Feb．18， 2010 （北海道大学談話会）

超平面配置のト ポロジー

極小セル分割とその周辺Masahiko Yoshinaga
Kyoto University

A hyperplane arrangement is a collection

$$
\mathcal{A}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}
$$

of affine hyperplanes $H_{i} \subset \mathbb{C}^{\ell}\left(\right.$ or $\left.H_{i} \subset \mathbb{P}^{\ell}\right)$.

Combinatorics

A hyperplane arrangement is a collection

$$
\mathcal{A}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}
$$

of affine hyperplanes $H_{i} \subset \mathbb{C}^{\ell}\left(\right.$ or $\left.H_{i} \subset \mathbb{P}^{\ell}\right)$.

Combinatorics

A hyperplane arrangement is a collection

$$
\mathcal{A}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}
$$

of affine hyperplanes $H_{i} \subset \mathbb{C}^{\ell}\left(\right.$ or $\left.H_{i} \subset \mathbb{P}^{\ell}\right)$.

Combinatorial structures

Topology of the complement

Combinatorics

A hyperplane arrangement is a collection

$$
\mathcal{A}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}
$$

of affine hyperplanes $H_{i} \subset \mathbb{C}^{\ell}\left(\right.$ or $\left.H_{i} \subset \mathbb{P}^{\ell}\right)$.
Combinatorial structures

V
Combinatorics controlls geometry via chambers.

Homotopy type and cell decomposition

$$
M(\mathcal{A})=\mathbb{C}^{\ell}-\bigcup_{H \in \mathcal{A}} H
$$

Example,

Homotopy type and cell decomposition

$$
M(\mathcal{A})=\mathbb{C}^{\ell}-\bigcup_{H \in \mathcal{A}} H
$$

Example, $\ell=1: \mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{C}$.

Homotopy type and cell decomposition

$$
M(\mathcal{A})=\mathbb{C}^{\ell}-\bigcup_{H \in \mathcal{A}} H
$$

Example, $\ell=1: \mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{C}$.

Homotopy type and cell decomposition

$$
M(\mathcal{A})=\mathbb{C}^{\ell}-\bigcup_{H \in \mathcal{A}} H
$$

Example, $\ell=1: \mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{C}$.

$M(\mathcal{A})$
Homotopy equiv.

Example, $\ell=2, \mathcal{A}=\{x y=0\}$.

Example, $\ell=2, \mathcal{A}=\{x y=0\}$.

$$
M(\mathcal{A})=\{(x, y) \mid x y \neq 0\}
$$

Example, $\ell=2, \mathcal{A}=\{x y=0\}$.

$$
M(\mathcal{A})=\{(x, y) \mid x y \neq 0\}
$$

$$
=\mathbb{C}^{*} \times \mathbb{C}^{*}
$$

Example, $\ell=2, \mathcal{A}=\{x y=0\}$.

$$
\begin{aligned}
M(\mathcal{A}) & =\{(x, y) \mid x y \neq 0\} \\
& =\mathbb{C}^{*} \times \mathbb{C}^{*} \\
& \simeq S^{1} \times S^{1}
\end{aligned}
$$

Example, $\ell=2, \mathcal{A}=\{x y=0\}$.

$$
\begin{aligned}
M(\mathcal{A}) & =\{(x, y) \mid x y \neq 0\} \\
& =\mathbb{C}^{*} \times \mathbb{C}^{*} \\
& \simeq S^{1} \times S^{1}
\end{aligned}
$$

$$
\mathbb{C}^{2}
$$

0 Contents

0 Contents

1. Aomoto's observation.

0 Contents

1. Aomoto's observation.
2. Minimality of $M(\mathcal{A})$.
(Dimca, Papadima, Suciu, Randell)

0 Contents

1. Aomoto's observation.
2. Minimality of $M(\mathcal{A})$.
(Dimca, Papadima, Suciu, Randell)
3. Real cases.

0 Contents

1. Aomoto's observation.
2. Minimality of $M(\mathcal{A})$.
(Dimca, Papadima, Suciu, Randell)
3. Real cases.
4. Application to local systems.

