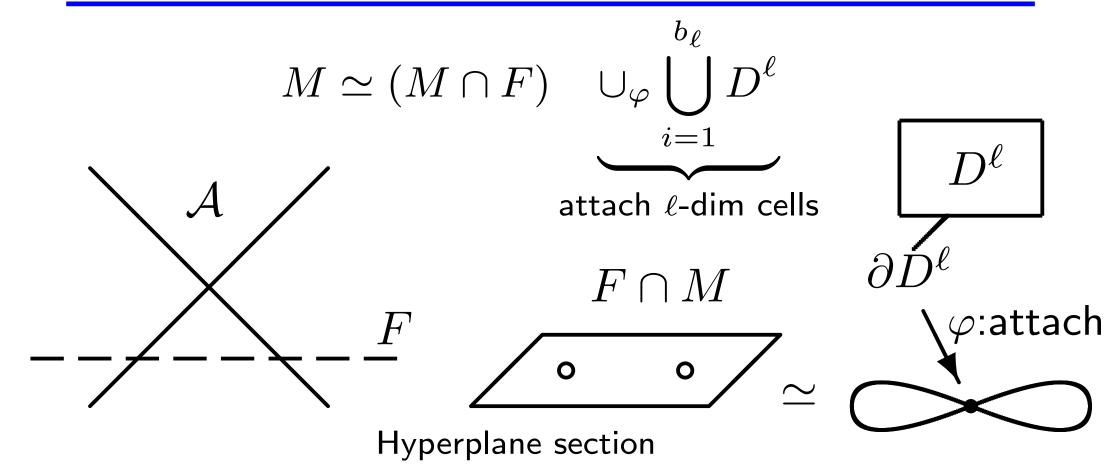
$$b = \dim H_{\ell}(M, M \cap F; \mathbb{C}).$$

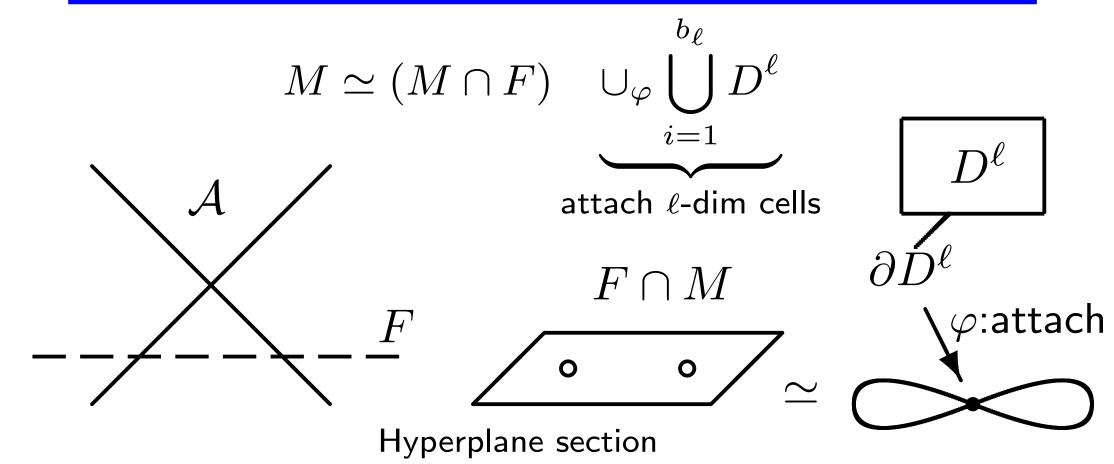
Fact. (Orlik-Solomon)

$$H_{\ell}(M) \stackrel{\cong}{\longrightarrow} H_{\ell}(M, M \cap F).$$

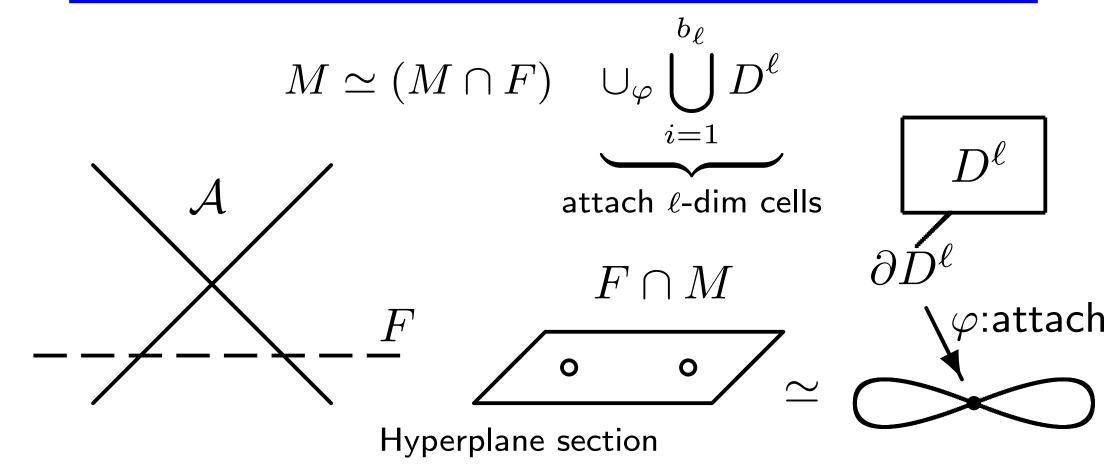
$$M \simeq (M \cap F) \ \cup_{\varphi} \bigcup_{i=1}^b D^\ell$$
 attach ℓ -dim cells

 $b=b_{\ell}(M)$, by induction \longrightarrow minimality of M.





