Feb. 18,2010 (0O OOODOOD)

Joooobooodd

Masahiko Yoshinaga

Kyoto University



A hyperplane arrangement is a collection
A = {Hl,HQ,...,Hn}
of affine hyperplanes H; C C* (or H; C P%).
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A hyperplane arrangement is a collection
A = {Hl,HQ,...,Hn}

of affine hyperplanes H; C C* (or H; C P%).

P1

Combinatorial structures D2 Topology of the
ps P2 P1 . - Ls complement

_ 1 3

LA = L M(A) = €4\ U H;
L+ L3
Chambers
v

Combinatorics controlls geometry via chambers.
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M(A)=C'—| ) H

HeA

Example, { =1: A=Aay,...,a,} CC.
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Example, ¢ =2, A = {xy = 0}.

M(A) = {(x,y) | vy # 0}
=C*xC"
~ St x g1

M(A)

xy =0
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3. Real cases.
4. Application to local systems.

(arXiv:1002.2038)
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1 Aomoto's observation
concerning dimensions of local system

homology groups

for rank one local system £ on M (A).
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1.1 Local system homology groups

(=2, A={xy=0}.

.—P'QQ—.

Attach Y1

M(A) ~Vk C A 2

C><O

p Y2 p
A local system L is determined by

p:m(M(A)) — C*,

.e. by p([m]) = t1, p([n2]) =t € C.
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1.1 Local system homology groups

.—P'Q/Z—.

M ~ ’Yl‘ C "VlAttaCh Yo Y1

L. 1 5

p Y2 p
Chain complex (Twisted by L£):
9, 9,
C — C — Co
. (e =1)[n]
¢ ~(t/ = Dl

V1] — (t1 — 1)|p]
Y2l (2 —1)|p)



1.1 Local system homology groups

O O
C — C — Co
(- D]
C] —(tr — 1)[72]

nl o (i —1)[p]
2] — (t2 — 1)[p]

L Hoy | Hi | Ho
Trivial ;, =1)|| C | C? | C
not trivial 0] 0| O
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X= m

Remark: X ~ {z% — y° # 0}.



1.1 Local system homology groups

Remark: X ~ {z° — y> # 0}.
Since J(|C1) = [y1] — |72], a local system
L; is determined by

p([11]) = p([1e]) =t € C*.



1.1 Local system homology groups

Chain complex with L£;-coefficients:
Jr, Jr,

Co > U1 - (g
o (=t t)
! (1 t+ %))
[’71] — (t 1)[17]
2] — (t —1)[p]



1.1 Local system homology groups

Oc, Oc,
C - - () - - ()

Cl — A —t+t)([n] =)

7l — (t—1)[p]
2] — (t —1)[p]

Ly Hy | Hy
Trivial (t=1)|| C | C | 0
C
0

t _ €:Z7Ti/3 O
others 0
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{CL‘y # O} HO H1 HQ
L : trivial C | C?
not trivial 0 0 0

{2® #y°} || Ho | Hi | Hy
L4+ : Trivial C C 0
others 0 0 0




1.2 Aomoto’'s observation

{xy # 0}

Hy

Ho

L : trivial

not trivial

A: a hyperplane arrangement, £: a rank
one local system on the complement

=l i@

0
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1.2 Aomoto’'s observation

{z° #y°} || Ho | H1 | Ho

ey 2 0p || Ho | Hi | Ho —7 —Tivial
L : trivial C C
0

C C 0

C Tl
not trivial 0 0 t=e" 3 0 C C
others 0 0 0

A: a hyperplane arrangement, £: a rank
one local system on the complement
M(A). Aomoto conjectured:

dim Hy(M(A), £) < b;(M(A)).
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1.2 Aomoto's observation
Aomoto’'s conjecture:

dim H;(M(A), £) < by(M(A))

was proved by D. Cohen.
<= (Stronger result):
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2 Minimality of M (.A)
2.1 Minimal CW-complex
Def. A finite CW-cpx X is minimal if

1(k-cells)=b,(X), for k > 0.

Rem. In general,

i(k-cells) > bi(X).



2.1  Minimal CW-complex

M~y C f[i—x 2

p Y2
M 1s minimal. Indeed
k 0
b (M) 1
1 of k-cells || 1

L. 1 5



2.1  Minimal CW-complex

X 1S not minimal.

k 0]1]2
b (M) 1
gof k-cells || 1]2]1
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2.1  Minimal CW-complex
Prop. X: a minimal CW-cpx. Then

Aomoto's conj holds, I.e.,

) Hy (X, L) = H;(Co(X, L),0,), and
dim C;(X, L) = b;(X).
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2.2 Minimality of M (.A)

A is arrangement in C*.
Thm. (DPSR) M(.A) has the homotopy
type of a /-dim minimal CW-cpx. i.e.,

there is an /-dim minimal CW-cpx X
such that
M(A) ~ X.
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2.3 Proof of minimality

Proof 1s based on two results:

— Lefschetz Theorem on hyperplane
section.

— Combinatorial description of
cohomology ring H*(M(A), Z)
(Orlik-Solomon).
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———
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b
M~ (MNF) U,| JD*

1—=1
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—> b =dim H,(M, M N F;C).



2.3 Proof of minimality

b
M~ (MNF) U,| JD*
1=1

attach Z-dim cells

b=dim H,(M,M N F;C).
Fact. (Orlik-Solomon)

Hy(M) — Hy(M,MNF).



2.3 Proof of minimality

b
M~ (MNF) U,| JD*
1=1

attach Z-dim cells

b= by(M), by induction
— minimality of M.
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2.4 Problems

M~(MNF) Ug| JDf

1=1
N————

attach ¢-dim cells

oM

—ANT S o

Hyperplane section

How cells attach?

How cells are labeled?