0 Contents

1. Aomoto's observation.
2. Minimality of $M(\mathcal{A})$.
(Dimca, Papadima, Suciu, Randell)
3. Real cases.
4. Application to local systems.
(arXiv:1002.2038)

1 Aomoto's observation

1 Aomoto's observation

concerning dimensions of local system homology groups

$$
\operatorname{dim} H_{k}(M(\mathcal{A}), \mathcal{L})
$$

for rank one local system \mathcal{L} on $M(\mathcal{A})$.
1.1 Local system homology groups

1.1 Local system homology groups

$\ell=2, \mathcal{A}=\{x y=0\}$.
1.1 Local system homology groups

$$
\ell=2, \mathcal{A}=\{x y=0\}
$$

1.1 Local system homology groups

$\ell=2, \mathcal{A}=\{x y=0\}$.

A local system \mathcal{L} is determined by

$$
\rho: \pi_{1}(M(\mathcal{A})) \rightarrow \mathbb{C}^{*}
$$

i.e. by $\rho\left(\left[\gamma_{1}\right]\right)=t_{1}, \rho\left(\left[\gamma_{2}\right]\right)=t_{2} \in \mathbb{C}^{*}$.
1.1 Local system homology groups

Chain complex

$$
\begin{array}{rlll}
C_{2} \\
{[C]} & \longmapsto & \left.{ }^{2} \gamma_{2}\right]+\left[\gamma_{1}\right] & \\
& -\left[\gamma_{2}\right]-\left[\gamma_{1}\right] & & \\
& {\left[\gamma_{1}\right]} & \longmapsto & {[p]-[p]} \\
& & \left.\gamma_{0}\right] & \\
& & {[p]-[p]}
\end{array}
$$

1.1 Local system homology groups

Chain complex (Twisted by \mathcal{L}):

$$
\begin{aligned}
& \underset{[C]}{C_{2}} \xrightarrow{\partial_{\mathcal{L}}} C_{\substack{\left[\gamma_{2}\right]+t_{2}\left[\gamma_{1}\right] \\
-t_{1}\left[\gamma_{2}\right]-\left[\gamma_{1}\right]}}^{\partial_{\mathcal{L}}} \xrightarrow{\partial_{\mathcal{L}}} C_{0} \\
& \begin{array}{lll}
{\left[\gamma_{1}\right]} \\
{\left[\gamma_{2}\right]} & \longmapsto & t_{1}[p]-[p] \\
t_{2}[p]-[p]
\end{array}
\end{aligned}
$$

1.1 Local system homology groups

Chain complex (Twisted by \mathcal{L}):

$$
\begin{aligned}
& \underset{\substack{ \\
[C]}}{C_{2}} \xrightarrow[{\substack{\left(t_{2}-1\right)\left[\gamma_{1}\right] \\
-\left(t_{1}-1\right)\left[\gamma_{2}\right]}}]{\partial_{\mathcal{L}}} C_{1} \xrightarrow{\partial_{\mathcal{L}}} C_{0} \\
& \begin{array}{lll}
{\left[\gamma_{1}\right]} \\
{\left[\gamma_{2}\right]}
\end{array} \quad \longmapsto \quad \begin{array}{c}
\left(t_{1}-1\right)[p] \\
\left(t_{2}-1\right)[p]
\end{array}
\end{aligned}
$$

1.1 Local system homology groups

$$
\begin{aligned}
& \underset{[C]}{C_{2}} \xrightarrow{\partial_{\mathcal{L}}} C_{\substack{\left(t_{2}-1\right)\left[\gamma_{1}\right] \\
-\left(t_{1}-1\right)\left[\gamma_{2}\right]}}^{\partial_{\mathcal{L}}} C_{0} \\
& \begin{array}{lll}
{\left[\gamma_{1}\right]} \\
{\left[\gamma_{2}\right]}
\end{array} \quad \longmapsto \quad\left(\begin{array}{c}
\left(t_{1}-1\right)[p] \\
\left(t_{2}-1\right)[p]
\end{array}\right.
\end{aligned}
$$

1.1 Local system homology groups

Example.

$$
X=
$$

Remark:

1.1 Local system homology groups

Example.

$$
X=
$$

Remark: $X \simeq\left\{x^{2}-y^{3} \neq 0\right\}$.