How cells attach?



How cells attach?

How cells are labeled?

From now, every $H_i \in \mathcal{A}$ is defined \mathbb{R} .

From now, every $H_i \in \mathcal{A}$ is defined $/\mathbb{R}$. Connected comp. of $M(\mathcal{A}) \cap \mathbb{R}^{\ell}$ is called a *chamber*.

From now, every $H_i \in \mathcal{A}$ is defined $/\mathbb{R}$. Connected comp. of $M(\mathcal{A}) \cap \mathbb{R}^{\ell}$ is called a *chamber*.

ch(A): set of all chambers.

bch(A): set of all bounded chambers.

From now, every $H_i \in \mathcal{A}$ is defined $/\mathbb{R}$. Connected comp. of $M(\mathcal{A}) \cap \mathbb{R}^{\ell}$ is called a *chamber*.

ch(A): set of all chambers.

bch(A): set of all bounded chambers.

$$C_1 \qquad C_4 \qquad \operatorname{ch}(\mathcal{A}) = \{C_1, C_2, \dots, C_7\}$$

$$C_3 \qquad \operatorname{bch}(\mathcal{A}) = \{C_5\}$$

(b)ch(\mathcal{A}) has information about $M(\mathcal{A})$.

Thm. (Zaslawski)

(i)
$$\sum_{i=0}^{\ell} b_i(M(\mathcal{A})) = \sharp \operatorname{ch}(\mathcal{A}).$$

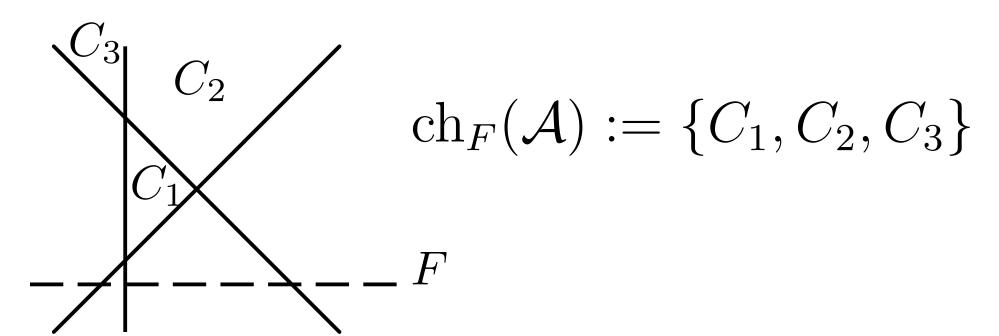
(ii)
$$\left|\sum_{i=0}^{\ell} (-1)^i b_i(M(\mathcal{A}))\right| = \sharp \operatorname{bch}(\mathcal{A}).$$

Let $F \subset \mathbb{C}^{\ell}$ be a generic hyperplane defined $/\mathbb{R}$.

Let $F \subset \mathbb{C}^{\ell}$ be a generic hyperplane defined $/\mathbb{R}$. Define

Let $F \subset \mathbb{C}^{\ell}$ be a generic hyperplane defined $/\mathbb{R}$. Define

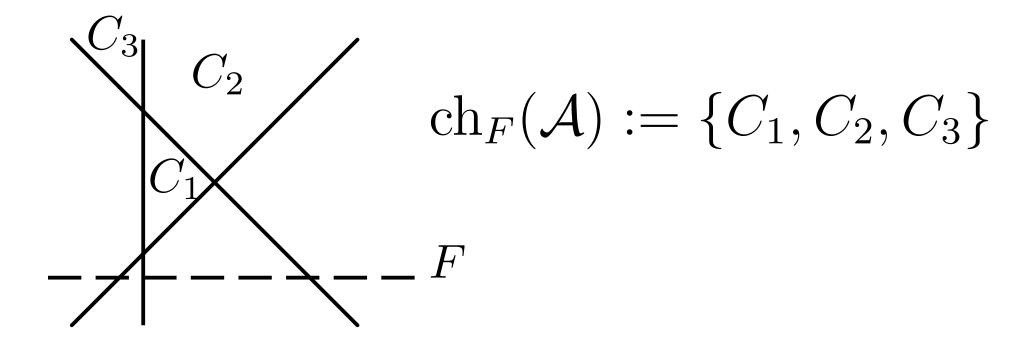
$$\operatorname{ch}_F(\mathcal{A}) := \{ C \in \operatorname{ch}(\mathcal{A}) \mid F \cap C = \emptyset \}$$



$$\operatorname{ch}_F(\mathcal{A}) := \{ C \in \operatorname{ch}(\mathcal{A}) \mid F \cap C = \emptyset \}$$

