# Multiple addition theorem on arrangements of hyperplanes and <br> a proof of the Shapiro-Steinberg-Kostant-Macdonald dual-partition formula 

Hiroaki Terao<br>(Hokkaido University, Sapporo, Japan)

The 1st Workshop of JSPS-MAE Sakura Program
"Geometry and Combinatorics of Hyperplane Arrangements and Related Problems"
Sapporo, Japan
2014.09.03

## Credit

## Credit

## with

## Takuro Abe (Kyoto University)

Mohamed Barakat (Katholische Universität Eichstätt-Ingolstadt)
Michael Cuntz (Leibniz Universität Hannover )
Torsten Hoge (Leibniz Universität Hannover)

## Credit

## with

## Takuro Abe (Kyoto University)

Mohamed Barakat (Katholische Universität Eichstätt-Ingolstadt)
Michael Cuntz (Leibniz Universität Hannover )
Torsten Hoge (Leibniz Universität Hannover)
arXiv:1304.8033

## Credit

## with

## Takuro Abe (Kyoto University)

Mohamed Barakat (Katholische Universität Eichstätt-Ingolstadt)
Michael Cuntz (Leibniz Universität Hannover )
Torsten Hoge (Leibniz Universität Hannover) arXiv:1304.8033
(2014? in J. Euro. Math. Soc.)

## Contents

## Contents

- Free arrangements and the Addition Theorem (AT)


## Contents

- Free arrangements and the Addition Theorem (AT)
- Multiple Addition Theorem (MAT)


## Contents

- Free arrangements and the Addition Theorem (AT)
- Multiple Addition Theorem (MAT)
- Shapiro-Steinberg-Kostant-Macdonald Dual-partition Formula


## Contents

- Free arrangements and the Addition Theorem (AT)
- Multiple Addition Theorem (MAT)
- Shapiro-Steinberg-Kostant-Macdonald Dual-partition Formula
- Ideal Subarrangement Theorem


## Contents

## - Free arrangements and the Addition Theorem (AT)

## -

- 

(4)

## Free Arrangements and their Exponents

## Free Arrangements and their Exponents

- $\mathcal{A}$ : an arrangement of hyperplanes in an $\ell$-dimensional vector space $V$


## Free Arrangements and their Exponents

- $\mathcal{A}$ : an arrangement of hyperplanes in an $\ell$-dimensional vector space $V$
- $\alpha_{H} \in V^{*}: \operatorname{ker}\left(\alpha_{H}\right)=H$ for $H \in \mathcal{A}$


## Free Arrangements and their Exponents

- $\mathcal{A}$ : an arrangement of hyperplanes in an $\ell$-dimensional vector space $V$
- $\alpha_{H} \in V^{*}: \operatorname{ker}\left(\alpha_{H}\right)=H$ for $H \in \mathcal{A}$
- $S:=S\left(V^{*}\right)$ : the symmetric algebra of the dual space $V^{*}$


## Free Arrangements and their Exponents

- $\mathcal{A}$ : an arrangement of hyperplanes in an $\ell$-dimensional vector space $V$
- $\alpha_{H} \in V^{*}: \operatorname{ker}\left(\alpha_{H}\right)=H$ for $H \in \mathcal{A}$
- $S:=S\left(V^{*}\right)$ : the symmetric algebra of the dual space $V^{*}$
- Define a graded $S$-module
$D(\mathcal{A}):=\{\theta \mid \theta$ is an $\mathbb{R}$-linear derivation with

$$
\left.\theta\left(\alpha_{H}\right) \in \alpha_{H} S \text { for all } H \in \mathcal{A}\right\}
$$

## Free Arrangements and their Exponents

- $\mathcal{A}$ : an arrangement of hyperplanes in an $\ell$-dimensional vector space $V$
- $\alpha_{H} \in V^{*}: \operatorname{ker}\left(\alpha_{H}\right)=H$ for $H \in \mathcal{A}$
- $S:=S\left(V^{*}\right)$ : the symmetric algebra of the dual space $V^{*}$
- Define a graded $S$-module

$$
\begin{aligned}
& D(\mathcal{A}):=\{\theta \mid \theta \text { is an } \mathbb{R} \text {-linear derivation with } \\
& \left.\qquad \theta\left(\alpha_{H}\right) \in \alpha_{H} S \text { for all } H \in \mathcal{A}\right\} .
\end{aligned}
$$

- $\mathcal{A}$ is said to be a free arrangement if $D(\mathcal{F})$ is a free $S$-module.


## Free Arrangements and their Exponents

- $\mathcal{A}$ : an arrangement of hyperplanes in an $\ell$-dimensional vector space $V$
- $\alpha_{H} \in V^{*}: \operatorname{ker}\left(\alpha_{H}\right)=H$ for $H \in \mathcal{A}$
- $S:=S\left(V^{*}\right)$ : the symmetric algebra of the dual space $V^{*}$
- Define a graded $S$-module

$$
\begin{aligned}
& D(\mathcal{A}):=\{\theta \mid \theta \text { is an } \mathbb{R} \text {-linear derivation with } \\
& \left.\qquad \theta\left(\alpha_{H}\right) \in \alpha_{H} S \text { for all } H \in \mathcal{A}\right\} .
\end{aligned}
$$

- $\mathcal{A}$ is said to be a free arrangement if $D(\mathcal{F})$ is a free $S$-module.
- When $\mathcal{A}$ is free, then $\exists \theta_{1}, \theta_{2}, \ldots, \theta_{\ell}$ : homogeneous basis with $\operatorname{deg} \theta_{i}=d_{i}$. The nonnegative integers $d_{1}, d_{2}, \ldots, d_{\ell}$ are called the exponents of $\mathcal{A}$.


## Free Arrangements and their Exponents

## Free Arrangements and their Exponents

## Example.

( the braid arrangement (Weyl arrangement of type $A_{3}$ ) )

$$
\mathcal{A}:=\left\{\operatorname{ker}\left(x_{i}-x_{j}\right) \mid 1 \leq i<j \leq 4\right\}
$$

## Free Arrangements and their Exponents

## Example.

( the braid arrangement (Weyl arrangement of type $A_{3}$ ) )

$$
\mathcal{A}:=\left\{\operatorname{ker}\left(x_{i}-x_{j}\right) \mid 1 \leq i<j \leq 4\right\}
$$



## Free Arrangements and their Exponents

## Example.

( the braid arrangement (Weyl arrangement of type $A_{3}$ ) )

$$
\mathcal{A}:=\left\{\operatorname{ker}\left(x_{i}-x_{j}\right) \mid 1 \leq i<j \leq 4\right\}
$$



The exponents are

$$
(0,1,2,3)
$$

because ...

