Resonant bands, local systems and Milnor fibers of real line arrangements

Masahiko Yoshinaga

Abstract

This is a short note on the study of cohomology groups of rank one local systems of real line arrangements via resonant bands. Results on Milnor fibers and several conjectures are also stated.

1 Local systems

Let $\mathscr{A}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be an arrangement of affine lines in \mathbb{C}^{2}. We can identify \mathbb{C}^{2} with $\mathbb{C P}^{2} \backslash \bar{H}_{0}$, where \bar{H}_{0} is the line at infinity. We define $c \mathscr{A}=\left\{\bar{H}_{0}, \bar{H}_{1}, \ldots, \bar{H}_{n}\right\}$, where \bar{H}_{i} is the closure of H_{i} in $\mathbb{C P}^{2}$. The complement of lines is denoted by $M(\mathscr{A})=\mathbb{C}^{2} \backslash \bigcup_{i=1}^{n} H_{i}=\mathbb{C P}^{2} \backslash \bigcup_{i=0}^{n} \bar{H}_{i}$.

We define the character torus by $\mathbb{T}(\mathscr{A})=\operatorname{Hom}\left(\pi_{1}(M(\mathscr{A})), \mathbb{C}^{*}\right)$. Since the fundamental group $\pi_{1}(M(\mathscr{A}))$ is generated by meridians γ_{i} of $H_{i}(i=0, \ldots, n)$, $\rho \in \operatorname{Hom}\left(\pi_{1}(M(\mathscr{A})), \mathbb{C}^{*}\right)$ is specified by the images $\left(\rho\left(\gamma_{0}\right), \rho\left(\gamma_{1}\right), \ldots, \rho\left(\gamma_{n}\right)\right) \in$ $\left(\mathbb{C}^{*}\right)^{n+1}$. By this correspondence, we have the following isomorphism

$$
\mathbb{T}(\mathscr{A}) \simeq\left\{\left(q_{0}, q_{1}, \ldots, q_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n+1} \mid q_{0} q_{1} \cdots q_{n}=1\right\} .
$$

The character torus $\mathbb{T}(\mathscr{A})$ also can be identified with the moduli space of complex rank one local systems. For given $q=\left(q_{0}, q_{1}, \ldots, q_{n}\right)$ with $\Pi q_{i}=1$, we denote by \mathscr{L}_{q} the associated local system, i.e., the local system which has the monodromy $q_{i} \in \mathbb{C}^{*}$ around the line H_{i}.

The twisted cohomology $H^{1}\left(M(\mathscr{A}), \mathscr{L}_{q}\right)$ is related to many other problems in topology of $M(\mathscr{A})$. One of the central problem is combinatorial decidability of $H^{1}\left(M(\mathscr{A}), \mathscr{L}_{q}\right)$.

[^0]
2 Chambers and Bands

From now, we assume that each line $H \in \mathscr{A}$ is defined over the real number field \mathbb{R}. Our purpose is to describe $H^{1}\left(M(\mathscr{A}), \mathscr{L}_{q}\right)$ in terms of real structure.

A connected component C of $\mathbb{R}^{2} \backslash \bigcup_{i=1}^{n} H_{i}$ is called a chamber. The set of all chambers is denoted by $\operatorname{ch}(\mathscr{A})$. Let $C, C^{\prime} \in \operatorname{ch}(\mathscr{A})$. A line $H \in \mathscr{A}$ is said to separate C and C^{\prime} if C and C^{\prime} belong opposite half spaces defined by $H \subset \mathbb{R}^{2}$.

Definition 1. $\operatorname{Sep}\left(C, C^{\prime}\right):=\left\{H \in \mathscr{A} \mid H\right.$ separates C and $\left.C^{\prime}\right\}$.
Definition 2. We call the number of separating lines $d\left(C, C^{\prime}\right):=\sharp \operatorname{Sep}\left(C, C^{\prime}\right)$ the distance of C and C^{\prime}.

The following object is useful to compute $H^{1}\left(M(\mathscr{A}), \mathscr{L}_{q}\right)$. See [8, 9] for more details and examples.

Definition 3. A band is a region bounded by a pair of consecutive parallel lines.
Let B be a band. Then there are exactly two unbounded chambers in B. We call them $U_{1}(B)$ and $U_{2}(B) \in \operatorname{ch}(\mathscr{A})$. The distance $d\left(U_{1}(B), U_{2}(B)\right)$ is called the length of the band B, denoted by $|B|$.