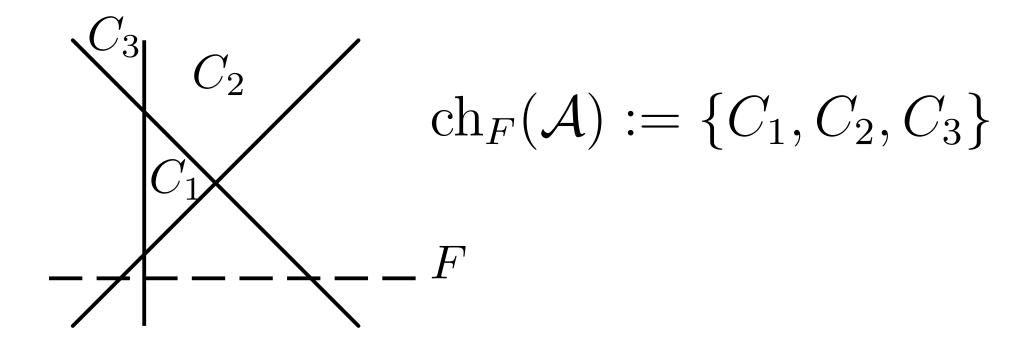


$$\operatorname{ch}_F(\mathcal{A}) := \{ C \in \operatorname{ch}(\mathcal{A}) \mid F \cap C = \emptyset \}$$



Prop.
$$\sharp \operatorname{ch}_F(\mathcal{A}) = b_{\ell}(M(\mathcal{A})).$$

$$\operatorname{ch}_F(\mathcal{A}) := \{ C \in \operatorname{ch}(\mathcal{A}) \mid F \cap C = \emptyset \}$$



 $\underline{\mathsf{Prop.}} \quad \sharp \mathop{\mathrm{ch}}\nolimits_F(\mathcal{A}) = b_\ell(M(\mathcal{A})).$

 $\Longrightarrow \operatorname{ch}_F(\mathcal{A})$ labeling ℓ -dim cells.

 $\mathcal{A}=\{H_1,\ldots,H_n\}$. Set $H_i=\alpha_i^{-1}(0)$. $Q(\mathcal{A})=\prod_{i=1}^n\alpha_i$: the defining equation of \mathcal{A} .

 $\mathcal{A} = \{H_1, \dots, H_n\}$. Set $H_i = \alpha_i^{-1}(0)$. $Q(\mathcal{A}) = \prod_{i=1}^n \alpha_i$: the defining equation of \mathcal{A} .

 $F = \{f = 0\}$: a generic hyperplane.

 $\mathcal{A} = \{H_1, \dots, H_n\}$. Set $H_i = \alpha_i^{-1}(0)$. $Q(\mathcal{A}) = \prod_{i=1}^n \alpha_i$: the defining equation of \mathcal{A} .

 $F = \{f = 0\}$: a generic hyperplane.

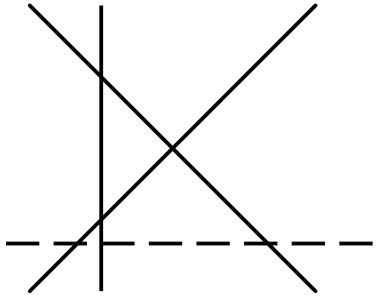
Consider a Morse function

$$\varphi := \left| \frac{f^{n+1}}{Q} \right| : M(\mathcal{A}) \longrightarrow \mathbb{R}_{\geq 0}$$

$$\varphi := \left| \frac{f^{n+1}}{Q} \right| : M(\mathcal{A}) \longrightarrow \mathbb{R}_{\geq 0}$$

$$\varphi := \left| \frac{f^{n+1}}{Q} \right| : M(\mathcal{A}) \longrightarrow \mathbb{R}_{\geq 0}$$

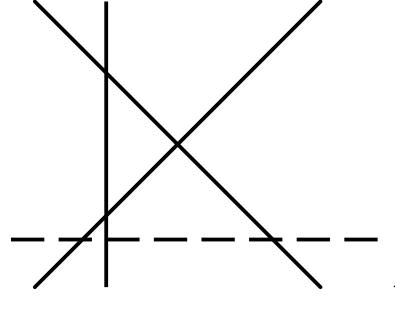
 $Cr(\varphi) := \{p : critical pt, \varphi(p) \neq 0\}$



$$\overline{\ \ }$$
 $F = \{ f = 0 \}$

$$\varphi := \left| \frac{f^{n+1}}{Q} \right| : M(\mathcal{A}) \longrightarrow \mathbb{R}_{\geq 0}$$

 $Cr(\varphi) := \{p : critical pt, \varphi(p) \neq 0\}$



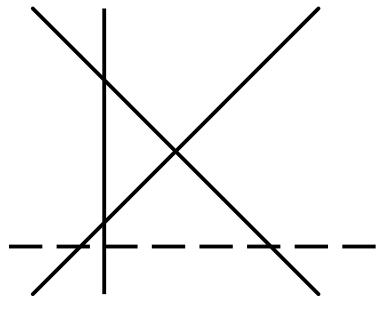
 $\mathcal{S}(p)$: stable mfd $(p \in \mathrm{Cr}(\varphi))$

 $\mathcal{U}(p)$: unstable mfd

$$F = \{f = 0\}$$

$$\varphi := \left| \frac{f^{n+1}}{Q} \right| : M(\mathcal{A}) \longrightarrow \mathbb{R}_{\geq 0}$$

$$Cr(\varphi) := \{p : critical pt, \varphi(p) \neq 0\}$$



$$\mathcal{S}(p)$$
: stable mfd $(p \in \mathrm{Cr}(\varphi))$

 $\mathcal{U}(p)$: unstable mfd

$$\varphi^{-1}(0) = M(\mathcal{A}) \cap F$$

$$F = \{ f = 0 \}$$

 $\mathcal{U}(p)$: unstable manifold of $p \in \mathrm{Cr}(\varphi)$.