## Free Arrangements and their Exponents

## Example.

( the braid arrangement (Weyl arrangement of type $A_{3}$ ) )

$$
\mathcal{A}:=\left\{\operatorname{ker}\left(x_{i}-x_{j}\right) \mid 1 \leq i<j \leq 4\right\}
$$

The $S$-module $D(\mathcal{A})$ is a free module with a basis

$$
\begin{aligned}
\theta_{0} & =\left(\partial / \partial x_{1}\right)+\left(\partial / \partial x_{2}\right)+\left(\partial / \partial x_{3}\right)+\left(\partial / \partial x_{4}\right) \\
\theta_{1} & =x_{1}\left(\partial / \partial x_{1}\right)+x_{2}\left(\partial / \partial x_{2}\right)+x_{3}\left(\partial / \partial x_{3}\right)+x_{4}\left(\partial / \partial x_{4}\right) \\
\theta_{2} & =x_{1}^{2}\left(\partial / \partial x_{1}\right)+x_{2}^{2}\left(\partial / \partial x_{2}\right)+x_{3}^{2}\left(\partial / \partial x_{3}\right)+x_{4}^{2}\left(\partial / \partial x_{4}\right) \\
\theta_{3} & =x_{1}^{3}\left(\partial / \partial x_{1}\right)+x_{2}^{3}\left(\partial / \partial x_{2}\right)+x_{3}^{3}\left(\partial / \partial x_{3}\right)+x_{4}^{3}\left(\partial / \partial x_{4}\right) .
\end{aligned}
$$

## Free Arrangements and their Exponents

## Example.

( the braid arrangement (Weyl arrangement of type $A_{3}$ ) )

$$
\mathcal{A}:=\left\{\operatorname{ker}\left(x_{i}-x_{j}\right) \mid 1 \leq i<j \leq 4\right\}
$$

The $S$-module $D(\mathcal{A})$ is a free module with a basis

$$
\begin{aligned}
\theta_{0} & =\left(\partial / \partial x_{1}\right)+\left(\partial / \partial x_{2}\right)+\left(\partial / \partial x_{3}\right)+\left(\partial / \partial x_{4}\right) \\
\theta_{1} & =x_{1}\left(\partial / \partial x_{1}\right)+x_{2}\left(\partial / \partial x_{2}\right)+x_{3}\left(\partial / \partial x_{3}\right)+x_{4}\left(\partial / \partial x_{4}\right) \\
\theta_{2} & =x_{1}^{2}\left(\partial / \partial x_{1}\right)+x_{2}^{2}\left(\partial / \partial x_{2}\right)+x_{3}^{2}\left(\partial / \partial x_{3}\right)+x_{4}^{2}\left(\partial / \partial x_{4}\right) \\
\theta_{3} & =x_{1}^{3}\left(\partial / \partial x_{1}\right)+x_{2}^{3}\left(\partial / \partial x_{2}\right)+x_{3}^{3}\left(\partial / \partial x_{3}\right)+x_{4}^{3}\left(\partial / \partial x_{4}\right) .
\end{aligned}
$$

Thus the exponents are:

$$
\left(\operatorname{deg} \theta_{0}, \operatorname{deg} \theta_{1}, \operatorname{deg} \theta_{2}, \operatorname{deg} \theta_{3}\right)=(0,1,2,3) .
$$

A Triple $\left(\mathcal{A}, \mathcal{H}^{\prime}, \mathcal{F}^{\prime \prime}\right)$

Fix $H \in \mathcal{A}$. Define a triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{F}^{\prime \prime}\right)$ by

$$
\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{H\}, \quad \mathcal{A}^{\prime \prime}:=\left\{H \cap K \mid K \in \mathcal{A}^{\prime}\right\} \quad \text { (an arrangement in } H \text { ). }
$$

## A Triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$

Fix $H \in \mathcal{A}$. Define a triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ by

$$
\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{H\}, \quad \mathcal{A}^{\prime \prime}:=\left\{H \cap K \mid K \in \mathcal{A}^{\prime}\right\} \quad \text { (an arrangement in } H \text { ). }
$$


braid arrangement $A_{3}$

## A Triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$

Fix $H \in \mathcal{A}$. Define a triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ by

$$
\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{H\}, \quad \mathcal{A}^{\prime \prime}:=\left\{H \cap K \mid K \in \mathcal{A}^{\prime}\right\} \text { (an arrangement in } H \text { ). }
$$


$\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$

braid arrangement $A_{3}$

## A Triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$

Fix $H \in \mathcal{A}$. Define a triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ by

$$
\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{H\}, \quad \mathcal{A}^{\prime \prime}:=\left\{H \cap K \mid K \in \mathcal{A}^{\prime}\right\} \text { (an arrangement in } H \text { ). }
$$



## A Triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$

Fix $H \in \mathcal{A}$. Define a triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ by

$$
\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{H\}, \quad \mathcal{A}^{\prime \prime}:=\left\{H \cap K \mid K \in \mathcal{A}^{\prime}\right\} \quad \text { (an arrangement in } H \text { ). }
$$



$$
\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}
$$



A
braid arrangement $A_{3}$

$\mathcal{A}^{\prime \prime}$

In this case we have:

$$
\exp \left(\mathcal{A}^{\prime}\right)=(0,1,2, \underline{2}), \quad \exp (\mathcal{A})=(0,1,2, \underline{3}), \quad \exp \left(\mathcal{A}^{\prime \prime}\right)=(0,1,2)
$$

## A Triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$

Fix $H \in \mathcal{A}$. Define a triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ by

$$
\mathcal{A}^{\prime}:=\mathcal{A} \backslash\{H\}, \quad \mathcal{A}^{\prime \prime}:=\left\{H \cap K \mid K \in \mathcal{A}^{\prime}\right\} \quad \text { (an arrangement in } H \text { ). }
$$



$$
\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}
$$


braid arrangement $A_{3}$

$\mathcal{A}^{\prime \prime}$

In this case we have:

$$
\exp \left(\mathcal{A}^{\prime}\right)=(0,1,2, \underline{2}), \quad \exp (\mathcal{A})=(0,1,2, \underline{3}), \quad \exp \left(\mathcal{A}^{\prime \prime}\right)=(0,1,2) .
$$

This example is generalized into the Addition Theorem (AT) ....