Definition 4. Let B be a band bounded by two parallel lines H and H^{\prime}. The closures $\bar{H}, \bar{H}^{\prime} \subset \mathbb{R P}^{2}$ intersects on the line at infinity \bar{H}_{0}. The intersection is denoted by $X(B):=\bar{H} \cap \bar{H}^{\prime} \in \bar{H}_{0}$. We also have $X(B)=\bar{B} \cap \bar{H}_{0}$, where \bar{B} is the closure of B in $\mathbb{R P}^{2}$.

3 Resonant bands

Let $\mathscr{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be a line arrangement define over \mathbb{R} as in the previous section. Let $q_{1}, \ldots, q_{n} \in \mathbb{C}^{*}$ be nonzero complex numbers. We set $q_{0}:=\left(q_{1} q_{2} \cdots q_{n}\right)^{-1}$. For each q_{i}, we fix $t_{i} \in \mathbb{C}^{*}$ such that $t_{i}^{2}=q_{i}, i=0,1, \ldots, n$.
Definition 5. Let $C, C^{\prime} \in \operatorname{ch}(\mathscr{A})$. Define

$$
\Delta_{q}\left(C, C^{\prime}\right):=\prod_{H_{i} \in \operatorname{Sep}\left(C, C^{\prime}\right)} t_{i}-\prod_{H_{i} \in \operatorname{Sep}\left(C, C^{\prime}\right)} t_{i}^{-1}
$$

The following proposition is straightforward.
Proposition 1. $\Delta_{q}\left(C, C^{\prime}\right)=0$ if and only if $\prod_{H_{i} \in \operatorname{Sep}\left(C, C^{\prime}\right)} q_{i}=1$.
Definition 6. A band B is said to be \mathscr{L}_{q}-resonant if $\Delta_{q}\left(U_{1}(B), U_{2}(B)\right)=0$.

Let B be a band. Note that each line $H \in \mathscr{A}$ is either parallel to B or across B. Hence we have

$$
\begin{equation*}
\operatorname{ch}(\mathscr{A})=(c \mathscr{A})_{X(B)} \sqcup \operatorname{Sep}\left(U_{1}(B), U_{2}(B)\right), \tag{1}
\end{equation*}
$$

where $(c \mathscr{A})_{X(B)}$ is the set of lines passing through $X(B)$. Using the relation $q_{0} q_{1} \cdots q_{n}=$ 1 , we have the following.

Proposition 2. A band B is \mathscr{L}_{q}-resonant if and only if $q_{X(B)}:=\prod_{H_{i} \in(c \mathscr{A})_{X(B)}} q_{i}=1$.
Definition 7. Denote by $\mathrm{RB}_{\mathscr{L}_{q}}(\mathscr{A})$ the set of all \mathscr{L}_{q}-resonant bands.
Next we define a linear map

$$
\begin{equation*}
\nabla: \mathbb{C}\left[\mathrm{RB}_{\mathscr{L}_{q}}(\mathscr{A})\right] \longrightarrow \mathbb{C}[\operatorname{ch}(\mathscr{A})] \tag{2}
\end{equation*}
$$

from the vector space spanned by the \mathscr{L}_{q}-resonant bands to the vector space spanned by the chambers.
Definition 8. Let $B \in \operatorname{RB} \mathscr{L}_{q}(\mathscr{A})$. Define $\nabla(B) \in \mathbb{C}[\operatorname{ch}(\mathscr{A})]$ by the following formula.

$$
\nabla(B):=\sum_{C \subset B} \Delta_{q}\left(U_{1}(B), C\right) \cdot[C] .
$$

Theorem 1. Assume that $q_{0} \neq 1$. Then

$$
\operatorname{Ker}\left(\nabla: \mathbb{C}\left[\operatorname{RB} \mathscr{L}_{q}(\mathscr{A})\right] \longrightarrow \mathbb{C}[\operatorname{ch}(\mathscr{A})]\right) \simeq H^{1}\left(M(\mathscr{A}), \mathscr{L}_{q}\right) .
$$

See [9] for proofs and applications. From Theorem 1 we also have the following vanishing result.

Theorem 2. Assume that $q_{0} \neq 1$.
(i) Suppose that there does not exist point $X \in \bar{H}_{0}$ such that $\left|(c \mathscr{A})_{X}\right| \geq 3$ and $q_{X}=1$. Then $H^{1}\left(M(\mathscr{A}), \mathscr{L}_{q}\right)=0$.
(ii)Suppose that there exists unique $X \in \bar{H}_{0}$ such that $\left|(c \mathscr{A})_{X}\right| \geq 3$ and $q_{X}=1$. Then

$$
\operatorname{dim} H^{1}\left(M(\mathscr{A}), \mathscr{L}_{q}\right)= \begin{cases}0, & \text { if } \exists \bar{H}_{i} \text { with } X \notin \bar{H}_{i} \text { and } q_{i} \neq 1, \\ \left|(c \mathscr{A})_{X}\right|-2, & \text { if } \forall \bar{H}_{i} \text { with } X \notin \bar{H}_{i} \text { it holds } q_{i}=1 .\end{cases}
$$

Remark 1. By a result by Cohen, Dimca and Orlik [1], Theorem 2 (i) is true for any complex arrangements.

