Resonant bands, local systems and Milnor fibers
of real line arrangements

Masahiko Yoshinaga

Abstract This is a short note on the study of cohomology groups of rank one local
systems of real line arrangements via resonant bands. Results on Milnor fibers and
several conjectures are also stated.

1 Local systems

Let.« = {H1,Hy,...,H,} be an arrangement of affine lines@3. We can identify
C? with CIP?\ Ho, whereHy is the line at infinity. We definess = {Ho,Hq,...,Hn},
whereH; is the closure ofH; in CP?. The complement of lines is denoted by
M (/) = C2\ ULy Hi = CP?\ ULoH.

We define the character torus (<) = Hom(m(M(<)),C*). Since the
fundamental groupn(M()) is generated by meridiang of H; (i = 0,...,n),
p € Hom(m(M(«)),C*) is specified by the image®(yw),p(\1),...,p(W)) €
(C*)"*L, By this correspondence, we have the following isomorphism

T() = {(90, 0. ---,0n) € (C*)™ [ Godz -+ O = 1}

The character toru§(«/) also can be identified with the moduli space of com-
plex rank one local systems. For givee= (do, 0, . . ., 0n) With [0 = 1, we denote
by .74 the associated local system, i.e., the local system which has the monodromy
gi € C* around the lineH;.

The twisted cohomologyi!(M(=/),.%,) is related to many other problems in
topology of M(«7). One of the central problem is combinatorial decidability of
HY(M(o), %).
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2 Chambers and Bands

From now, we assume that each liHe= <7 is defined over the real number fiékd
Our purpose is to descrité!(M(<7), %) in terms of real structure.

A connected compone@ of R?\ I, H; is called achamber The set of all
chambers is denoted by @). LetC,C’ € ch(«/). Aline H € < is said to separate
C andC' if C andC’ belong opposite half spaces definedtby” R2.

Definition 1. SeC,C’) := {H € .« | H separate€ andC'}.

Definition 2. We call the number of separating lind¢éC,C’) := §SefC,C’) the
distanceof C andC'.

The following object is useful to computé!(M(7),.%,). See [8, 9] for more
details and examples.

Definition 3. A bandis a region bounded by a pair of consecutive parallel lines.

Let B be a band. Then there are exactly two unbounded chamb8ts/ife call
themU(B) andU,(B) € ch(«7). The distancel(U1(B),U>(B)) is called thdength
of the bandB, denoted byB|.

Definition 4. Let B be a band bounded by two parallel lifdsandH’. The closures
H,H' c RP? intersects on the line at infinitflo. The intersection is denoted by
X(B) := HNH’ € Ho. We also havé&X(B) = BnHy, whereB is the closure oB in
RP?,

3 Resonant bands

Letos = {H1,...,Hn} be aline arrangement define o®as in the previous section.
Letqy,...,0n € C* be nonzero complex numbers. We ggt= (qi02---qn) L. For
eachq;, we fixt € C* such that? =g, i =0,1,...,n.

Definition 5. LetC,C’ € ch(«7). Define

HieSepC.C') HicSepC.C')

The following proposition is straightforward.

Proposition 1.Aq(C,C') =0ifandonlyif ] g =1
HjcSefC,C')

Definition 6. A bandB is said to beZ;-resonantf Aq(U1(B),U2(B)) = 0.
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Let B be a band. Note that each lirkec <7 is either parallel td or acros$8. Hence
we have
ch(e) = (c/)x ) L SefU1(B),U2(B)), 1

where(c/ )y g) is the set of lines passing throultiB). Using the relatiomoq; - - - n =
1, we have the following.

Proposition 2. A band B is¥y-resonant if and only if gg) := ( |‘|) g =1
Hie(ce/ X(B)

Definition 7. Denote by RBy, («/) the set of all%;-resonant bands.

Next we define a linear map
0:C[RBg,(«)] — Clch(«7)] (2

from the vector space spanned by t#fg-resonant bands to the vector space spanned
by the chambers.

Definition 8. Let B € RBg, (7). Define J(B) € C[ch(«/)] by the following for-
mula.

0B) = ZBAQ(UI(B)vC)'[C]~
cc
Theorem 1. Assume thatg# 1. Then
Ker(d: C[RBg,(«)] — Clch(«/)]) ~ H'(M(&), %)

See [9] for proofs and applications. From Theorem 1 we also have the following
vanishing result.

Theorem 2. Assume thatgz# 1.