## Addition Theorem (AT)

## Addition Theorem (AT)

Theorem
(H. T.(1980)) For a triple ( $\left.\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$, suppose that $\mathcal{A}^{\prime}$ is free with $\exp \left(\mathcal{H}^{\prime}\right)=\left(d_{1}, d_{2}, \ldots, d_{\ell-1}, d_{\ell}\right)$ and $\mathcal{A}^{\prime \prime}$ is free with $\exp \left(\mathcal{A}^{\prime \prime}\right)=\left(d_{1}, d_{2}, \ldots, d_{\ell-1}\right)$. Then $\mathcal{A}$ is also free with $\exp (\mathcal{A})=\left(d_{1}, d_{2}, \ldots, d_{\ell}+1\right)$.

## Addition Theorem (AT)

## Theorem

(H. T.(1980)) For a triple ( $\left.\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$, suppose that $\mathcal{A}^{\prime}$ is free with $\exp \left(\mathcal{A}^{\prime}\right)=\left(d_{1}, d_{2}, \ldots, d_{\ell-1}, d_{\ell}\right)$ and $\mathcal{A}^{\prime \prime}$ is free with
$\exp \left(\mathcal{A}^{\prime \prime}\right)=\left(d_{1}, d_{2}, \ldots, d_{\ell-1}\right)$. Then $\mathcal{A}$ is also free with
$\exp (\mathcal{A})=\left(d_{1}, d_{2}, \ldots, \underline{d_{\ell}+1}\right)$.
Recall that, for the braid arranegemnt (the Weyl arrangement of type $A_{3}$,

$$
\exp \left(\mathcal{A}^{\prime}\right)=(0,1,2, \underline{2}), \quad \exp \left(\mathcal{A}^{\prime \prime}\right)=(0,1,2), \quad \exp (\mathcal{A})=(0,1,2, \underline{3}) .
$$

## Addition Theorem (AT)

## Theorem

(H. T.(1980)) For a triple ( $\left.\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$, suppose that $\mathcal{A}^{\prime}$ is free with $\exp \left(\mathcal{A}^{\prime}\right)=\left(d_{1}, d_{2}, \ldots, d_{\ell-1}, d_{\ell}\right)$ and $\mathcal{A}^{\prime \prime}$ is free with
$\exp \left(\mathcal{A}^{\prime \prime}\right)=\left(d_{1}, d_{2}, \ldots, d_{\ell-1}\right)$. Then $\mathcal{A}$ is also free with
$\exp (\mathcal{A})=\left(d_{1}, d_{2}, \ldots, \underline{d_{\ell}+1}\right)$.
Recall that, for the braid arranegemnt (the Weyl arrangement of type $A_{3}$,

$$
\exp \left(\mathcal{A}^{\prime}\right)=(0,1,2, \underline{2}), \quad \exp \left(\mathcal{A}^{\prime \prime}\right)=(0,1,2), \quad \exp (\mathcal{A})=(0,1,2, \underline{3})
$$

Remark. In the AT, $d_{\ell}$ is not necessarily the maximum exponent in $\exp \left(\mathcal{A}^{\prime}\right)$.

## Contents

(1)

## - Multiple Addition Theorem (MAT)

(3)
4)

## Multiple Addition Theorem (MAT)

## Multiple Addition Theorem (MAT)

## Theorem <br> (ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.

## Multiple Addition Theorem (MAT)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$. Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.

## Multiple Addition Theorem (MAT)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$. Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.

## Multiple Addition Theorem (MAT)

Theorem
(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$. Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes. Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$. Assume

## Multiple Addition Theorem (MAT)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,

## Multiple Addition Theorem (MAT)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,
(2) $X \nsubseteq \bigcup_{H \in \mathcal{P}^{\prime}} H$, and

## Multiple Addition Theorem (MAT)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,
(2) $X \nsubseteq \bigcup_{H \in \mathcal{F}^{\prime}} H$, and
(3) $\left|\mathcal{H}^{\prime}\right|-\left|\mathcal{H}_{j}^{\prime \prime}\right|=d(j=1, \ldots, q)$

## Multiple Addition Theorem (MAT)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,
(2) $X \nsubseteq \bigcup_{H \in \mathcal{F}^{\prime}} H$, and
(3) $\left|\mathcal{H}^{\prime}\right|-\left|\mathcal{H}_{j}^{\prime \prime}\right|=d(j=1, \ldots, q)$ (Remark: $\leq$ always holds true).

## Multiple Addition Theorem (MAT)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,
(2) $X \nsubseteq \bigcup_{H \in \mathcal{F}^{\prime}} H$, and
(3) $\left|\mathcal{F}^{\prime}\right|-\left|\mathcal{H}_{j}^{\prime \prime}\right|=d(j=1, \ldots, q)$ (Remark: $\leq$ always holds true).

Then (a) $q \leq p$

## Multiple Addition Theorem (MAT)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,
(2) $X \nsubseteq \bigcup_{H \in \mathcal{F}^{\prime}} H$, and
(3) $\left|\mathcal{F}^{\prime}\right|-\left|\mathcal{H}_{j}^{\prime \prime}\right|=d(j=1, \ldots, q)$ (Remark: $\leq$ always holds true).

Then (a) $q \leq p$ and (b) $\mathcal{A}:=\mathcal{H}^{\prime} \cup\left\{H_{1}, \ldots, H_{q}\right\}$ is free with exponents $\left(d_{1}, \ldots, d_{\ell-q},(d+1)^{q}\right)$.

## Addition Theorem (AT)

## Addition Theorem (AT)



## Addition Theorem (AT)



## Addition Theorem (AT)



## Addition Theorem (AT)



## Multiple Addition Theorem (MAT)

## Multiple Addition Theorem (MAT)



## Multiple Addition Theorem (MAT)



## Multiple Addition Theorem (MAT)



## Multiple Addition Theorem (MAT)



## Multiple Addition Theorem (MAT)



## Multiple Addition Theorem (MAT)

## Multiple Addition Theorem (MAT)



## Multiple Addition Theorem (MAT)



## Multiple Addition Theorem (MAT)



## Multiple Addition Theorem (MAT)


$\mathcal{A}^{\prime}$ is free with exponents $(1, \underline{2}, \underline{2}), \quad d=2$ (the max exponent).