DZ

7
oD

\gp:attach

=
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3 Real cases

From now, every H; € A is defined /R.
Connected comp. of M(A) NR is called
a chamber.

ch(A): set of all chambers.

bgh(/l): set of all bounded chambers.

. C4

Ch %07 Ch(A) = {Cl, CQ, Ce e 07}

olce beh(A) = {Cs5)




3 Real cases
(b)ch(.A) has information about M (A).

Thm. (Zaslawski)
(1) 2 bi(M(A)) = eh(A),

(i) |2 (=1)"6:(M(A))| = §bch(A).

1=0




3 Real cases

Let /° C C¢ be a generic hyperplane
defined /R.



3 Real cases

Let /° C C¢ be a generic hyperplane
defined /R. Define



3 Real cases

Let /° C C¢ be a generic hyperplane
defined /R. Define

chp(A):={C e€ch(A) | FNC =0}
Cs

ChF(A) — {01, CQ, 03}




3 Real cases
chp(A):={C e€ch(A) | FNC =0}
C3

ChF(A) .= {Cl, CQ, 03}
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3 Real cases
chp(A) :={C e€ch(A) | FNC =0}
C3

ChF(A) = {Cla 027 03}

Prop. #chp(A) = bo(M(A)).

— chp(A) labeling /-dim cells.
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3.1 What Morse theory tells us

A={H,,...,H,}. Set H; = a; '(0).
Q(A) =[]_, a;: the defining equation
of A.

F ={f =0}: a generic hyperplane.
Consider a Morse function

fn—l—l
P = 0

: M(A) — RZO
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3.1 What Morse theory tells us

fn—l—l
=175
Cr(yp) := {p : critical pt, ©(p) # 0}

S(p): stable mfd (p € Cr(p))
U(p): unstable mfd

o (0) = M(A)NF
F={f=0)

: M(A) — RZO




3.1 What Morse theory tells us
U(p): unstable manifold of p € Cr(y).

M~(MnF)U ) Up)

A peCr(p)
Unstable cell

p U(

/ 7_/ l /

= MNF
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3.1 What Morse theory tells us
Example. ¢ =1, A= {ayi,a2} and F' = {b}.

o(2) = | =S5
— grad ¢
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3.1 What Morse theory tells us

Example. £ =1, A ={a1,as} and F = {b}.

(z—b)°
(z—a1)(z—az2)

N \ ¢ —orad ¢
Dl ! b~

— — 4 ~<— 0 — <— O —p <

1 v 2

p(z) =

V



3.1 What Morse theory tells us
Example. ¢ =1, A= {ayi,a2} and F' = {b}.

p(z) = | =S5t
'
N \ ¢ — grad ¢ “
N
| T B
—> — ¢ <« — QP Qe e Qeem—

1 2N

Cr(p) = {p1,p2} chp(A) ={Cy, Ca}



3.1 What Morse theory tells us

Example. ¢ =1, A= {ayi,a2} and F' = {b}.
(2—b)”

p(z) =

(z—a1)(z—az2)




3.1 What Morse theory tells us




3.1 What Morse theory tells us

(2) S(pe) =C
How about unstable cell U(p¢c)?
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3.2 Unstable cells

Unstable cell can be
considered as a map

oc : (D, 0D%) — (M,MNF)

such that

(i) oc(D°) th C = {pc}.
(i) oc(DYNC" = for C' € chp \{C}.
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3.2 Unstable cells

(i) and (ii) above characterize the
homotopyt type of U(pc).

Thm. Suppose

ok (Dé; 5’D€) — (M, M N F) satisfies
(i) oc(D°) h C = {pc}.

(i) op (DY) N C" =0 for C" € chp \{C}.

Then O',C ~ 0.
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3.2 Unstable cells

Sketch of the proof:
¢:1-parameter diffeo generated by — grad ¢

lim ¢too-/61 — 0O

N Y %
~ ¢/

! W\ o) |




3.2 Unstable cells

Thm.

We can construct
a concrete map

ol : (D", 0D%) — (M,MNF)

such that

(i) 0c(D°) 1 € = {pc},
(i) o (DY) NC" = for C" € chp \{C}.



3.3 Recent works

Salvetti-Settepanella, Delucchi: “Discrete
Morse theory on Salvetti complex” .

—> Another description of attaching
maps.



4 An application

Topological proof of vanishing theorem
on H,(M(A), L) and a refinement.



4 An application

Vanishing Thm. (Aomoto, Kita-Noumi, Kohno, ...)

Suppose L is “generic’. Then

0 )

Hk(M? b= { @Cebch[C] k=L



4.0 Notation

A local system L is determined by
(t1,...,t,) € (C*)™. Consider t; is the
local monodromy around H,.



4.0 Notation




4.0 Notation

H1
s >

Hg: at infinity.




4.0 Notation

H1
- >
Hg: at infinity.




4.0 Notation

X
Hy ?
1 — >
Hs" H, Hg: at infinity.

X1, X9: dense edge



4.0

Notation

X2

B

H1

Ho X,

Hs [,
.= t2t3t4

Hg: at infinity.

X1, X9: dense edge



4 An application

Thm. (Cohen-Dimca-Orlik)
Suppose L satisfies the condition:

(*)t; #1(t=0,1,...,n)and tx # 1
for any dense edge X C Hy. Then

0 )

Hk(M? <= { @Cebch[c] k=L



4 An application

Concrete attaching maps of the previous
section enable us to have a purely
topological proof to the vanishing result.

Moreover, also a converse:



4 An application

Thm. ¢ =2, A: indecomposable. Then TFAE.
(1) L satisfies (*).
(2)

0 )
@C’Gbch[c] k=L

(3) {[C]}ceben generate HY (M, L).

H(M, L) = {
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