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Abstract

In this talk, we present our results on spacelike minimal Lagrangian surfaces in the
two dimensional complex hyperbolic quadric 5. We will show the equivalence between
minimality and flatness of a family of connections and describe the associated isometric S!-
family, and establish a precise correspondence with spacelike maximal surfaces in the anti-de
Sitter 3-space H3 through their Gauss maps. By applying loop group method, we construct
explicit families including R-equivariant and radially symmetric examples.

1 Introduction

Minimal Lagrangian surfaces in definite Kahler manifolds are now well-established for the am-
bient space S? x §? = 3 [3, 8]. In contrast, the theory in indefinite Kihler manifolds is far less
developed, where the causal structure introduces phenomena absent in the definite case. In the
pseudo-Kahler setting, the causal type of the immersion is part of the problem: one must impose
and use the spacelike condition to get a meaningful and well-posed surface theory, where the
analytical and geometric behaviors differ significantly from the definite case. This observation
naturally leads to the study of spacelike Lagrangian submanifolds.

Since minimal Lagrangian surfaces in symmetric spaces arise as conformal harmonic maps,
it is natural to study harmonic maps into symmetric spaces that admit an integrable-systems
formulation via families of flat connections on a trivial principal G-bundle. This is realized
through the loop group method of J. Dorfmeister, F. Pedit, and H. Wu [4], which applies
loop group decompositions of infinite-dimensional Lie groups (the DPW method). From this
perspective, spacelike minimal Lagrangian surfaces in symmetric spaces should be amenable to
a loop group formulation.

In this talk, we focus on spacelike minimal Lagrangian surfaces in the complex hyperbolic
quadric ()3, a non-compact Kahler-Einstein symmetric space isometric to the product of hyper-
bolic planes H2 x H? [5]. Although Q3 is the non-compact dual of the complex quadric Qo and
minimal Lagrangian surfaces in ()2 have been extensively studied via the loop group method in
[6], the transition is not a mere sign change: the underlying geometry, the associated curvature
conditions, and the resulting integrable equations differ in essential ways. The primary goal of
this paper is to establish a loop group framework for spacelike minimal Lagrangian surfaces in
5 and to demonstrate that this class of surfaces analogous to that in the compact case.
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2 Preliminaries

Definition 2.1. Let (N,w) be a Kdhler manifold of dimcN = n with the Kdhler form w. An
immersion f : M — N from an m-dimensional manifold M into N is said to be totally real if
ffw = 0. In particular, a totally real immersion f is said to be Lagrangian if m = n.

Let C7}, be the complexification of the pseudo-Euclidean space R}, with the complex bilinear
form (, ) defined by

(z,w) = —z1wW1 — = ZWiy + Zm1Wmt1 + -+ + ZpW, (2.1)

where z = (21,...,2,), w = (wi,...,w,) € C'. The standard Hermitian inner product ( , )
on CT is given by (z,w) = (z,w), where w is the conjugate of w. The pseudo-hyperbolic space
H3"~ (¢) of dimension 2n — 1, index 2m — 1 and constant sectional curvature ¢ < 0 is then

B (0= {2 e Chl (20 = (2) = 1},

Cc

In particular, for m = 1, we have the (2n — 1)-dimensional anti-de Sitter space H2""*(c). The
anti-de Sitter 3-space is denoted by H3(—1), and the complex anti-de Sitter 3-space is denoted
by CH3, and the complex hyperbolic quadric Q4 in CH can be realized by

Q5 := {[2] € CH} | (2,2) = 0}°, (2.2)

where the superscript 0 denotes a connected component. It is known that Q)3 is a homoge-
neous K#hler-Einstein manifold and it is isometric to H? x H?, where the curvatures of the two
hyperbolic planes H? are normalized to —4, [5, 9].

Let f : M — @5 be a spacelike Lagrangian conformal immersion from a Riemann surface
M into Q5. Moreover, let D C M be a simply connected domain with conformal coordinate
z = x +4y. Then the induced metric on D can be computed as

ds%; = 2e¥dzdz.

Let f : D — HE(—1) C C3 be a local lift of f, i.e. f = mof, where m : Hj(—1) — CHS is the Hopf
fibration. In fact, the projection f can be realized as [f]. Since f is conformal and Lagrangian,
and satisfies f(M) C Q%, we obtain

<fZ?f;> =0, <fZ?E> = <f27f;> =e", <f7 f> =0, <fzaf> = <f2af> =0. (23)
Here 0, = 3(9, — i0,) and 9; = (0, + i9,) are the complex differentiations.

Definition 2.2. If a local lift § defined above satisfies

<f2’f> = <f57f> =0,
then we call f a horizontal lift.