## Multiple Addition Theorem (MAT)


$\mathcal{F}^{\prime}$ is free with exponents $(1, \underline{2}, \underline{2}), \quad d=2$ (the max exponent). $\mathcal{A}_{1}^{\prime \prime}:=\left\{H \cap H_{1} \mid H \in \mathcal{A}^{\prime}\right\},\left|\mathcal{H}_{1}^{\prime \prime}\right|=3$ and $\left|\mathcal{H}^{\prime}\right|-\left|\mathcal{A}_{1}^{\prime \prime}\right|=5-3=\underline{2}$.

## Multiple Addition Theorem (MAT)


$\mathcal{A}^{\prime}$ is free with exponents $(1, \underline{2}, \underline{2}), \quad d=2$ (the max exponent). $\mathcal{A}_{1}^{\prime \prime}:=\left\{H \cap H_{1} \mid H \in \mathcal{A}^{\prime}\right\},\left|\mathcal{A}_{1}^{\prime \prime}\right|=3$ and $\left|\mathcal{A}^{\prime}\right|-\left|\mathcal{A}_{1}^{\prime \prime}\right|=5-3=\underline{2}$.
Thus $\mathcal{A}=\mathcal{A}^{\prime} \cup\left\{H_{1}\right\}$ with exponents $(1,2, \underline{3})$

## Multiple Addition Theorem (MAT)

## Multiple Addition Theorem (MAT)

Remark. The multiple addition theorem (MAT) does not generalize the addition theorem (AT).

## Multiple Addition Theorem (MAT)

Remark. The multiple addition theorem (MAT) does not generalize the addition theorem (AT).

The MAT is a theorem which is applicable to a relatively narrow class of arrangements because the only maximum exponents can increase.

## Multiple Addition Theorem (MAT)

Remark. The multiple addition theorem (MAT) does not generalize the addition theorem (AT).

The MAT is a theorem which is applicable to a relatively narrow class of arrangements because the only maximum exponents can increase.

So it is natural to ask the following

## Multiple Addition Theorem (MAT)

Remark. The multiple addition theorem (MAT) does not generalize the addition theorem (AT).

The MAT is a theorem which is applicable to a relatively narrow class of arrangements because the only maximum exponents can increase.

So it is natural to ask the following
Question. Is there any significant application of MAT?

## Contents

(1)
(2)

## - Shapiro-Steinberg-Kostant-Macdonald Dual-partition Formula

(4)

## What are Dual Partitions?

$36=1+4+5+7+8+11$
$\uparrow$ Dual Partitions
$36=1+1+1+2+3+3+4+5+5+5+6$

## What are Dual Partitions?



## What are Dual Partitions?



## What are Dual Partitions?

| 1 | $\bullet$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $\bullet$ |  |  |  |  |  |
| 1 | $\bullet$ |  |  |  |  |  |
| 2 | $\bullet$ | $\bullet$ |  |  |  |  |
| 3 | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |
| 3 | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |
| 4 | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |  |  |
| 5 | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |  |
| 5 | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |  |
| 5 | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |  |
| 6 | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
|  | 11 | 8 | 7 | 5 | 4 | 1 |

## What are these numbers?

$36=1+4+5+7+8+11$
$\uparrow$ Dual Partitions
$36=1+1+1+2+3+3+4+5+5+5+6$

## What are these numbers?

$(1,4,5,7,8,11)$ is the exponents of the root system of the type $E_{6}$
$\downarrow$ Dual Partitions
$(1,1,1,2,3,3,4,5,5,5,6)$ is the height distribution of the positive roots of the type $E_{6}$

## the dual-partition formula by Shapiro, Steinberg, Kostant, Macdonald

# the dual-partition formula by Shapiro, Steinberg, Kostant, Macdonald 

## Theorem

(The dual-partition formula by Shapiro, Steinberg, Kostant (1959), Macdonald (1972) )

## the dual-partition formula by Shapiro, Steinberg, Kostant, Macdonald

## Theorem

(The dual-partition formula by Shapiro, Steinberg, Kostant (1959), Macdonald (1972) )
The exponents of an irreducible root system and the height distribution of positive roots are dual partitions to each other.

## the dual-partition formula by Shapiro, Steinberg, Kostant, Macdonald

## Theorem

(The dual-partition formula by Shapiro, Steinberg, Kostant (1959), Macdonald (1972) )
The exponents of an irreducible root system and the height distribution of positive roots are dual partitions to each other.

## Remark

## the dual-partition formula by Shapiro, Steinberg, Kostant, Macdonald

## Theorem

(The dual-partition formula by Shapiro, Steinberg, Kostant (1959), Macdonald (1972) )
The exponents of an irreducible root system and the height distribution of positive roots are dual partitions to each other.

## Remark

(1) This theorem can be (was) regarded as a method to "reading off" the exponents from the root structure.

## the dual-partition formula by Shapiro, Steinberg, Kostant, Macdonald

## Theorem

(The dual-partition formula by Shapiro, Steinberg, Kostant (1959), Macdonald (1972) )
The exponents of an irreducible root system and the height distribution of positive roots are dual partitions to each other.

## Remark

(1) This theorem can be (was) regarded as a method to "reading off" the exponents from the root structure.
(2) The other methods to find the exponents include: (a) from the degrees of basic invariants, (b) from the eigenvalues of a Coxeter transformation, etc.

## Exponents

## Exponents

## Dynkin diagrams (root systems) and exponents

## Exponents

Dynkin diagrams (root systems) and exponents
$A_{\ell}:$


$B_{\ell}$ :
 . .