1.1 Local system homology groups

Example.
$X=$

Remark: $X \simeq\left\{x^{2}-y^{3} \neq 0\right\}$.
Since $\partial([C])=\left[\gamma_{1}\right]-\left[\gamma_{2}\right]$, a local system \mathcal{L}_{t} is determined by
$\rho\left(\left[\gamma_{1}\right]\right)=\rho\left(\left[\gamma_{2}\right]\right)=: t \in \mathbb{C}^{*}$.

1.1 Local system homology groups

Chain complex with \mathcal{L}_{t}-coefficients:

$$
\begin{aligned}
& C_{2} \xrightarrow{\partial_{\mathcal{L}_{t}}} \xrightarrow{\longrightarrow} C_{1} \xrightarrow{\partial_{\mathcal{L}_{t}}} C_{0} \\
& {[C] } \begin{array}{c}
\left(1-t+t^{2}\right)\left[\gamma_{1}\right] \\
-\left(1-t+t^{2}\right)\left[\gamma_{2}\right]
\end{array} \\
& {\left[\gamma_{1}\right] } \\
&\left.\longmapsto \gamma_{2}\right]
\end{aligned} \stackrel{(t-1)[p]}{\longmapsto} \quad(t-1)[p] .
$$

1.1 Local system homology groups

$$
\begin{array}{r}
\left.C_{2} \xrightarrow{\partial_{\mathcal{L}_{t}}} C_{1} \xrightarrow\left[{\left(1-t+t^{2}\right)\left(\left[\gamma_{1}\right]-\left[\gamma_{2}\right]\right.}\right)\right]{\partial_{\mathcal{L}_{t}}} C_{0} \\
{[C]}
\end{array}
$$

$\begin{array}{c}{\left[\gamma_{1}\right]}\end{array}$			\longmapsto	$(t-1)[p]$
$\left.\mathcal{L}_{2}\right]$	\longmapsto	$(t-1)[p]$		

1.2 Aomoto's observation

1.2 Aomoto's observation

				$\left\{x^{2} \neq y^{3}\right\}$	H_{0}	H_{1}	H_{2}
$\underline{\mathcal{L}} \mathrm{L}$: trivial	${ }_{\text {H0}}^{\text {C }}$	${ }^{\frac{1}{1}}$		\mathcal{L}_{t} : Trivial	C	C	0
$\underline{\text { not trivial }}$	0	c	0	$t=e^{ \pm \frac{\pi i}{3}}$	0	\mathbb{C}	\mathbb{C}

1.2 Aomoto's observation

$\{x y \neq 0\}$	H_{0}	H_{1}	H_{2}				
$\mathcal{L}:$ trivial	\mathbb{C}	\mathbb{C}^{2}	\mathbb{C}				
not trivial	0	0	0	$\left\{x^{2} \neq y^{3}\right\}$ $\mathcal{L}_{t}:$ Trivial	H_{0}	H_{1}	H_{2}
$t=e^{ \pm \frac{\pi}{3}}$	\mathbb{C}	\mathbb{C}	0				
others	0	\mathbb{C}	\mathbb{C}				

\mathcal{A} : a hyperplane arrangement, \mathcal{L} : a rank one local system on the complement $M(\mathcal{A})$. Aomoto conjectured:

1.2 Aomoto's observation

$\{x y \neq 0\}$	H_{0}	H_{1}	H_{2}					
$\mathcal{L}:$ trivial	\mathbb{C}	\mathbb{C}^{2}	\mathbb{C}					
not trivial	0	0	0		$\left\{x^{2} \neq y^{3}\right\}$	H_{0}	H_{1}	H_{2}
:---:	:---:	:---:	:---:					
$\mathcal{L}_{t}:$ Trivial	\mathbb{C}	\mathbb{C}	0					
$t=e^{ \pm \frac{\pi i}{3}}$	0	\mathbb{C}	\mathbb{C}					
others	0	0	0					

\mathcal{A} : a hyperplane arrangement, \mathcal{L} : a rank one local system on the complement
$M(\mathcal{A})$. Aomoto conjectured:

$$
\operatorname{dim} H_{i}(M(\mathcal{A}), \mathcal{L}) \leq b_{i}(M(\mathcal{A}))
$$

1.2 Aomoto's observation

Aomoto's conjecture:

$$
\operatorname{dim} H_{i}(M(\mathcal{A}), \mathcal{L}) \leq b_{i}(M(\mathcal{A}))
$$

1.2 Aomoto's observation

Aomoto's conjecture:

$$
\operatorname{dim} H_{i}(M(\mathcal{A}), \mathcal{L}) \leq b_{i}(M(\mathcal{A}))
$$

was proved by D. Cohen.