$$M\simeq (M\cap F)\cup\bigcup_{p\in\operatorname{Cr}(\varphi)}\mathcal{U}(p).$$

$$Unstable\ cell$$

$$\mathcal{U}(p)$$

$$\varphi^{-1}(0)=M\cap F$$

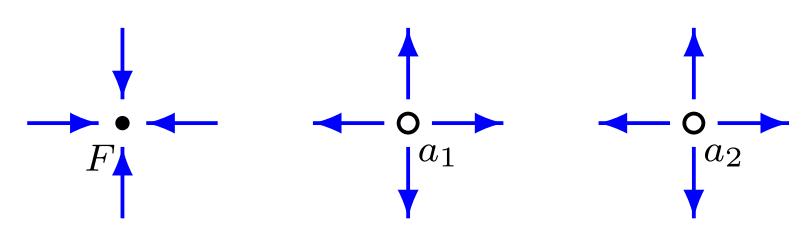
Example. $\ell=1$, $\mathcal{A}=\{a_1,a_2\}$ and $F=\{b\}$. $\varphi(z)=\left|\frac{(z-b)^3}{(z-a_1)(z-a_2)}\right|$

Example. $\ell=1$, $\mathcal{A}=\{a_1,a_2\}$ and $F=\{b\}$. $\varphi(z)=\left|\frac{(z-b)^3}{(z-a_1)(z-a_2)}\right|$

Example. $\ell=1$, $\mathcal{A}=\{a_1,a_2\}$ and $F=\{b\}$.

$$\varphi(z) = \left| \frac{(z-b)^3}{(z-a_1)(z-a_2)} \right|$$

 $-\operatorname{grad}\varphi$



Example. $\ell=1$, $\mathcal{A}=\{a_1,a_2\}$ and $F=\{b\}$.

$$\varphi(z) = \left| \frac{(z-b)^3}{(z-a_1)(z-a_2)} \right|$$

$$-\operatorname{grad} \varphi$$

$$F = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

Example. $\ell=1$, $\mathcal{A}=\{a_1,a_2\}$ and $F=\{b\}$.

$$\varphi(z) = \left| \frac{(z-b)^3}{(z-a_1)(z-a_2)} \right|$$

$$-\operatorname{grad} \varphi$$

$$F_1 \qquad a_1 \qquad C_1 \qquad a_2 \qquad C_2$$

$$\operatorname{Cr}(\varphi) = \{p_1, p_2\}$$
 $\operatorname{ch}_F(\mathcal{A}) = \{C_1, C_2\}$

Example. $\ell=1$, $\mathcal{A}=\{a_1,a_2\}$ and $F=\{b\}$.