$(1,3,5, \ldots, 2 \ell-1)$
$(1,3,5, \ldots, 2 \ell-3, \ell-1)$
$(1,4,5,7,8,11)$

## Exponents

Dynkin diagrams (root systems) and exponents
$E_{7}:(1,5,7,9,11,13,17)$

$E_{8}:(1,7,11,13,17,19,23,29)$


$G_{2}: \underset{\alpha_{1}}{\bullet} \underset{\alpha_{2}}{\rightleftharpoons}(1,5)$

## Height of positive roots

## Height of positive roots

- $\Phi$ : an irreducible root system of rank $\ell$


## Height of positive roots

- $\Phi$ : an irreducible root system of rank $\ell$
- $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ : a simple system of $\Phi$


## Height of positive roots

- $\Phi$ : an irreducible root system of rank $\ell$
- $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ : a simple system of $\Phi$
- $\Phi^{+}$: the set of positive roots


## Height of positive roots

- $\Phi$ : an irreducible root system of rank $\ell$
- $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ : a simple system of $\Phi$
- $\Phi^{+}$: the set of positive roots
- $\operatorname{ht}(\alpha):=\sum_{i=1}^{\ell} c_{i}$ (height) for a positive root

$$
\alpha=\sum_{i=1}^{\ell} c_{i} \alpha_{i} \quad\left(c_{i} \in \mathbb{Z}_{\geq 0}\right)
$$

## Height of positive roots

- $\Phi$ : an irreducible root system of rank $\ell$
- $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ : a simple system of $\Phi$
- $\Phi^{+}$: the set of positive roots
- $\operatorname{ht}(\alpha):=\sum_{i=1}^{\ell} c_{i}$ (height) for a positive root

$$
\alpha=\sum_{i=1}^{\ell} c_{i} \alpha_{i} \quad\left(c_{i} \in \mathbb{Z}_{\geq 0}\right)
$$

- The height distribution in $\Phi^{+}$is a sequence of positive integers $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$, where $i_{j}:=\left|\left\{\alpha \in \Phi^{+} \mid \operatorname{ht}(\alpha)=j\right\}\right|(1 \leq j \leq m)$


## Height of positive roots $\left(E_{6}\right)$

## Height of positive roots $\left(E_{6}\right)$



Exponents: (1,4,5,7,8,11)
List of positive roots:

## Height of positive roots $\left(E_{6}\right)$



Exponents: (1,4,5,7,8,11)
List of positive roots:
height 1 : $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$
height 2 : $\alpha_{1}+\alpha_{3}, \alpha_{2}+\alpha_{4}, \alpha_{3}+\alpha_{4}, \alpha_{4}+\alpha_{5}, \alpha_{5}+\alpha_{6}$
height 3 : $\alpha_{1}+\alpha_{3}+\alpha_{4}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \ldots$

## Height of positive roots $\left(E_{6}\right)$



Exponents: $(1,4,5,7,8,11)$
List of positive roots:
height 1 : $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$
height 2 : $\alpha_{1}+\alpha_{3}, \alpha_{2}+\alpha_{4}, \alpha_{3}+\alpha_{4}, \alpha_{4}+\alpha_{5}, \alpha_{5}+\alpha_{6}$
height 3 : $\alpha_{1}+\alpha_{3}+\alpha_{4}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \ldots$

## Height of positive roots $\left(E_{6}\right)$



Exponents: (1,4,5,7,8,11)
List of positive roots:
height 1 : $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$
height 2 : $\alpha_{1}+\alpha_{3}, \alpha_{2}+\alpha_{4}, \alpha_{3}+\alpha_{4}, \alpha_{4}+\alpha_{5}, \alpha_{5}+\alpha_{6}$ height 3 : $\alpha_{1}+\alpha_{3}+\alpha_{4}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \ldots$
height 11: $\tilde{\alpha}=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}$ (the highest root)

## Height of positive roots $\left(E_{6}\right)$


$\tilde{\alpha}=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}, \quad \operatorname{ht}(\tilde{\alpha})=11$ (the highest root)

## Height Distribution $\left(E_{6}\right)$



## Exponents $\left(E_{6}\right)$



## The Dual-Partition Formula ( $E_{6}$ )



## History of the Dual-Partition Formula

## History of the Dual-Partition Formula

# THE PRINCIPAL THREE-DIMENSIONAL SUBGROUP AND THE BETTI NUMBERS OF A COMPLEX SIMPLE LIE GROUP.*1 

By Bertram Kostant.

...... we shall presently describe, of "reading off" the exponents from the root structure of $\mathfrak{g}$ was discovered by Arnold Shapiro. ......However, even though one verifies that the numbers produced by this procedure agree with the exponents ...... the important question of proving that this "agreement" is more than just a coincidence remained open.

- (1959) A. Shapiro (empirical proof using the classification)
- (1959) R. Steinberg (empirical proof using the classification)
- (1959) B. Kostant (1st proof without using the classification)
- (1972) I. G. Macdonald (2nd proof: generating functions)


## History of the Dual-Partition Formula

THE PRINCIPAL THREE-DIMENSIONAL SUBGROUP AND THE BETTI NUMBERS OF A COMPLEX SIMPLE LIE GROUP.*1

By Bertram Kostant.

...... we shall presently describe, of "reading off" the exponents from the root structure of $\mathfrak{g}$ was discovered by Arnold Shapiro. ...... However, even though one verifies that the numbers produced by this procedure agree with the exponents ...... the important question of proving that this "agreement" is more than just a coincidence remained open.

- (1959) A. Shapiro (empirical proof using the classification)
- (1959) R. Steinberg (empirical proof using the classification)
- (1959) B. Kostant (1st proof without using the classification)
- (1972) I. G. Macdonald (2nd proof: generating functions)
- (2014?) ABCHT ( for ideal subarr.: using free arrangements)


## Contents

## (1)

(2)
(3)

## - Ideal Subarrangement Theorem

## Weyl arrangements

## Weyl arrangements

- $\Phi^{+}$: the set of positive roots


## Weyl arrangements

- $\Phi^{+}$: the set of positive roots
- $\mathcal{A}:=\mathcal{A}\left(\Phi^{+}\right):=\left\{\operatorname{ker}(\alpha) \mid \alpha \in \Phi^{+}\right\}$: the Weyl arrangement


## the root poset and ideals

## Definition

## the root poset and ideals

## Definition

Introduce a partial order $\geq$ into the set $\Phi^{+}$of positive roots by

## the root poset and ideals

## Definition

Introduce a partial order $\geq$ into the set $\Phi^{+}$of positive roots by

$$
\beta_{1} \geq \beta_{2} \Longleftrightarrow \beta_{1}-\beta_{2} \in \sum_{i=1}^{\ell} \mathbb{Z}_{\geq 0} \alpha_{i} .
$$

The poset is called the (positive) root poset.