1.2 Aomoto's observation

Aomoto's conjecture:

$$
\operatorname{dim} H_{i}(M(\mathcal{A}), \mathcal{L}) \leq b_{i}(M(\mathcal{A}))
$$

was proved by D. Cohen.
$\Longleftarrow($ Stronger result):

1.2 Aomoto's observation

Aomoto's conjecture:

$$
\operatorname{dim} H_{i}(M(\mathcal{A}), \mathcal{L}) \leq b_{i}(M(\mathcal{A}))
$$

was proved by D. Cohen.
$\Longleftarrow($ Stronger result):
"Minimality of $M(\mathcal{A})$ "
$\underline{2}$ Minimality of $M(\mathcal{A})$

2 Minimality of $M(\mathcal{A})$
2.1 Minimal CW-complex

2 Minimality of $M(\mathcal{A})$
2.1 Minimal CW-complex

Def. A finite CW-cpx X is minimal if

$$
\sharp(k \text {-cells })=b_{k}(X), \text { for } k \geq 0 .
$$

2 Minimality of $M(\mathcal{A})$

2.1 Minimal CW-complex

Def. A finite CW-cpx X is minimal if

$$
\sharp(k \text {-cells })=b_{k}(X), \text { for } k \geq 0 .
$$

Rem. In general,

$$
\sharp(k \text {-cells }) \geq b_{k}(X) .
$$

2.1 Minimal CW-complex

M is minimal. Indeed

2.1 Minimal CW-complex

2.1 Minimal CW-complex

Prop.
2.1 Minimal CW-complex

Prop. X : a minimal CW-cpx. Then
Aomoto's conj holds, i.e.,

$$
\operatorname{dim} H_{i}(X, \mathcal{L}) \leq b_{i}(X)
$$

2.1 Minimal CW-complex

Prop. X : a minimal CW-cpx. Then Aomoto's conj holds, i.e.,

$$
\operatorname{dim} H_{i}(X, \mathcal{L}) \leq b_{i}(X)
$$

$\because) H_{i}(X, \mathcal{L})=H_{i}\left(C_{\bullet}(X, \mathcal{L}), \partial_{\mathcal{L}}\right)$, and $\operatorname{dim} C_{i}(X, \mathcal{L})=b_{i}(X)$.
2.2 Minimality of $M(\mathcal{A})$
2.2 Minimality of $M(\mathcal{A})$
\mathcal{A} is arrangement in \mathbb{C}^{ℓ}.

2.2 Minimality of $M(\mathcal{A})$

\mathcal{A} is arrangement in \mathbb{C}^{ℓ}.
Thm. (DPSR) $M(\mathcal{A})$ has the homotopy type of a ℓ-dim minimal CW-cpx. i.e., there is an ℓ-dim minimal CW-cpx X such that

$$
M(\mathcal{A}) \simeq X
$$

2.3 Proof of minimality

2.3 Proof of minimality

Proof is based on two results:

2.3 Proof of minimality

Proof is based on two results:

- Lefschetz Theorem on hyperplane section.