$$\varphi(z) = \left| \frac{(z-b)^3}{(z-a_1)(z-a_2)} \right|$$

$$\operatorname{grad} \varphi$$

$$U(p_1)$$

$$p_1$$

$$p_2$$

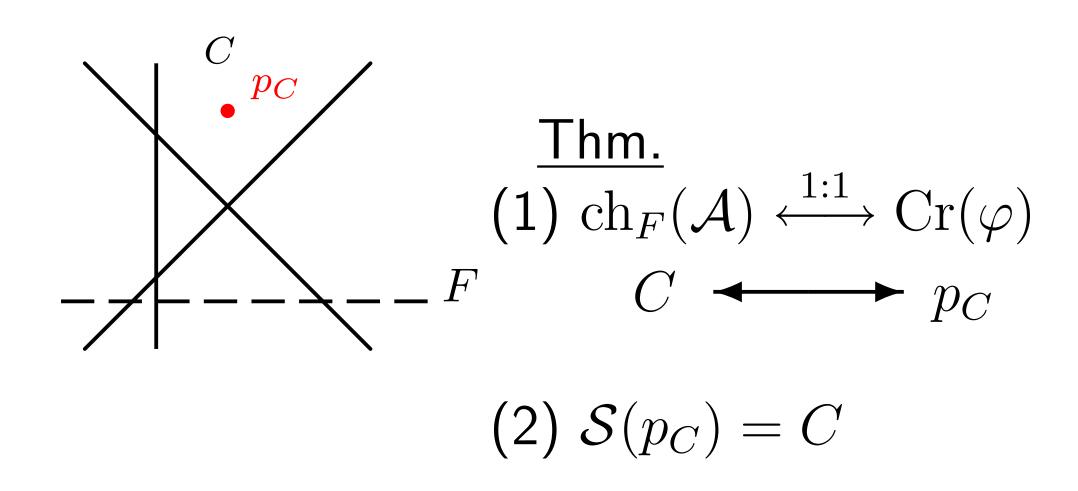
$$a_1$$

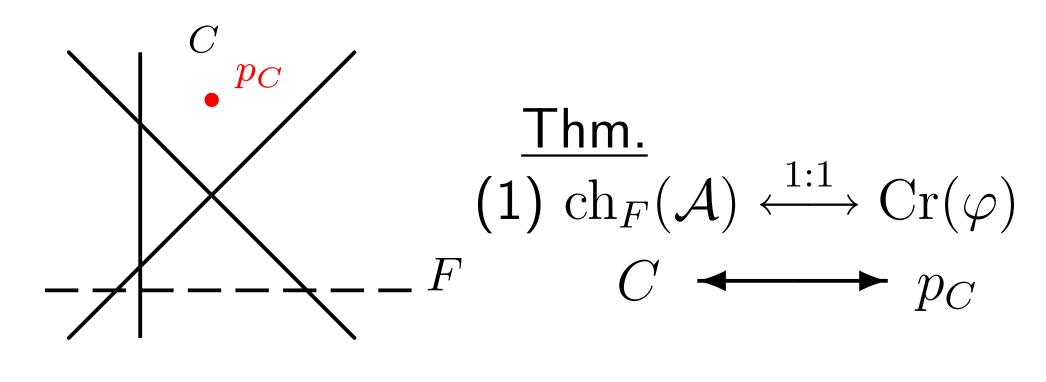
$$C_1$$

$$C_2$$

$$\operatorname{Cr}(\varphi) = \{p_1, p_2\}$$

$$\operatorname{ch}_F(A) = \{C_1, C_2\}$$



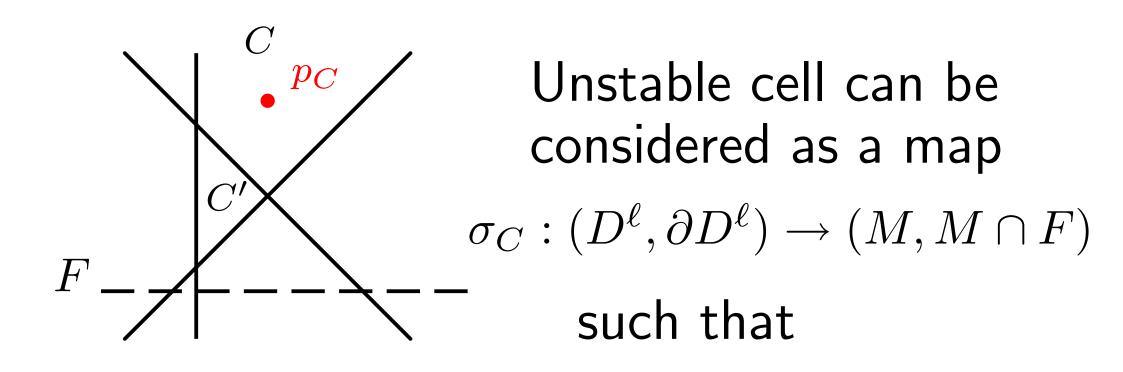


$$(2) \mathcal{S}(p_C) = C$$

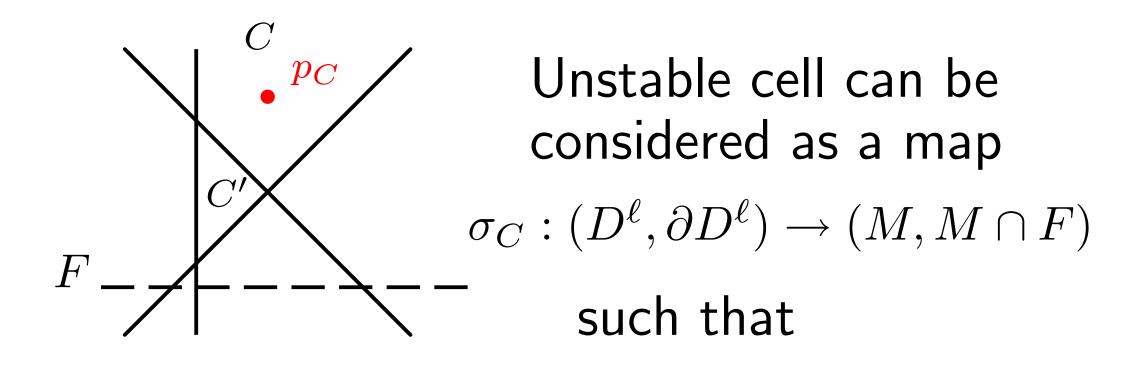
How about unstable cell $\mathcal{U}(p_C)$?

3.2 Unstable cells

3.2 Unstable cells



3.2 Unstable cells



(i)
$$\sigma_C(D^\ell) \pitchfork C = \{p_C\}.$$

(ii) $\sigma_C(D^\ell) \cap C' = \emptyset$ for $C' \in \operatorname{ch}_F \setminus \{C\}.$

(i) and (ii) above characterize the homotopyt type of $\mathcal{U}(p_C)$.

(i) and (ii) above characterize the homotopyt type of $\mathcal{U}(p_C)$.

Thm. Suppose

$$\sigma'_C:(D^\ell,\partial D^\ell)\to (M,M\cap F)$$
 satisfies

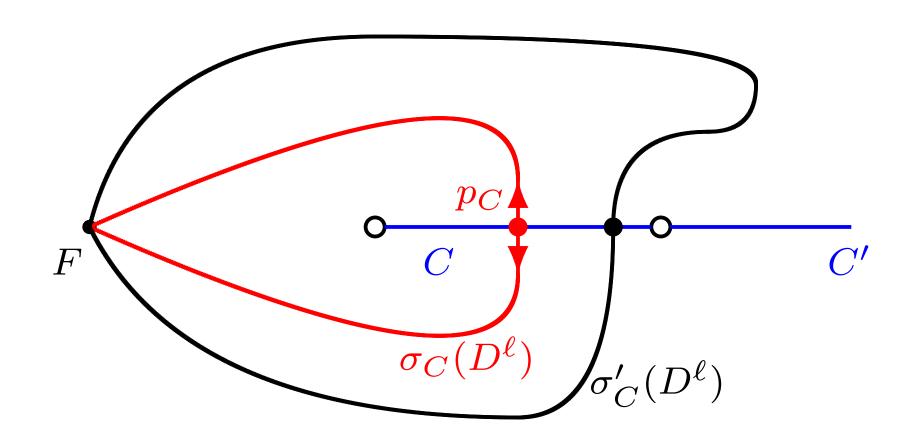
(i)
$$\sigma'_C(D^{\ell}) \pitchfork C = \{p_C\}.$$

(ii)
$$\sigma'_C(D^\ell) \cap C' = \emptyset$$
 for $C' \in \operatorname{ch}_F \setminus \{C\}$.