## the root poset and ideals

## Definition

Introduce a partial order $\geq$ into the set $\Phi^{+}$of positive roots by

$$
\beta_{1} \geq \beta_{2} \Longleftrightarrow \beta_{1}-\beta_{2} \in \sum_{i=1}^{\ell} \mathbb{Z}_{\geq 0} \alpha_{i} .
$$

The poset is called the (positive) root poset.
A subset $I$ of $\Phi^{+}$is called an ideal if, for $\left\{\beta_{1}, \beta_{2}\right\} \subset \Phi^{+}$,

$$
\beta_{1} \geq \beta_{2}, \beta_{1} \in I \Rightarrow \beta_{2} \in I .
$$

## the root poset and ideals

## Definition

Introduce a partial order $\geq$ into the set $\Phi^{+}$of positive roots by

$$
\beta_{1} \geq \beta_{2} \Longleftrightarrow \beta_{1}-\beta_{2} \in \sum_{i=1}^{\ell} \mathbb{Z}_{\geq 0} \alpha_{i} .
$$

The poset is called the (positive) root poset.
A subset $I$ of $\Phi^{+}$is called an ideal if, for $\left\{\beta_{1}, \beta_{2}\right\} \subset \Phi^{+}$,

$$
\beta_{1} \geq \beta_{2}, \beta_{1} \in I \Rightarrow \beta_{2} \in I .
$$

## Definition

When $I$ is an ideal of $\Phi^{+}$the arrangement $\mathcal{A}(I):=\{\operatorname{ker} \alpha \mid \alpha \in I\}$ is called an ideal subarrangement of $\mathcal{A}$.

## Examples of ideals/non-ideals of the root poset of $A_{3}$

$$
\begin{aligned}
& A_{3}: \underset{\alpha_{1}}{\bullet} \alpha_{2} \cdot \alpha_{3} \\
& \Phi^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}
\end{aligned}
$$

## Examples of ideals/non-ideals of the root poset of $A_{3}$

$$
\begin{aligned}
& A_{3}: \stackrel{\alpha_{2}}{\bullet} \frac{\alpha_{3}}{\bullet} \\
& \Phi^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\} \\
& \alpha_{1} \leq \alpha_{1}+\alpha_{2} \leq \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{2} \leq \alpha_{1}+\alpha_{2} \leq \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{2} \leq \alpha_{2}+\alpha_{3} \leq \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{3} \leq \alpha_{2}+\alpha_{3} \leq \alpha_{1}+\alpha_{2}+\alpha_{3}
\end{aligned}
$$

## Examples of ideals/non-ideals of the root poset of $A_{3}$

$$
\begin{aligned}
& A_{3}: \stackrel{\alpha_{2}}{\bullet} \frac{\alpha_{3}}{\bullet} \\
& \Phi^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\} \\
& \alpha_{1} \leq \alpha_{1}+\alpha_{2} \leq \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{2} \leq \alpha_{1}+\alpha_{2} \leq \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{2} \leq \alpha_{2}+\alpha_{3} \leq \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{3} \leq \alpha_{2}+\alpha_{3} \leq \alpha_{1}+\alpha_{2}+\alpha_{3}
\end{aligned}
$$

Thus $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}\right\}$ is an ideal, while $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$ is not.

## Examples of ideals/non-ideals of the root poset of $A_{3}$

$$
\begin{aligned}
& A_{3}: \stackrel{\alpha_{2}}{\bullet} \frac{\alpha_{3}}{\bullet} \\
& \Phi^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\} \\
& \alpha_{1} \leq \alpha_{1}+\alpha_{2} \leq \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{2} \leq \alpha_{1}+\alpha_{2} \leq \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{2} \leq \alpha_{2}+\alpha_{3} \leq \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{3} \leq \alpha_{2}+\alpha_{3} \leq \alpha_{1}+\alpha_{2}+\alpha_{3}
\end{aligned}
$$

Thus $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}\right\}$ is an ideal, while $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$ is not.

Note that the entire set $\Phi^{+}$is always an ideal.

## Main Theorem

## Theorem

## Main Theorem

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$


## Main Theorem

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$
- I : an ideal of $\Phi^{+}$,


## Main Theorem

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$
- I : an ideal of $\Phi^{+}$,
then


## Main Theorem

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$
- I : an ideal of $\Phi^{+}$,
then
(1) $\mathcal{A}(I)$ is free, and


## Main Theorem

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$
- I : an ideal of $\Phi^{+}$,
then
(1) $\mathcal{A}(I)$ is free, and
(2) the exponents of $\mathcal{A}(I)$ and the height distribution of the positive roots in I are dual partitions to each other.


## Main Theorem

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$
- I : an ideal of $\Phi^{+}$,


## then

(1) $\mathcal{A}(I)$ is free, and
(2) the exponents of $\mathcal{A}(I)$ and the height distribution of the positive roots in I are dual partitions to each other.

This positively settles a conjecture by Sommers-Tymoczko (2006).

## Main Corollary

## Main Corollary

In particular, when the ideal $I$ is equal to the entire $\Phi^{+}$, our main theorem yields:

## Main Corollary

In particular, when the ideal $I$ is equal to the entire $\Phi^{+}$, our main theorem yields:

## Corollary

(The dual-partition formula by Shapiro, Steinberg, Kostant, Macdonald)

## Main Corollary

In particular, when the ideal $I$ is equal to the entire $\Phi^{+}$, our main theorem yields:

## Corollary

(The dual-partition formula by Shapiro, Steinberg, Kostant, Macdonald)
The exponents of the entire $\Phi$ and the height distribution of the entire positive roots are dual partitions to each other.

## Main Theorem (revisited)

## Theorem

## Main Theorem (revisited)

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$


## Main Theorem (revisited)

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$
- I : an ideal of $\Phi^{+}$,


## Main Theorem (revisited)

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$
- I : an ideal of $\Phi^{+}$,
then


## Main Theorem (revisited)

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$
- I : an ideal of $\Phi^{+}$,
then
(1) $\mathcal{A}(I)$ is free, and


## Main Theorem (revisited)

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$
- I : an ideal of $\Phi^{+}$,
then
(1) $\mathcal{A}(I)$ is free, and
(2) the exponents of $\mathcal{A}(I)$ and the height distribution of the positive roots in I are dual partitions to each other.