2.3 Proof of minimality

Proof is based on two results:

- Lefschetz Theorem on hyperplane section.
- Combinatorial description of cohomology ring $H^{\bullet}(M(\mathcal{A}), \mathbb{Z})$ (Orlik-Solomon).
2.3 Proof of minimality
$M=M(\mathcal{A})$,
$F \subset \mathbb{C}^{\ell}$: a generic hyperplane

2.3 Proof of minimality

$M=M(\mathcal{A})$,
$F \subset \mathbb{C}^{\ell}$: a generic hyperplane
Thm.(Lefschetz)

$$
M \simeq(M \cap F) \underbrace{\cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell}}_{\text {attach } \ell \text {-dim cells }}
$$

2.3 Proof of minimality

$$
M \simeq(M \cap F) \underbrace{\cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell}}_{\text {attach } \ell \text {-dim cells }}
$$

2.3 Proof of minimality

$$
M \simeq(M \cap F) \underbrace{\cup_{i=1} \bigcup_{i=1}^{b} D^{\ell}}_{\text {attach } \ell \text {-dim cells }}
$$

2.3 Proof of minimality

$$
M \simeq(M \cap F) \underbrace{\cup_{i=1} \bigcup_{i=1}^{b} D^{\ell}}_{\text {attach } \ell \text {-dim cells }}
$$

2.3 Proof of minimality

2.3 Proof of minimality

$$
M \simeq(M \cap F) \underbrace{\cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell}}_{\text {attach } \ell \text {-dim cells }}
$$

Hyperplane section

2.3 Proof of minimality

Hyperplane section

2.3 Proof of minimality

$$
M \simeq(M \cap F) \underbrace{\cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell}}_{\text {attach } \ell \text {-dim cells }}
$$

2.3 Proof of minimality

$$
M \simeq(M \cap F) \underbrace{\cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell}}_{\text {attach } \ell \text {-dim cells }}
$$

How many ℓ-dim cells to attach?

2.3 Proof of minimality

$$
M \simeq(M \cap F) \underbrace{\cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell}}_{\text {attach } \ell \text {-dim cells }}
$$

How many ℓ-dim cells to attach?

$$
\Longrightarrow b=\operatorname{dim} H_{\ell}(M, M \cap F ; \mathbb{C}) .
$$

2.3 Proof of minimality

$$
M \simeq(M \cap F) \underbrace{\cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell}}_{\text {attach } \ell \text {-dim cells }}
$$

$b=\operatorname{dim} H_{\ell}(M, M \cap F ; \mathbb{C})$.
Fact. (Orlik-Solomon)

$$
H_{\ell}(M) \xrightarrow{\cong} H_{\ell}(M, M \cap F) .
$$

2.3 Proof of minimality

$$
M \simeq(M \cap F) \underbrace{\cup_{i=1} \bigcup_{i=1}^{b} D^{\ell}}_{\text {attach } \ell \text {-dim cells }}
$$

$b=b_{\ell}(M)$, by induction
\rightarrow minimality of M.
2.4 Problems

2.4 Problems

Hyperplane section

2.4 Problems

$$
M \simeq(M \cap F) \quad \underbrace{\cup_{\varphi} \bigcup_{i=1} D^{\ell}}
$$

Hyperplane section
How cells attach?

2.4 Problems

$$
M \simeq(M \cap F) \quad \underbrace{\cup_{\varphi} \bigcup_{i=1}^{\ell} D^{\ell}}
$$

Hyperplane section
How cells attach?
How cells are labeled?

3 Real cases

3 Real cases
From now, every $H_{i} \in \mathcal{A}$ is defined $/ \mathbb{R}$.

3 Real cases
From now, every $H_{i} \in \mathcal{A}$ is defined $/ \mathbb{R}$.
Connected comp. of $M(\mathcal{A}) \cap \mathbb{R}^{\ell}$ is called a chamber.

3 Real cases

From now, every $H_{i} \in \mathcal{A}$ is defined $/ \mathbb{R}$.
Connected comp. of $M(\mathcal{A}) \cap \mathbb{R}^{\ell}$ is called a chamber.
$\operatorname{ch}(\mathcal{A})$: set of all chambers.
$\operatorname{bch}(\mathcal{A})$: set of all bounded chambers.