In general, two lines H, H^{\prime} on the real projective plane \mathbb{R}^{2} divides the space into two regions. A pair of lines $\bar{H}_{i}, \bar{H}_{j} \in c \mathscr{A}=\left\{\bar{H}_{0}, \bar{H}_{1}, \ldots, \bar{H}_{n}\right\}$ is called sharp pair if one of two regions does not contain any intersections of $c \mathscr{A}$ in its interior. The existence of sharp pair gives an upper bound of the dimension of the twisted cohomology groups.

Theorem 3. Suppose that there exists a sharp pair $\bar{H}_{i}, \bar{H}_{j} \in$ cA such that $q_{i} \neq 1$ and $q_{j} \neq 1$. Then $\operatorname{dim} H^{1}\left(M(\mathscr{A}), \mathscr{L}_{q}\right) \leq 1$.

4 Milnor fibers

The Milnor fiber $F(\mathscr{A})$ of the cone of $c \mathscr{A}$ is a $\mathbb{Z} /(n+1) \mathbb{Z}$ cyclic covering space of $M(\mathscr{A})$. One of the open problems is the combinatorial description of the Betti numbers of $F(\mathscr{A})$, especially $b_{1}(F(\mathscr{A}))$.

There is a natural automorphism $\rho: F(\mathscr{A}) \longrightarrow F(\mathscr{A})$ so called the monodromy automorphism. Since ρ is order $n+1$, the cohomology group decomposes into the sum of eigen spaces

$$
\begin{equation*}
H^{k}(F(\mathscr{A}), \mathbb{C})=\bigoplus_{\lambda^{n+1}=1} H^{K}(F(\mathscr{A}), \mathbb{C})_{\lambda} \tag{3}
\end{equation*}
$$

where the sum runs over all complex numbers satisfying $\lambda^{n+1}=1$ and $H^{k}(F(\mathscr{A}), \mathbb{C})_{\lambda}$ is the λ-eigenspace.

Let λ be a complex number satisfying $\lambda^{n+1}=1$. Let us denote by \mathscr{L}_{λ} the local system corresponding to $(\lambda, \lambda, \ldots, \lambda) \in \mathbb{T}(\mathscr{A})$. It is known [2] that the λ-eigenspace is isomorphic to the twisted cohomology group of $M(\mathscr{A})$, namely, $H^{k}(F(\mathscr{A}), \mathbb{C}) \simeq$ $H^{k}\left(M(\mathscr{A}), \mathscr{L}_{\lambda}\right)$. To compute this, we can apply the result in the previous section. Note that $\Delta_{\lambda}\left(C, C^{\prime}\right)=\lambda^{d\left(C, C^{\prime}\right)}-\lambda^{-d\left(C, C^{\prime}\right)}$.

Now we fix a complex number $\lambda \in \mathbb{C}^{*}$ of order $k>1$ such that $k \mid(n+1)$.
Proposition 3. A band B is \mathscr{L}_{λ}-resonant if and only if $k \mid d\left(U_{1}(B), U_{2}(B)\right)$. Equiva-

Let B be a \mathscr{L}_{λ}-resonant band. Then

$$
\begin{equation*}
\nabla(B)=\sum_{C \subset B}\left(\lambda^{d\left(U_{1}(B), C\right)}-\lambda^{-d\left(U_{1}(B), C\right)}\right) \cdot[C] \tag{4}
\end{equation*}
$$

Theorem 4. $H^{1}(F(\mathscr{A}), \mathbb{C})_{\lambda} \simeq \operatorname{Ker}\left(\nabla: \mathbb{C}\left[\operatorname{RB}_{\mathscr{L}_{\lambda}}(\mathscr{A})\right] \longrightarrow \mathbb{C}[\operatorname{ch}(\mathscr{A})]\right)$.
Using the above theorem, we can prove some vanishing results.
Definition 9. A point $p \in \bar{H}_{0}$ is said to be a \mathscr{L}_{λ}-resonant edge if $\left|(c \mathscr{A})_{p}\right| \geq 3$ and $\left|(c \mathscr{A})_{p}\right|$ is divisible by k.

Theorem 5. If there are no \mathscr{L}_{λ}-resonant edge, then $H^{1}(F(\mathscr{A}))_{\lambda}=0$.
The proof is very easy, actually, we have $\mathrm{RB} \mathscr{L}_{\lambda}(\mathscr{A})=\emptyset$ by the assumption. Then obviously $\operatorname{Ker} \nabla=0$. Theorem 5 is due to Libgober [5]. We should note that Libgober's result is more general than Theorem 5, for he proved for any complex arrangements.

