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Abstract This is a short note on the study of cohomology groups of rank one local
systems of real line arrangements via resonant bands. Results on Milnor fibers and
several conjectures are also stated.

1 Local systems

Let A = {H1,H2, . . . ,Hn} be an arrangement of affine lines inC2. We can identify
C2 withCP2\H0, whereH0 is the line at infinity. We definecA = {H0,H1, . . . ,Hn},
where H i is the closure ofHi in CP2. The complement of lines is denoted by
M(A ) = C2\

∪n
i=1Hi = CP2\

∪n
i=0H i .

We define the character torus byT(A ) = Hom(π1(M(A )),C∗). Since the
fundamental groupπ1(M(A )) is generated by meridiansγi of Hi (i = 0, . . . ,n),
ρ ∈ Hom(π1(M(A )),C∗) is specified by the images(ρ(γ0),ρ(γ1), . . . ,ρ(γn)) ∈
(C∗)n+1. By this correspondence, we have the following isomorphism

T(A )≃ {(q0,q1, . . . ,qn) ∈ (C∗)n+1 | q0q1 · · ·qn = 1}.

The character torusT(A ) also can be identified with the moduli space of com-
plex rank one local systems. For givenq= (q0,q1, . . . ,qn) with ∏qi = 1, we denote
by Lq the associated local system, i.e., the local system which has the monodromy
qi ∈ C∗ around the lineHi .

The twisted cohomologyH1(M(A ),Lq) is related to many other problems in
topology of M(A ). One of the central problem is combinatorial decidability of
H1(M(A ),Lq).
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2 Chambers and Bands

From now, we assume that each lineH ∈A is defined over the real number fieldR.
Our purpose is to describeH1(M(A ),Lq) in terms of real structure.

A connected componentC of R2 \
∪n

i=1Hi is called achamber. The set of all
chambers is denoted by ch(A ). LetC,C′ ∈ ch(A ). A line H ∈A is said to separate
C andC′ if C andC′ belong opposite half spaces defined byH ⊂ R2.

Definition 1. Sep(C,C′) := {H ∈ A | H separatesC andC′}.

Definition 2. We call the number of separating linesd(C,C′) := ♯Sep(C,C′) the
distanceof C andC′.

The following object is useful to computeH1(M(A ),Lq). See [8, 9] for more
details and examples.

Definition 3. A bandis a region bounded by a pair of consecutive parallel lines.

Let B be a band. Then there are exactly two unbounded chambers inB. We call
themU1(B) andU2(B) ∈ ch(A ). The distanced(U1(B),U2(B)) is called thelength
of the bandB, denoted by|B|.

Definition 4. Let B be a band bounded by two parallel linesH andH ′. The closures
H,H

′ ⊂ RP2 intersects on the line at infinityH0. The intersection is denoted by
X(B) := H ∩H

′ ∈ H0. We also haveX(B) = B∩H0, whereB is the closure ofB in
RP2.

3 Resonant bands

LetA = {H1, . . . ,Hn} be a line arrangement define overR as in the previous section.
Let q1, . . . ,qn ∈ C∗ be nonzero complex numbers. We setq0 := (q1q2 · · ·qn)

−1. For
eachqi , we fix ti ∈ C∗ such thatt2

i = qi , i = 0,1, . . . ,n.

Definition 5. Let C,C′ ∈ ch(A ). Define

∆q(C,C
′) := ∏

Hi∈Sep(C,C′)

ti − ∏
Hi∈Sep(C,C′)

t−1
i .

The following proposition is straightforward.

Proposition 1. ∆q(C,C′) = 0 if and only if ∏
Hi∈Sep(C,C′)

qi = 1.

Definition 6. A bandB is said to beLq-resonantif ∆q(U1(B),U2(B)) = 0.
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Let B be a band. Note that each lineH ∈A is either parallel toB or acrossB. Hence
we have

ch(A ) = (cA )X(B)⊔Sep(U1(B),U2(B)), (1)

where(cA )X(B) is the set of lines passing throughX(B). Using the relationq0q1 · · ·qn=
1, we have the following.

Proposition 2. A band B isLq-resonant if and only if qX(B) := ∏
Hi∈(cA )X(B)

qi = 1.

Definition 7. Denote by RBLq(A ) the set of allLq-resonant bands.

Next we define a linear map

∇ : C[RBLq(A )]−→ C[ch(A )] (2)

from the vector space spanned by theLq-resonant bands to the vector space spanned
by the chambers.

Definition 8. Let B ∈ RBLq(A ). Define∇(B) ∈ C[ch(A )] by the following for-
mula.

∇(B) := ∑
C⊂B

∆q(U1(B),C) · [C].

Theorem 1.Assume that q0 ̸= 1. Then

Ker(∇ : C[RBLq(A )]−→ C[ch(A )])≃ H1(M(A ),Lq).

See [9] for proofs and applications. From Theorem 1 we also have the following
vanishing result.

Theorem 2.Assume that q0 ̸= 1.

(i) Suppose that there does not exist point X∈H0 such that|(cA )X| ≥ 3 and qX = 1.
Then H1(M(A ),Lq) = 0.