Then $\sigma_C' \simeq \sigma_C$.

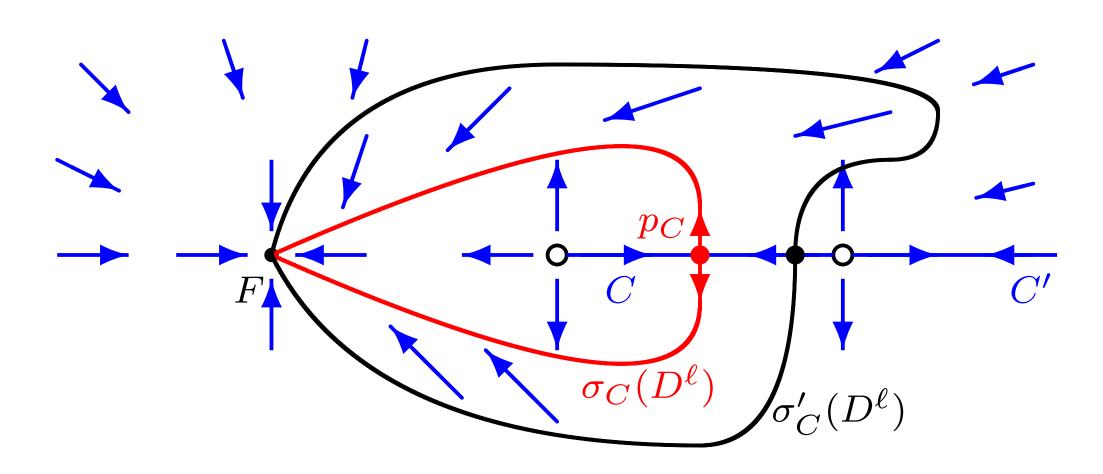
Sketch of the proof:

Sketch of the proof:



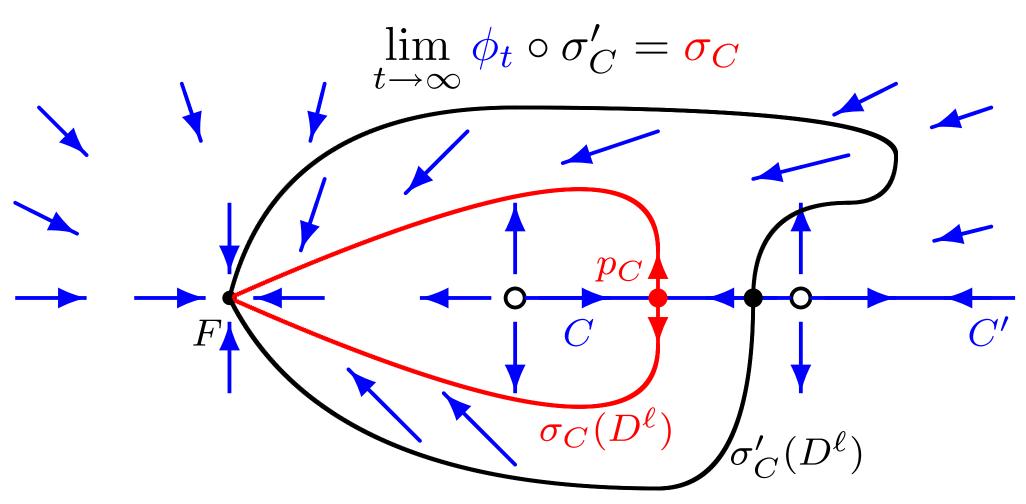
Sketch of the proof:

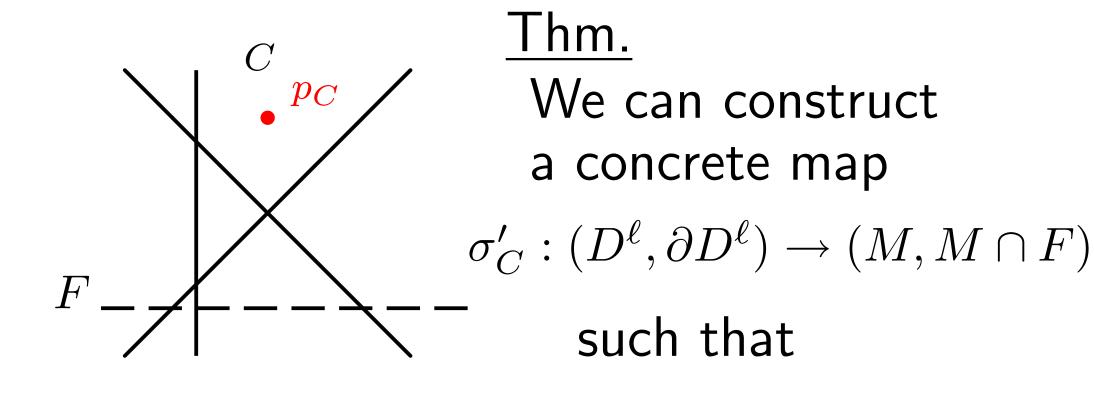
 ϕ_t :1-parameter diffeo generated by $-\operatorname{grad} \varphi$