Since horizontal lifts of f are not unique, we fix one horizontal lift § for time being. Define
the indefinite special orthogonal group

SO(2,2) == {A € Myyu(R) | ATnA=n, det A=1}, n=diag(-1,-1,1,1).

Since the identity component of SO(2,2) acts transitively on Q% as the orientation-preserving
isometry, Q5 is isomorphic to the symmetric space:

Q5 =500(2,2)/ (SO(2) x SO(2)), (2.4)



where the subscript 0 denotes the identity component, see [1, 5]. Indeed, by choosing the
involution ¢ = Addiag(1,1,—1,—1) on SO(2,2), the fixed point set of o is exactly SO(2) x
SO(2). Let f: M — Q3 = S00(2,2)/ (SO(2) x SO(2)) and let F : D € M — SO¢(2,2) be a
local lift of f as

N B i iR+ @) (e +a))
7= (\/E(H—f)’ \@(f f)’\/26"+a+07’ \/(2(2"L‘+oz—i-oz)(62“—0zoz)>7 (25)

such that F(zp) = Id, where f is a horizontal lift defined above and

a:= (fz, f2)- (2.6)

Its Maurer-Cartan form can be computed as follows:

w=FdF =F 'Fdz + F 1 F:dz. (2.7)

Since Q% is a symmetric space as in (2.4) and minimal surfaces in Q5 can be regarded
as conformal harmonic maps, thus the integrable systems approach applies. We consider the
following family of connection 1-forms d + w™:

wh = A wy +we A, (A eSS, (2.8)

where g = Lie (SO(2,2)) = s0(2,2) admits the decomposition g = £ @ p with the fixed point
subalgebra £ = Fix(do) = s0(2) x s0(2) and its complement p, and we and wy, are the ¢ and the
p-valued 1-forms. Moreover 7 and /7 denote the (1,0)- and the (0, 1)-parts, respectively. While
the flatness of d 4+ w corresponds to the flatness of (d + w/\) |n=1, requiring d + w? to be flat for
all A € S! imposes an additional condition of harmonicity on the spacelike Lagrangian surface

f.

3 Main Results
The structure equations obtained by a SO¢(2, 2)-frame can be expressed in terms of the invariants
of §:

et = <fzaf2>7 o = <fZ7fZ>7 B = <f27f2> and ¢ = eiu<fziaf5>7 (31)

where (, ) denotes the scalar product in (C‘Zl and the subscripts z, zZ are the complex derivatives.
Then we obtain the first main result by a straightforward computation.

Theorem 3.1. Let f : M — Q5 be a spacelike Lagrangian conformal immersion and ® be the
associated one-form defined by ® = ¢dz. Then f is minimal if and only if ® = 0.

Now introducing a family of connection 1-forms d + w?, parametrized by A € S!, such
that w?|[y—; becomes the Maurer-Cartan form of f. Then we obtain the second main result by
comparing the structure equations.

Theorem 3.2. Let f : M — Q% be a spacelike Lagrangian immersion and let d + w* be the
family of connections. Then the following statements are equivalent:

1. The spacelike Lagrangian immersion f is minimal.
2. The connections d+ w> are flat for all A € S*.

3. The quadratic differential adz? is holomorphic and ¢ = arg (3) is constant, where a, 3
are defined in (3.1) and arg () denotes the argument of [5.



Consider a new local horizontal lift of a spacelike minimal Lagrangian surface f:

j=e 7, (3.2)
where ¢ = arg(/3) is constant by Theorem 3.2. The new invariants & and B of $ are given by
Q= <¥27%Z> = eiiwoﬁ /3 = <$27$2> = ‘B|7 (33)

ie. |&| = |a|, and B is a non-negative real function. By 3 = /e —|a|?, all the data in
Maurer-Cartan form now can be represented by u and &.

Definition 3.3. Denote the new frame of the lift f in (3.2) of a spacelzke minimal Lagrangian
immersion by F. Then by Theorem 3.2, there exists a family of frames Fy such that .7-}\)\ \=F,
and we call Fy the extended frame.

The new family of connection 1-forms d 4+ &* parameterized by A € S! can be explicitly
written as follows:

ot = FldF,. (3.4)
Then the flatness condition leads to an elliptic sinh-Gordon equation
Gz — €% + |G)%e % =0, (3.5)
where 4 is a real function with
2¢%dzdz = (e + |@f?e")d2dz. (3.6)

Furthermore, by choosing a suitable gauge transformation, we obtain the third main result.

Theorem 3.4. Let f : M — Q3 be a spacelike minimal Lagrangian immersion with induced
metric 2e*dzdZ and holomorphic quadratic differential & dz?. Then there exists an S'-family of
spacelike minimal Lagrangian immersions { f)‘} with the same induced metric and holomorphic
quadratic differential 6 dz? = A\"2a d22.