3 Real cases

From now, every $H_{i} \in \mathcal{A}$ is defined $/ \mathbb{R}$.
Connected comp. of $M(\mathcal{A}) \cap \mathbb{R}^{\ell}$ is called a chamber.
$\operatorname{ch}(\mathcal{A})$: set of all chambers.
$\operatorname{bch}(\mathcal{A})$: set of all bounded chambers.
$\underbrace{C_{2}}_{C_{2}} \int_{C_{5}}^{C_{5}} C_{4}$

$$
\begin{aligned}
& \operatorname{ch}(\mathcal{A})=\left\{C_{1}, C_{2}, \ldots, C_{7}\right\} \\
& \operatorname{bch}(\mathcal{A})=\left\{C_{5}\right\}
\end{aligned}
$$

3 Real cases

(b) $\operatorname{ch}(\mathcal{A})$ has information about $M(\mathcal{A})$.
$\underset{\ell}{\text { Thm. }}$ (Zaslawski)
(i) $\sum_{i=0} b_{i}(M(\mathcal{A}))=\sharp \operatorname{ch}(\mathcal{A})$.
(ii) $\left|\sum_{i=0}^{\ell}(-1)^{i} b_{i}(M(\mathcal{A}))\right|=\sharp \operatorname{bch}(\mathcal{A})$.

3 Real cases
Let $F \subset \mathbb{C}^{\ell}$ be a generic hyperplane defined $/ \mathbb{R}$.

3 Real cases
Let $F \subset \mathbb{C}^{\ell}$ be a generic hyperplane defined $/ \mathbb{R}$. Define

3 Real cases

Let $F \subset \mathbb{C}^{\ell}$ be a generic hyperplane defined $/ \mathbb{R}$. Define
$\operatorname{ch}_{F}(\mathcal{A}):=\{C \in \operatorname{ch}(\mathcal{A}) \mid F \cap C=\emptyset\}$

3 Real cases

$$
\operatorname{ch}_{F}(\mathcal{A}):=\{C \in \operatorname{ch}(\mathcal{A}) \mid F \cap C=\emptyset\}
$$

3 Real cases

$$
\operatorname{ch}_{F}(\mathcal{A}):=\{C \in \operatorname{ch}(\mathcal{A}) \mid F \cap C=\emptyset\}
$$

Prop. $\sharp \operatorname{ch}_{F}(\mathcal{A})=b_{\ell}(M(\mathcal{A}))$.

3 Real cases

$$
\operatorname{ch}_{F}(\mathcal{A}):=\{C \in \operatorname{ch}(\mathcal{A}) \mid F \cap C=\emptyset\}
$$

Prop. $\forall \operatorname{ch}_{F}(\mathcal{A})=b_{\ell}(M(\mathcal{A}))$.
$\Longrightarrow \operatorname{ch}_{F}(\mathcal{A})$ labeling ℓ-dim cells.
3.1 What Morse theory tells us
3.1 What Morse theory tells us
$\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$. Set $H_{i}=\alpha_{i}^{-1}(0)$.
$Q(\mathcal{A})=\prod_{i=1}^{n} \alpha_{i}$: the defining equation of \mathcal{A}.
3.1 What Morse theory tells us
$\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$. Set $H_{i}=\alpha_{i}^{-1}(0)$.
$Q(\mathcal{A})=\prod_{i=1}^{n} \alpha_{i}$: the defining equation of \mathcal{A}.
$F=\{f=0\}$: a generic hyperplane.
3.1 What Morse theory tells us
$\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$. Set $H_{i}=\alpha_{i}^{-1}(0)$.
$Q(\mathcal{A})=\prod_{i=1}^{n} \alpha_{i}$: the defining equation of \mathcal{A}.
$F=\{f=0\}$: a generic hyperplane.
Consider a Morse function

$$
\varphi:=\left|\frac{f^{n+1}}{Q}\right|: M(\mathcal{A}) \longrightarrow \mathbb{R}_{\geq 0}
$$

3.1 What Morse theory tells us

$$
\varphi:=\left|\frac{f^{n+1}}{Q}\right|: M(\mathcal{A}) \longrightarrow \mathbb{R}_{\geq 0}
$$

3.1 What Morse theory tells us
$\varphi:=\left|\frac{f^{n+1}}{Q}\right|: M(\mathcal{A}) \longrightarrow \mathbb{R}_{\geq 0}$
$\operatorname{Cr}(\varphi):=\{p:$ critical pt, $\varphi(p) \neq 0\}$