We call the affine line arrangement $\mathscr{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ in \mathbb{R}^{2} is essential if there is at least one intersection. This assumption is not a strong restriction. Indeed it avoids only the case " H_{1}, \ldots, H_{n} are parallel". Under the essential hypothesis, we can strengthen the previous result.

Theorem 6. Suppose \mathscr{A} is essential. If there exists at most one \mathscr{L}_{λ}-resonant edge on \bar{H}_{0}, then $H^{1}(F(\mathscr{A}))_{\lambda}=0$.

The above theorem says that (if \mathscr{A} is essential) $H^{1}(F(\mathscr{A}))_{\lambda} \neq 0$ implies that every line $\bar{H}_{i} \in c \mathscr{A}$ has at least two points of \mathscr{L}_{λ}-resonant edges. It seems natural to ask what happens if there are exactly two \mathscr{L}_{λ}-resonant edges on \bar{H}_{0}. The following result answers to it.

Theorem 7. Suppose that there exist two \mathscr{L}_{λ}-resonant edges. If $H^{1}(F(\mathscr{A}))_{\lambda} \neq 0$, then $c \mathscr{A}$ is projectively equivalent to the so called A_{3}-arrangement defined by the equation $x y z(x-z)(y-z)(x-y)=0$.

Corollary 1. Suppose $|c \mathscr{A}| \geq 7$ and $H^{1}(F(\mathscr{A}))_{\lambda} \neq 0$. Then each line $\bar{H}_{i} \in c \mathscr{A}$ has at least three \mathscr{L}_{λ}-resonant edges on it.

Theorem 8. If $c \mathscr{A}$ has a sparp pair of lines, then $\operatorname{dim} H^{1}(F(\mathscr{A}))_{\lambda} \leq 1$.

5 Conjectures

Conjecture 1. Theorem 6 and Theorem 7 hold for any complex line arrangements.
Conjecture 2. For real arrangement $c \mathscr{A}, \operatorname{dim} H^{1}(F(\mathscr{A}))_{\lambda} \leq 1$ for any $\lambda \neq 1$. Furthermore, if $\lambda^{3} \neq 1$, then $H^{1}(F(\mathscr{A}))_{\lambda}=0$.

For simplicial arrangements ([4]), we have more precise conjecture.
Conjecture 3. Let $c \mathscr{A}$ be a simplicial arrangement on $\mathbb{R P}^{2}$. Then the following are equivalent.
(1) $H^{1}(F(\mathscr{A}))_{\neq 1} \neq 0$.
(2) $\operatorname{dim} H^{1}(F(\mathscr{A}))_{\exp (2 \pi \sqrt{-1} / 3)}=1$.
(3) $c \mathscr{A}$ has 3-multinet structure (of multiplicity 1). ([3])
(4) $c \mathscr{A}$ is of type $A(6 m, 1)$. ([4])

References

1. Cohen, D., Dimca, A., Orlik, P.: Nonresonance conditions for arrangements. Ann. Inst. Fourier 53 (2003), 1883-1896.
2. Cohen, D., Suciu, A.: On Milnor fibrations of arrangements. J. London Math. Soc. 51 (1995), no. 2, 105-119.
3. Falk, M., Yuzvinsky, S.: Multinets, resonance varieties, and pencils of plane curves. Compos. Math. 143 (2007), no. 4, 1069-1088.
4. Grünbaum, B.: A catalogue of simplicial arrangements in the real projective plane. Ars Math. Contemp. 2 (2009), no. 1, 1-25.
5. Libgober, A.: Eigenvalues for the monodromy of the Milnor fibers of arrangements. Trends in singularities, 141-150, Trends Math., Birkhäuser, Basel, 2002.
6. Suciu, A.: Fundamental groups of line arrangements: enumerative aspects. Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), 43-79, Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001.
7. Suciu, A.: Hyperplane arrangements and Milnor fibrations, to appear in Ann. Fac. Sci. Toulouse.
8. Yoshinaga, M.: Milnor fibers of real line arrangements. Journal of Singularities, 7, 220-237 (2013)
9. Yoshinaga, M.: Resonant bands and local system cohomology groups for real line arrangements. arXiv:1301.1888, Preprint, Jan. 10, 2013.

[^0]: Masahiko Yoshinaga
 Department of Mathematics, Hokkaido University, N 10 W 8, Kita-ku Sapporo, 060-0810, Japan, e-mail: yoshinaga@math.sci.hokudai.ac.jp