## Main Theorem (revisited)

## Theorem

If

- $\Phi$ : an irreducible root system of rank $\ell$
- I : an ideal of $\Phi^{+}$,


## then

(1) $\mathcal{A}(I)$ is free, and
(2) the exponents of $\mathcal{A}(I)$ and the height distribution of the positive roots in I are dual partitions to each other.

This positively settles a conjecture by Sommers-Tymoczko (2006).

## Proof of Main Theorem (just an outline)

## Proof of Main Theorem (just an outline)

We prove the Main Theorem applying MAT inductively.

## Proof of Main Theorem (just an outline)

We prove the Main Theorem applying MAT inductively. Proof.

## Proof of Main Theorem (just an outline)

We prove the Main Theorem applying MAT inductively. Proof.

- Let $\mathcal{B}$ be an ideal subarrangement of the Weyl arrangement $\mathcal{A}$ of a root system $\Phi$.


## Proof of Main Theorem (just an outline)

We prove the Main Theorem applying MAT inductively.

## Proof.

- Let $\mathcal{B}$ be an ideal subarrangement of the Weyl arrangement $\mathcal{A}$ of a root system $\Phi$.
- For $k \in \mathbb{Z}_{>0}$, define $\mathcal{B}_{\leq k}:=\left\{H \in \mathcal{B} \mid h t\left(\alpha_{H}\right) \leq k\right\}$.


## Proof of Main Theorem (just an outline)

We prove the Main Theorem applying MAT inductively.

## Proof.

- Let $\mathcal{B}$ be an ideal subarrangement of the Weyl arrangement $\mathcal{A}$ of a root system $\Phi$.
- For $k \in \mathbb{Z}_{>0}$, define $\mathcal{B}_{\leq k}:=\left\{H \in \mathcal{B} \mid h t\left(\alpha_{H}\right) \leq k\right\}$.
- We may easily verify $\mathcal{B}_{\leq 1}$ is a free arrangement with exponents $(0,0, \ldots, 0,1,1, \ldots, 1)$.


## Proof of Main Theorem (just an outline)

We prove the Main Theorem applying MAT inductively.

## Proof.

- Let $\mathcal{B}$ be an ideal subarrangement of the Weyl arrangement $\mathcal{A}$ of a root system $\Phi$.
- For $k \in \mathbb{Z}_{>0}$, define $\mathcal{B}_{\leq k}:=\left\{H \in \mathcal{B} \mid h t\left(\alpha_{H}\right) \leq k\right\}$.
- We may easily verify $\mathcal{B}_{\leq 1}$ is a free arrangement with exponents $(0,0, \ldots, 0,1,1, \ldots, 1)$.
- We may apply MAT for $\mathcal{A}^{\prime}:=\mathcal{B}_{\leq k}$ and $\mathcal{A}:=\mathcal{B}_{\leq k+1}$.


## Proof of Main Theorem (just an outline)

We prove the Main Theorem applying MAT inductively.

## Proof.

- Let $\mathcal{B}$ be an ideal subarrangement of the Weyl arrangement $\mathcal{A}$ of a root system $\Phi$.
- For $k \in \mathbb{Z}_{>0}$, define $\mathcal{B}_{\leq k}:=\left\{H \in \mathcal{B} \mid\right.$ ht $\left.\left(\alpha_{H}\right) \leq k\right\}$.
- We may easily verify $\mathcal{B}_{\leq 1}$ is a free arrangement with exponents $(0,0, \ldots, 0,1,1, \ldots, 1)$.
- We may apply MAT for $\mathcal{A}^{\prime}:=\mathcal{B}_{\leq k}$ and $\mathcal{A}:=\mathcal{B}_{\leq k+1}$.
- To verify the three assumtions of MAT, we verify the corresponding combinatorial and geometric properties of the root system $\Phi$.


## Proof of Main Theorem (just an outline)

We prove the Main Theorem applying MAT inductively.

## Proof.

- Let $\mathcal{B}$ be an ideal subarrangement of the Weyl arrangement $\mathcal{A}$ of a root system $\Phi$.
- For $k \in \mathbb{Z}_{>0}$, define $\mathcal{B}_{\leq k}:=\left\{H \in \mathcal{B} \mid h t\left(\alpha_{H}\right) \leq k\right\}$.
- We may easily verify $\mathcal{B}_{\leq 1}$ is a free arrangement with exponents $(0,0, \ldots, 0,1,1, \ldots, 1)$.
- We may apply MAT for $\mathcal{A}^{\prime}:=\mathcal{B}_{\leq k}$ and $\mathcal{A}:=\mathcal{B}_{\leq k+1}$.
- To verify the three assumtions of MAT, we verify the corresponding combinatorial and geometric properties of the root system $\Phi$. (A key Lemma is in the next page.)


## Local-global formula for heights (A key Lemma)

For $X \in L(\mathcal{A})$, let $\Phi_{X}:=\Phi \cap X^{\perp}$. Then $\Phi_{X}$ is a root system of rank codim $X$.

## Local-global formula for heights (A key Lemma)

For $X \in L(\mathcal{A})$, let $\Phi_{X}:=\Phi \cap X^{\perp}$. Then $\Phi_{X}$ is a root system of rank codim $X$.

The height of $\alpha$ in $\Phi_{X}$ is called the local height and is denoted by ht ${ }_{X} \alpha$.

## Local-global formula for heights (A key Lemma)

For $X \in L(\mathcal{A})$, let $\Phi_{X}:=\Phi \cap X^{\perp}$. Then $\Phi_{X}$ is a root system of rank codim $X$.

The height of $\alpha$ in $\Phi_{X}$ is called the local height and is denoted by ht ${ }_{X} \alpha$.
For $\alpha \in \Phi^{+}$, let

$$
\mathcal{A}^{\alpha}:=\mathcal{A}^{H_{\alpha}}=\left\{K \cap H_{\alpha} \mid K \in \mathcal{A} \backslash\left\{H_{\alpha}\right\}\right\} .
$$

## Local-global formula for heights (A key Lemma)

For $X \in L(\mathcal{A})$, let $\Phi_{X}:=\Phi \cap X^{\perp}$. Then $\Phi_{X}$ is a root system of rank codim $X$.