3.1 What Morse theory tells us

$\varphi:=\left|\frac{f^{n+1}}{Q}\right|: M(\mathcal{A}) \longrightarrow \mathbb{R}_{\geq 0}$
$\operatorname{Cr}(\varphi):=\{p:$ critical pt, $\varphi(p) \neq 0\}$

3.1 What Morse theory tells us

$\varphi:=\left|\frac{f^{n+1}}{Q}\right|: M(\mathcal{A}) \longrightarrow \mathbb{R}_{\geq 0}$
$\operatorname{Cr}(\varphi):=\{p:$ critical pt, $\varphi(p) \neq 0\}$

3.1 What Morse theory tells us $\mathcal{U}(p)$: unstable manifold of $p \in \operatorname{Cr}(\varphi)$.

$$
M \simeq(M \cap F) \cup \bigcup_{p \in \operatorname{Cr}(\varphi)} \mathcal{U}(p)
$$

3.1 What Morse theory tells us

Example. $\ell=1, \mathcal{A}=\left\{a_{1}, a_{2}\right\}$ and $F=\{b\}$.

$$
\varphi(z)=\left|\frac{(z-b)^{3}}{\left(z-a_{1}\right)\left(z-a_{2}\right)}\right|
$$

3.1 What Morse theory tells us

Example. $\ell=1, \mathcal{A}=\left\{a_{1}, a_{2}\right\}$ and $F=\{b\}$.

$$
\varphi(z)=\left|\frac{(z-b)^{3}}{\left(z-a_{1}\right)\left(z-a_{2}\right)}\right|
$$

3.1 What Morse theory tells us

Example. $\ell=1, \mathcal{A}=\left\{a_{1}, a_{2}\right\}$ and $F=\{b\}$.

$$
\begin{gathered}
\varphi(z)=\left|\frac{(z-b)^{3}}{\left(z-a_{1}\right)\left(z-a_{2}\right)}\right| \\
-\operatorname{grad} \varphi
\end{gathered}
$$

3.1 What Morse theory tells us

Example. $\ell=1, \mathcal{A}=\left\{a_{1}, a_{2}\right\}$ and $F=\{b\}$.

$$
\varphi(z)=\left|\frac{(z-b)^{3}}{\left(z-a_{1}\right)\left(z-a_{2}\right)}\right|
$$

$\downarrow \downarrow \downarrow-\operatorname{grad} \varphi$

3.1 What Morse theory tells us

Example. $\ell=1, \mathcal{A}=\left\{a_{1}, a_{2}\right\}$ and $F=\{b\}$.

$$
\varphi(z)=\left|\frac{(z-b)^{3}}{\left(z-a_{1}\right)\left(z-a_{2}\right)}\right|
$$

$$
\operatorname{Cr}(\varphi)=\left\{p_{1}, p_{2}\right\}
$$

$$
\operatorname{ch}_{F}(\mathcal{A})=\left\{C_{1}, C_{2}\right\}
$$

3.1 What Morse theory tells us

Example. $\ell=1, \mathcal{A}=\left\{a_{1}, a_{2}\right\}$ and $F=\{b\}$.

$$
\varphi(z)=\left|\frac{(z-b)^{3}}{\left(z-a_{1}\right)\left(z-a_{2}\right)}\right|
$$

3.1 What Morse theory tells us

Thm.
$(1) \operatorname{ch}_{F}(\mathcal{A}) \stackrel{1: 1}{\longleftrightarrow} \operatorname{Cr}(\varphi)$
$C \longleftrightarrow p_{C}$

$$
\text { (2) } \mathcal{S}\left(p_{C}\right)=C
$$

3.1 What Morse theory tells us

$$
\text { (2) } \mathcal{S}\left(p_{C}\right)=C
$$

How about unstable cell $\mathcal{U}\left(p_{C}\right)$?
3.2 Unstable cells

3.2 Unstable cells

3.2 Unstable cells

(i) $\sigma_{C}\left(D^{\ell}\right) \pitchfork C=\left\{p_{C}\right\}$.
(ii) $\sigma_{C}\left(D^{\ell}\right) \cap C^{\prime}=\emptyset$ for $C^{\prime} \in \operatorname{ch}_{F} \backslash\{C\}$.

3.2 Unstable cells

(i) and (ii) above characterize the homotopyt type of $\mathcal{U}\left(p_{C}\right)$.