Sketch of the proof:

 ϕ_t :1-parameter diffeo generated by $-\operatorname{grad} \varphi$





(i)
$$\sigma'_C(D^\ell) \pitchfork C = \{p_C\}.$$

(ii) $\sigma'_C(D^\ell) \cap C' = \emptyset$ for $C' \in \operatorname{ch}_F \setminus \{C\}.$

3.3 Recent works

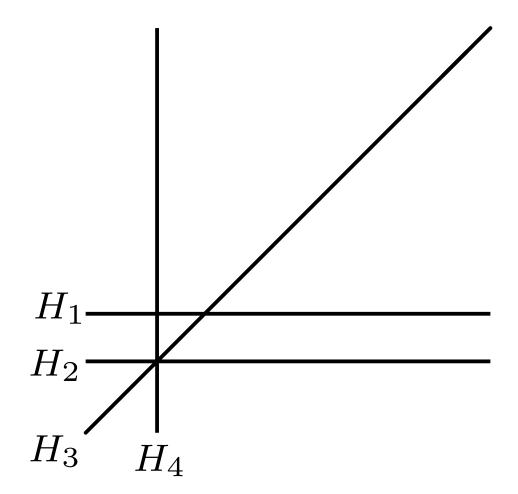
Salvetti-Settepanella, Delucchi: "Discrete Morse theory on Salvetti complex". \implies Another description of attaching maps.

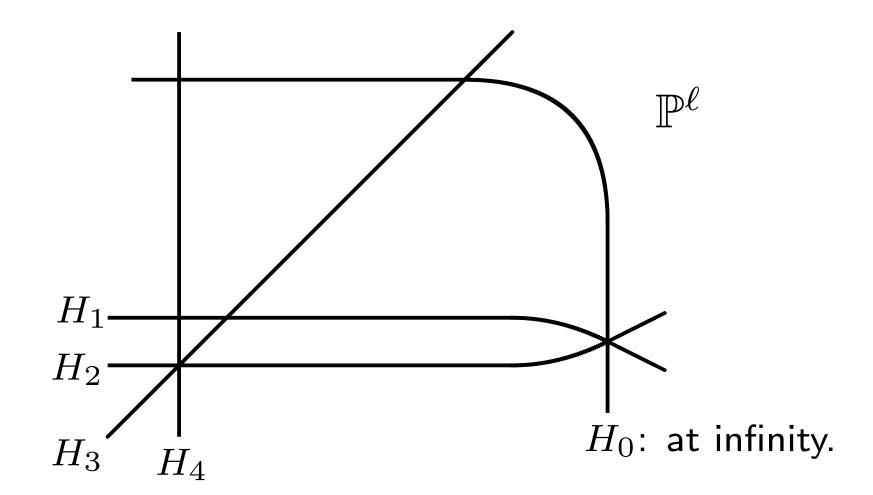
Topological proof of vanishing theorem on $H_k(M(\mathcal{A}), \mathcal{L})$ and a refinement.

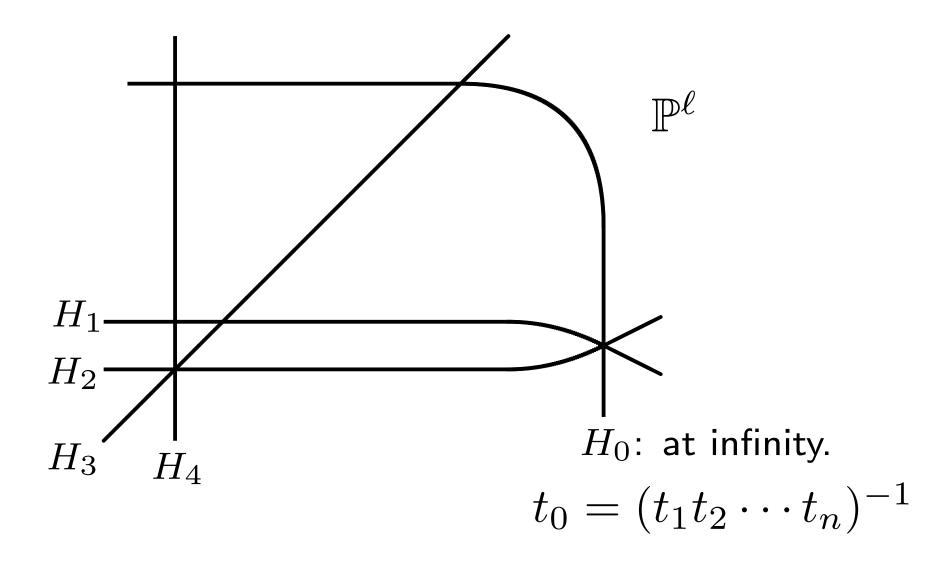
Vanishing Thm. (Aomoto, Kita-Noumi, Kohno, ...) Suppose \mathcal{L} is "generic". Then