(i) Suppose that there does not exist poir Mo such thaf(c«)x| > 3and ¢ = 1.
Then H(M(«7),%y) = 0.
(i) Suppose that there exists unique ¥y such thaf(c#’)x| > 3and ¢k = 1. Then

T /0, if 3H; with X ¢ Hj and q # 1,
dimH (M(«), Zq) = { \(c/)x| — 2, if VH; with X ¢ Fi; it holds q = 1.
Remark 1By a result by Cohen, Dimca and Orlik [1], Theorem 2 (i) is true for any
complex arrangements.

In general, two linedH,H’ on the real projective plan&P? divides the space
into two regions. A pair of linesl;,H; € c&/ = {Ho,H1,...,Hn} is calledsharp
pair if one of two regions does not contain any intersections«fin its interior.
The existence of sharp pair gives an upper bound of the dimension of the twisted
cohomology groups.

Theorem 3. Suppose that there exists a sharp piirH; € c«7 such that g+# 1
and g # 1. ThendimH(M(%),.%) < 1.
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4 Milnor fibers

The Milnor fiberF (<) of the cone ofte is aZ/(n+ 1)Z cyclic covering space
of M(«7). One of the open problems is the combinatorial description of the Betti
numbers of (<), especiallyby (F ().

There is a natural automorphigot F (<) — F (/) so called the monodromy
automorphism. Sincp is ordern+ 1, the cohomology group decomposes into the
sum of eigen spaces

HX(F(«/),C)= @ H"(F(«),0),, (3)

An+l_1

where the sum runs over all complex numbers satisfihg = 1 andHX(F (), C),
is theA -eigenspace.

Let A be a complex number satisfyiid*! = 1. Let us denote by, the local
system corresponding{d,A,...,A) € T(&). Itis known [2] that the\ -eigenspace
is isomorphic to the twisted cohomology grouphdf.<?), namely,HX(F (), C) ~
HX(M(27),.%)). To compute this, we can apply the result in the previous section.
Note thatA, (C,C’) = A4(CC) _ }~d(CC),

Now we fix a complex numbeX € C* of orderk > 1 such thak|(n+1).

Proposition 3. A band B is%) -resonant if and only if Jd(U1(B),U2(B)). Equiva-
lently, A1 @) =1,

Let B be a.%, -resonant band. Then

0(B) = CZB()\ dU(B).C) _ ) —dU(B)C)y . [C]. (4)

C
Theorem 4.H(F(«/),C), ~ Ker(O: C[RBg, («/)] — C[ch(«)]).
Using the above theorem, we can prove some vanishing results.

Definition 9. A point p € Hg is said to be aZ) -resonant edgé |(c<)p| > 3 and
|(ce?)pl is divisible byk.

Theorem 5.If there are na%) -resonant edge, theniF (7)), = 0.

The proofis very easy, actually, we have RR.«7 ) = 0 by the assumption. Then ob-

viously Ker(1=0. Theorem 5 is due to Libgober [5]. We should note that Libgober’s

result is more general than Theorem 5, for he proved for any complex arrangements.
We call the affine line arrangement = {H,...,Hp} in R? is essentialf there

is at least one intersection. This assumption is not a strong restriction. Indeed it

avoids only the caseHs,...,H, are parallel”. Under the essential hypothesis, we

can strengthen the previous result.

Theorem 6. Suppose is essential. If there exists at most a#g -resonant edge
onHy, then H(F (7)), =0.
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The above theorem says that i is essentialH*(F (<)), # 0 implies that every
line H; € c« has at least two points o, -resonant edges. It seems natural to ask
what happens if there are exactly twi6, -resonant edges og. The following
result answers to it.

Theorem 7.Suppose that there exist twi), -resonant edges. If HF («7)), # 0,
then a7 is projectively equivalent to the so called-Arrangement defined by the

equation xygx—z)(y—z)(x—y) =0.

Corollary 1. Supposéce/| > 7 and H:(F (7)), # 0. Then each linéi; € co/ has
at least three%?) -resonant edges on it.

Theorem 8.1f c7 has a sparp pair of lines, thesimH(F (7)), < 1.

5 Conjectures

Conjecture 1 Theorem 6 and Theorem 7 hold for any complex line arrangements.

Conjecture 2For real arrangemente/, dimH(F (7)), < 1 for anyA # 1. Fur-
thermore, ifA® # 1, thenH!(F (<)), = 0.

For simplicial arrangements ([4]), we have more precise conjecture.

Conjecture 3Let c«Z be a simplicial arrangement @&P2. Then the following are
equivalent.

(WHY(F(o/)).1 #0.

(Z)dimHl(F(d))exp(Zm/jl/fa’) =1

(3)c has 3-multinet structure (of multiplicity 1). ([3])
(4)ce is of typeA(6m, 1). ([4])
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