(ii)Suppose that there exists unique X∈H0 such that|(cA )X| ≥ 3 and qX = 1. Then

dimH1(M(A ),Lq) =

{
0, if ∃H i with X /∈ H i and qi ̸= 1,
|(cA )X|−2, if ∀H i with X /∈ H i it holds qi = 1.

Remark 1.By a result by Cohen, Dimca and Orlik [1], Theorem 2 (i) is true for any
complex arrangements.

In general, two linesH,H ′ on the real projective planeRP2 divides the space
into two regions. A pair of linesH i ,H j ∈ cA = {H0,H1, . . . ,Hn} is calledsharp
pair if one of two regions does not contain any intersections ofcA in its interior.
The existence of sharp pair gives an upper bound of the dimension of the twisted
cohomology groups.

Theorem 3.Suppose that there exists a sharp pairH i ,H j ∈ cA such that qi ̸= 1
and qj ̸= 1. ThendimH1(M(A ),Lq)≤ 1.
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4 Milnor fibers

The Milnor fiberF(A ) of the cone ofcA is aZ/(n+1)Z cyclic covering space
of M(A ). One of the open problems is the combinatorial description of the Betti
numbers ofF(A ), especiallyb1(F(A )).

There is a natural automorphismρ : F(A )−→ F(A ) so called the monodromy
automorphism. Sinceρ is ordern+1, the cohomology group decomposes into the
sum of eigen spaces

Hk(F(A ),C) =
⊕

λ n+1=1

HK(F(A ),C)λ , (3)

where the sum runs over all complex numbers satisfyingλ n+1=1 andHk(F(A ),C)λ
is theλ -eigenspace.

Let λ be a complex number satisfyingλ n+1 = 1. Let us denote byLλ the local
system corresponding to(λ ,λ , . . . ,λ )∈T(A ). It is known [2] that theλ -eigenspace
is isomorphic to the twisted cohomology group ofM(A ), namely,Hk(F(A ),C)≃
Hk(M(A ),Lλ ). To compute this, we can apply the result in the previous section.
Note that∆λ (C,C

′) = λ d(C,C′)−λ−d(C,C′).
Now we fix a complex numberλ ∈ C∗ of orderk> 1 such thatk|(n+1).

Proposition 3. A band B isLλ -resonant if and only if k|d(U1(B),U2(B)). Equiva-
lently,λ |(cA )X(B)| = 1.

Let B be aLλ -resonant band. Then

∇(B) = ∑
C⊂B

(λ d(U1(B),C)−λ−d(U1(B),C)) · [C]. (4)

Theorem 4.H1(F(A ),C)λ ≃ Ker(∇ : C[RBLλ (A )]−→ C[ch(A )]).

Using the above theorem, we can prove some vanishing results.

Definition 9. A point p∈ H0 is said to be aLλ -resonant edgeif |(cA )p| ≥ 3 and
|(cA )p| is divisible byk.

Theorem 5. If there are noLλ -resonant edge, then H1(F(A ))λ = 0.

The proof is very easy, actually, we have RBLλ (A )= /0 by the assumption. Then ob-
viously Ker∇= 0. Theorem 5 is due to Libgober [5]. We should note that Libgober’s
result is more general than Theorem 5, for he proved for any complex arrangements.

We call the affine line arrangementA = {H1, . . . ,Hn} in R2 is essentialif there
is at least one intersection. This assumption is not a strong restriction. Indeed it
avoids only the case “H1, . . . ,Hn are parallel”. Under the essential hypothesis, we
can strengthen the previous result.

Theorem 6.SupposeA is essential. If there exists at most oneLλ -resonant edge
onH0, then H1(F(A ))λ = 0.
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The above theorem says that (ifA is essential)H1(F(A ))λ ̸= 0 implies that every
line H i ∈ cA has at least two points ofLλ -resonant edges. It seems natural to ask
what happens if there are exactly twoLλ -resonant edges onH0. The following
result answers to it.

Theorem 7.Suppose that there exist twoLλ -resonant edges. If H1(F(A ))λ ̸= 0,
then cA is projectively equivalent to the so called A3-arrangement defined by the
equation xyz(x−z)(y−z)(x−y) = 0.

Corollary 1. Suppose|cA | ≥ 7 and H1(F(A ))λ ̸= 0. Then each lineH i ∈ cA has
at least threeLλ -resonant edges on it.

Theorem 8. If cA has a sparp pair of lines, thendimH1(F(A ))λ ≤ 1.

5 Conjectures

Conjecture 1.Theorem 6 and Theorem 7 hold for any complex line arrangements.

Conjecture 2.For real arrangementcA , dimH1(F(A ))λ ≤ 1 for anyλ ̸= 1. Fur-
thermore, ifλ 3 ̸= 1, thenH1(F(A ))λ = 0.

For simplicial arrangements ([4]), we have more precise conjecture.

Conjecture 3.Let cA be a simplicial arrangement onRP2. Then the following are
equivalent.

(1)H1(F(A ))̸=1 ̸= 0.
(2)dimH1(F(A ))exp(2π

√
−1/3) = 1.

(3)cA has 3-multinet structure (of multiplicity 1). ([3])
(4)cA is of typeA(6m,1). ([4])
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