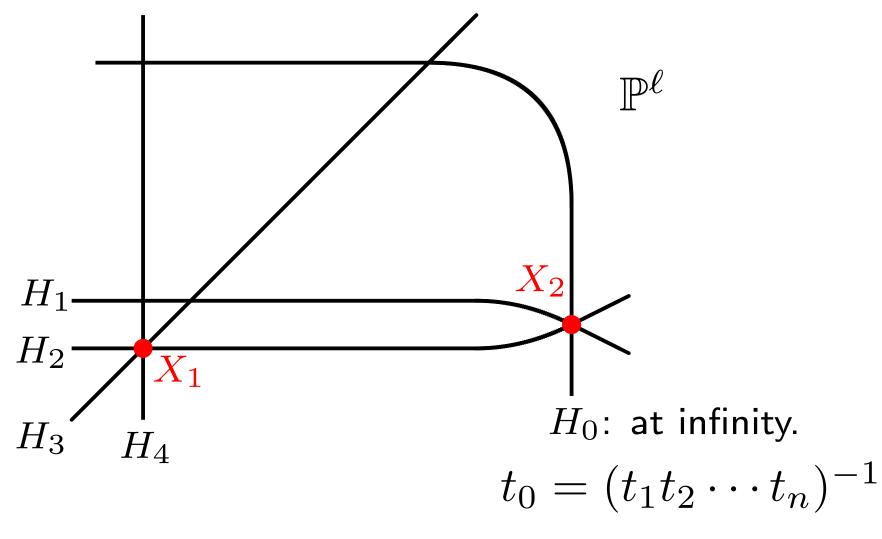
$$H^{k}(M,\mathcal{L}) = \begin{cases} 0 & k \neq \ell, \\ \bigoplus_{C \in bch} [C] & k = \ell. \end{cases}$$

A local system \mathcal{L} is determined by $(t_1, \ldots, t_n) \in (\mathbb{C}^*)^n$. Consider t_i is the local monodromy around H_i .



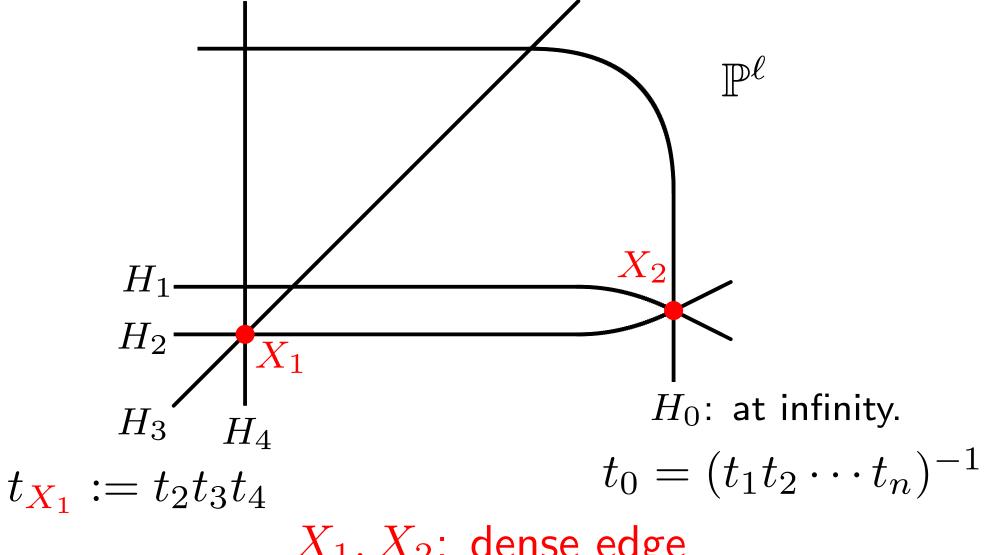






 X_1, X_2 : dense edge

Notation



 X_1, X_2 : dense edge

Thm. (Cohen-Dimca-Orlik)
Suppose \mathcal{L} satisfies the condition:

(*) $t_i \neq 1$ (i = 0, 1, ..., n) and $t_X \neq 1$ for any dense edge $X \subset H_0$. Then

$$H^{k}(M,\mathcal{L}) = \begin{cases} 0 & k \neq \ell, \\ \bigoplus_{C \in bch} [C] & k = \ell. \end{cases}$$

Concrete attaching maps of the previous section enable us to have a purely topological proof to the vanishing result. Moreover, also a converse:

<u>Thm.</u> $\ell = 2$, \mathcal{A} : indecomposable. Then TFAE.

- (1) \mathcal{L} satisfies (*).
- (2)

$$H^{k}(M,\mathcal{L}) = \begin{cases} 0 & k \neq \ell, \\ \bigoplus_{C \in bch} [C] & k = \ell. \end{cases}$$

(3) $\{[C]\}_{C \in bch}$ generate $H^{\ell}(M, \mathcal{L})$.

5 References

- A. Dimca, S Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. of Math (2) 158 (2003).
- R. Randell, Morse theory, Milnor fibers and minimality of hyperplane arrangements. Proc. A. M. S. 130 (2002).
- M. Salvetti, S. Settepanella, Combinatorial Morse theory and minimality of hyperplane arrangements. Geometry and Topology, 11 (2007)
- M. Yoshinaga, Hyperplane arrangements and Lefschetz's hyperplane section theorem. Kodai Math. J. 30 (2007)