And by the elliptic sinh-Gordon equation (3.5) and the Maurer-Cartan form of §, we obtain
the fourth main result.

Theorem 3.5. Any spacelike mazimal surface fiae in H3 with unit normal N, metric 2¢% dzdz
and Hopf differential Qdz%, induces a spacelike minimal Lagrangian surface f = [fmaz +iN] €
Q%, whose holomorphic differential is —iQdz? and whose metric is

2¢" dzdz = (e" + |Q’e ") dzdz. (3.7)

Conversely, given a spacelike minimal Lagrangian surface f in Q5 with holomorphic differ-
ential & dz% and metric 2e“dzdz, there exists a unique map g = (fmaz, N) into the timelike unit
tangent bundle Ty H3 = H3 x H? with induced metric 4e*dzdz, where

CHS = {(p,v) € THS | v = (vo, v1,v2) € T,H} 2R}, —vf +0f +v3 = —1}.

Moreover, both projections fmaz and N have the same Hopf differential icdz?, and the metrics
2e%dzdz of fmae and 2e%dzdz of N are given by

el = e+ /e — |2, e =" — /e — |42



Finally, we apply the loop group method to spacelike minimal Lagrangian surfaces in Q5
through harmonic maps into H? by the well-known Lie group isomorphism

SO0(2,2) = (SU(1,1) x SU(1,1))/Zy,

then we construct several examples with this method. We summarize these as the fifth main
result: Spacelike minimal Lagrangian surfaces in the complex hyperbolic quadric Q)5 can be
constructed in the following four steps:

1. Solve the initial-value problem:
d® = B¢, B(z) = By € ASL(2,C),, (3.8)
to obtain a unique map ¢ : D — ASL(2,C),.
2. Compute the Twasawa decomposition (see [7, 4]) of ® pointwise on D:
® =F\B, F\,eASU(1,1),, Be€A'SL(2C),, (3.9)

Then by [4, Lemma 4.2], F) is the extended frame of a harmonic map into H2. Set the
pair of maps given by another map Fj) as

(F\, Fix) € ASU(1, 1), x ASU(1,1),.. (3.10)

3. Use the Loop group isomorphism
ASO¢(2,2), = (ASU(1,1), x ASU(1,1),)/Z>, (3.11)

one obtains the extended frame Fy € ASO(2,2), of some spacelike minimal Lagrangian
immersion into Q5.

4. Finally, by using Proposition 3.6 below, we obtain a family of spacelike minimal Lagrangian
immersions f* into Q5.

In the following proposition and corollary, we will make use of the Pauli matrices
A I )
10 i 0 0 —1

Proposition 3.6. Let F) be the extended frame defined above. Set

XM= (X)) = F\F,', Y= (Y})):=iF\osF,". (3.12)
Then the associated family {f*} of f can be represented by

7 = [(Re(X) + iRe(Y)), Im(X3) + im(Y7}), Re(X3)) + iRe(Ya)), Im(X3,) + im(¥3}) ) | -
Corollary 3.7. Let F be the extended frame defined above. Define a map
Py = (oa, 1) : D — H? x H? (3.13)

by (dx,¥n) = (iF)\U3F_1,’iE)\U3Fi;\1). Then {®x}rest is a family of spacelike minimal La-
grangian surfaces.



4 Examples through the DPW method

4.1 Basic examples
The basic examples are the open part of the diagonal surface and the product of geodesics, see

also in [5].

4.1.1 Open part of the diagonal surface

Define
-1 (0 1
E:=A <0 0> dz

for z € C. It is easy to solve the ODE d® = ®¢ by ® = exp(z¢£/dz) with ®(0) = Id. Moreover,
the Iwasawa decomposition of ® = F) B is given by

P 1 1 227t
MASRE\EY 1)

By Proposition 3.6, we obtain a family of open parts of the diagonal surface {f*} parameterized
by A € St
P = =il =22 +i, A —izh, —2A 4]

4.1.2 Product of geodesics
Define

g:=\71 <(1) é) dz

for z € C. It is easy to solve the ODE d® = ®¢ by ® = exp(z£/dz) with ®(0) = Id. Moreover,
the Iwasawa decomposition of ® = F)\ B is given by

_ (cosh(ALz +2)\) sinh(A71z + 2))
A7 \sinh(A\ 'z 4+ 2\) cosh(A\ Lz 4 2\) )

By Proposition 3.6, we obtain a family of products of geodesics {f}} parameterized by A € S':
f* =|(coss, icost, isins, sint)],
where
s=Alz -2 —i\Tlz 42N, t=A"lz— 2N +i(A Tz 4 2N,
4.2 Equivariant and radially symmetric examples

We now show two new examples of spacelike minimal Lagrangian surfaces in Q5.