The height of $\alpha$ in $\Phi_{X}$ is called the local height and is denoted by ht ${ }_{X} \alpha$.
For $\alpha \in \Phi^{+}$, let

$$
\mathcal{A}^{\alpha}:=\mathcal{A}^{H_{\alpha}}=\left\{K \cap H_{\alpha} \mid K \in \mathcal{A} \backslash\left\{H_{\alpha}\right\}\right\} .
$$

Lemma (Local-global formula for heights)
For $\alpha \in \Phi^{+}$, we have

$$
\mathrm{ht}_{\Phi} \alpha-1=\sum_{X \in \mathcal{A}^{\alpha}}\left(\mathrm{ht}_{X} \alpha-1\right) .
$$

Multiple Addition Theorem (MAT) (Revisited)

## Multiple Addition Theorem (MAT) (Revisited)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.

## Multiple Addition Theorem (MAT) (Revisited)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$. Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.

## Multiple Addition Theorem (MAT) (Revisited)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$. Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.

## Multiple Addition Theorem (MAT) (Revisited)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$. Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume

## Multiple Addition Theorem (MAT) (Revisited)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,

## Multiple Addition Theorem (MAT) (Revisited)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$. Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,
(2) $X \nsubseteq \bigcup_{H \in \mathcal{F}^{\prime}} H$, and

## Multiple Addition Theorem (MAT) (Revisited)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,
(2) $X \nsubseteq \bigcup_{H \in \mathcal{F}^{\prime}} H$, and
(3) $\left|\mathcal{H}^{\prime}\right|-\left|\mathcal{A}_{j}^{\prime \prime}\right|=d(j=1, \ldots, q)$

## Multiple Addition Theorem (MAT) (Revisited)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,
(2) $X \nsubseteq \bigcup_{H \in \mathcal{F}^{\prime}} H$, and
(3) $\left|\mathcal{H}^{\prime}\right|-\left|\mathcal{H}_{j}^{\prime \prime}\right|=d(j=1, \ldots, q)$ (Remark: $\leq$ always holds true).

## Multiple Addition Theorem (MAT) (Revisited)

## Theorem

(ABCHT(2014?)) Let $\mathcal{F}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,
(2) $X \nsubseteq \bigcup_{H \in \mathcal{F}^{\prime}} H$, and
(3) $\left|\mathcal{F}^{\prime}\right|-\left|\mathcal{H}_{j}^{\prime \prime}\right|=d(j=1, \ldots, q)$ (Remark: $\leq$ always holds true).

Then (a) $q \leq p$

## Multiple Addition Theorem (MAT) (Revisited)

## Theorem

(ABCHT(2014?)) Let $\mathcal{H}^{\prime}$ be a free arrangement with exponents $\left(d_{1}, \ldots, d_{\ell}\right) \quad\left(d_{1} \leq \cdots \leq d_{\ell}\right)$ and $1 \leq p \leq \ell$ the multiplicity of the maximum exponent $d$.
Let $H_{1}, \ldots, H_{q}$ be (new) hyperplanes.
Define $\mathcal{A}_{j}^{\prime \prime}:=\left\{H \cap H_{j} \mid H \in \mathcal{A}^{\prime}\right\}(j=1, \ldots, q)$.
Assume
(1) $X:=H_{1} \cap \cdots \cap H_{q}$ is $q$-codimensional,
(2) $X \nsubseteq \bigcup_{H \in \mathcal{F}^{\prime}} H$, and
(3) $\left|\mathcal{F}^{\prime}\right|-\left|\mathcal{H}_{j}^{\prime \prime}\right|=d(j=1, \ldots, q)$ (Remark: $\leq$ always holds true).

Then (a) $q \leq p$ and (b) $\mathcal{A}:=\mathcal{A}^{\prime} \cup\left\{H_{1}, \ldots, H_{q}\right\}$ is free with exponents $\left(d_{1}, \ldots, d_{\ell-q},(d+1)^{q}\right)$.

## Inductive use of MAT $\left(E_{6}\right): I=\Phi_{0}^{+}$

## Inductive use of MAT $\left(E_{6}\right): I=\Phi_{0}^{+}$



## Inductive use of MAT $\left(E_{6}\right): I=\Phi_{1}^{+}$



## Inductive use of MAT $\left(E_{6}\right): I=\Phi_{2}^{+}$



## Inductive use of MAT $\left(E_{6}\right): I=\Phi_{3}^{+}$



## Inductive use of MAT $\left(E_{6}\right): I=\Phi_{4}^{+}$



## Inductive use of MAT $\left(E_{6}\right): I=\Phi_{5}^{+}$



## Inductive use of MAT $\left(E_{6}\right): I=\Phi_{6}^{+}$



Inductive use of MAT $\left(E_{6}\right): I=\Phi_{7}^{+}$


## Inductive use of MAT $\left(E_{6}\right): I=\Phi_{8}^{+}$



Inductive use of MAT $\left(E_{6}\right): I=\Phi_{9}^{+}$


## Inductive use of MAT $\left(E_{6}\right): I=\Phi_{10}^{+}$



## The Dual-Partition Formula ( $E_{6}$ ) (again)



## Summary

## Summary

- We have a theorem (Multiple Addition Theorem (MAT)) in the theory of free arrangements.


## Summary

(1) We have a theorem (Multiple Addition Theorem (MAT)) in the theory of free arrangements.
(2) Although the MAT is similar to the old addition theorem (AT) (1980), it does not generalize the AT .

## Summary

- We have a theorem (Multiple Addition Theorem (MAT)) in the theory of free arrangements.
- Although the MAT is similar to the old addition theorem (AT) (1980), it does not generalize the AT .
- As an application of the MAT, we may give a new classification-free proof of the celebrated dual-partition formula for a root system by Shapiro-Steinberg-Kostant-Macdonald.


## Summary

(1) We have a theorem (Multiple Addition Theorem (MAT)) in the theory of free arrangements.
(2) Although the MAT is similar to the old addition theorem (AT) (1980), it does not generalize the AT .

- As an application of the MAT, we may give a new classification-free proof of the celebrated dual-partition formula for a root system by Shapiro-Steinberg-Kostant-Macdonald.
- Moreover, we have the dual-partion formula for any ideal subarrangements.


## I stop here.

## I stop here.

## Thanks for your attention!