3.2 Unstable cells

(i) and (ii) above characterize the homotopyt type of $\mathcal{U}\left(p_{C}\right)$.

Thm. Suppose
$\sigma_{C}^{\prime}:\left(D^{\ell}, \partial D^{\ell}\right) \rightarrow(M, M \cap F)$ satisfies
(i) $\sigma_{C}^{\prime}\left(D^{\ell}\right) \pitchfork C=\left\{p_{C}\right\}$.
(ii) $\sigma_{C}^{\prime}\left(D^{\ell}\right) \cap C^{\prime}=\emptyset$ for $C^{\prime} \in \operatorname{ch}_{F} \backslash\{C\}$.

Then $\sigma_{C}^{\prime} \simeq \sigma_{C}$.

3.2 Unstable cells

Sketch of the proof:

3.2 Unstable cells

Sketch of the proof:

3.2 Unstable cells

Sketch of the proof:
$\phi_{t}: 1$-parameter diffeo generated by $-\operatorname{grad} \varphi$

3.2 Unstable cells

Sketch of the proof:
$\phi_{t}: 1$-parameter diffeo generated by $-\operatorname{grad} \varphi$

3.2 Unstable cells

(i) $\sigma_{C}^{\prime}\left(D^{\ell}\right) \pitchfork C=\left\{p_{C}\right\}$.
(ii) $\sigma_{C}^{\prime}\left(D^{\ell}\right) \cap C^{\prime}=\emptyset$ for $C^{\prime} \in \operatorname{ch}_{F} \backslash\{C\}$.
3.3 Recent works

Salvetti-Settepanella, Delucchi: "Discrete Morse theory on Salvetti complex". \Longrightarrow Another description of attaching maps.

4 An application

Topological proof of vanishing theorem on $H_{k}(M(\mathcal{A}), \mathcal{L})$ and a refinement.

4 An application

Vanishing Thm. (Aomoto, Kita-Noumi, Kohno, ...)
Suppose \mathcal{L} is "generic". Then

$$
H^{k}(M, \mathcal{L})= \begin{cases}0 & k \neq \ell \\ \bigoplus_{C \in \mathrm{bch}}[C] & k=\ell\end{cases}
$$

4.0 Notation

A local system \mathcal{L} is determined by
$\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n}$. Consider t_{i} is the local monodromy around H_{i}.

4.0 Notation

4.0 Notation

4.0 Notation

4.0 Notation

X_{1}, X_{2} : dense edge

4.0 Notation

X_{1}, X_{2} : dense edge

4 An application

Thm. (Cohen-Dimca-Orlik)
Suppose \mathcal{L} satisfies the condition:
$\left(^{*}\right) t_{i} \neq 1(i=0,1, \ldots, n)$ and $t_{X} \neq 1$
for any dense edge $X \subset H_{0}$. Then

$$
H^{k}(M, \mathcal{L})= \begin{cases}0 & k \neq \ell \\ \bigoplus_{C \in \mathrm{bch}}[C] & k=\ell\end{cases}
$$

4 An application

Concrete attaching maps of the previous section enable us to have a purely topological proof to the vanishing result. Moreover, also a converse:

4 An application

Thm. $\ell=2, \mathcal{A}$: indecomposable. Then TFAE.
(1) \mathcal{L} satisfies (*).
(2)

$$
H^{k}(M, \mathcal{L})= \begin{cases}0 & k \neq \ell \\ \bigoplus_{C \in \mathrm{bch}}[C] & k=\ell\end{cases}
$$

(3) $\{[C]\}_{C \in \text { bch }}$ generate $H^{\ell}(M, \mathcal{L})$.

5 References

A. Dimca, S Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. of Math (2) 158 (2003).
R. Randell, Morse theory, Milnor fibers and minimality of hyperplane arrangements. Proc. A. M. S. 130 (2002).
M. Salvetti, S. Settepanella, Combinatorial Morse theory and minimality of hyperplane arrangements. Geometry and Topology, 11 (2007)
M. Yoshinaga, Hyperplane arrangements and Lefschetz's hyperplane section theorem. Kodai Math. J. 30 (2007)