4.2.1 R-equivariant spacelike minimal Lagrangian surfaces
Definition 4.1 (R-equivariant potentials, [2]). Define

£= A(A)%, where  A(\) = ( (4.1)

—a\ — b\7! —c

c a1 4+ b
Z )

with a,b € R* and c €R for z in ¥ = {z =1 +iy € C| —r? <z < k3}. And we choose k1, ko
so that x € (—k?, k3) is the largest interval for which a solution v = v(z) of

(V)% = (v* — 4a®) (v* — 4b%) + 4c*v?, V" = 20(v? — 2a% — 267 +2¢%),  v(0) = 2b,



is finite and never zero (' denotes d%). When ¢ # 0, we require v'(0) and —bc to have the same
sign. We call such potentials the equivariant potentials.

It is easy to see that ® = exp(logz - A) is the unique solution of d® = ®£ with the initial
condition ®(0) = Id. Let ® = F)B be the Iwasawa decomposition of ® (see below for the

explicit form of Fy). As discussed in [2, Section 5.1], by the rotation of the domain z — e . 2,
the following transformation rule of F) follows:
Fy (ei‘) Lz, ez, /\) — exp (i0AN) - Fx (2, 7, A). (4.2)

Note that 10 A(\) takes values in Asu(1,1), and thus exp (i A())) takes values in ASU(1,1),.

The general definition of an equivariant surface can be found in [2], then a straightforward
computation shows that the spacelike minimal Lagrangian surface constructed by the equivariant
potential £ in (4.1) is an equivariant surface.

Proposition 4.2. Let & be an R-equivariant potential defined in (4.1) and let F\ € ASU(1,1),
for A € S be the corresponding extended frame. Then the spacelike minimal Lagrangian surface
A M — Q3 constructed by (Fy, Fyy) is equivariant, that is,

~

i (ew 2z e 3, /\) — o ((exp(i0A(N)), exp(—iBA(IN)) P (2, 7, )

holds, where f/\ is the horizontal lift of f* and 1 : ASU(1,1), x ASU(1,1), — ASOq(2,2), is the
loop group homomorphism.

By Theorem 5.1 in [2], we can obtain that

4ab)24v2 (COSh i % sinh tA) —\t(2cv+v) cosh i4(2t2v+cA?v’) sinh £

Fy = 2v(aA2+b) ty/20(aX2+b) (4abX2 +v2)
N21b)(4abh2402) . | « 20(aX2+b - R
AC t\)/(% “*) ginh { fcflf)\ih:;g (cosht — Q\TU sinh t)

where f, t and ¢ are given by

* 2ds .
_ — /—ab — (a2 2 _ 2))\2 _ 4 — _ -1
(=) /0 1+ (4abA?)~1v2(s)’ t=y-ab— (@B - N -, =il -2

It is also easy to compute the map F;). Then by Proposition 3.6, we obtain the explicit form of
this equivariant surface in Q5.

4.2.2 Radially symmetric spacelike minimal Lagrangian surfaces

Definition 4.3 (Radially symmetric potentials, [2]). Define

g=x"1 <c(z)k é) dz, (4.3)

for z€ X =C and k € N and some ¢ € C\ (S' U {0}). Here we call such potentials the radially
symmetric potentials.

Let Ry(z) = e?™/(k+2)z he the reflections of the domain C, for £ € {0,1,...,k + 1}. Note
that

il
ek+2 0

E(Ro(2), ) = A2, VA, Y, with A, = ( g> € SU(1,1) (4.4)

0 e+



holds. Let ® be the solution of d® = ®£ with ®(zp) = Id and consider the Iwasawa decomposition
® = F\B. For c € C\(S'U{0}), the Iwasawa decomposition of ® cannot be carried out explicitly,
and hence an explicit description of all radially symmetric surfaces cannot be obtained. By (4.4),
we have

F(Ry(2), Re(2),\) = AgF (2,2, \) A, .
This leads to the following proposition.

Proposition 4.4. Let £ be the radially symmetric potential defined in (4.3) and let F)\ €
ASU(1,1), for A € S! be the extended frame obtained by &. The spacelike minimal Lagrangian
surface f*: M — Q5 constructed by (Fy, Fj\) admits discrete rotational symmetries:

1 0 0 0
0 1 0 0

A ) Az ; .

f (Rg(z), Rﬁ(z)v )‘) = Aéf (Zv 2, )‘)7 with ~ Ag := 0 0 cos (%) sin %) )
0 0 —sin %) Cos %)

where ?‘ denotes the horizontal lift of f*. Moreover, the induced metric of f* depends only on
the radial coordinate |z|. Such a surface f* is therefore called radially symmetric.
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