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概要

パラメータ表示された曲線 γ(t)に現れる特異点 (γ′(c) = 0となる点 t = c) を A-同値とい
う同値関係に関して分類することを考える．これまで，(2, 3)-カスプなどの代表的な特異点に
対し判定条件が構成されてきたが，これらは平面曲線に限られており，また種類ごとの議論に
とどまっていた．本講演では，これを一般次元に拡張し，RN (N ≥ 2) 内の曲線に現れる特異
点について，判定条件を構成する系統的な枠組みと，それを用いて得られる判定条件の例を解
説する．

1 準備
m,n ∈ Z>0 に対して，0 ∈ Rm の近傍で定義され，Rn に値を取り，f(0) = 0を満たす C∞ 級

の写像芽 f を，f : (Rm,0) → (Rn,0)と書く．

注意 1.1. C∞ 級の写像芽 (Rm,0) → (Rn,0)の厳密な定義は，次の通り：

U, V を 0 ∈ Rm の開近傍とする．2つの C∞ 級写像 f : U → Rn，g : V → Rn が 0 ∈ Rm

で同じ写像芽を定めるとは，0 ∈ Rm の開近傍W ⊂ U ∩ V が存在して，f |W = g|W が成
り立つことをいう．

この同値関係に関する同値類を写像芽 [f ]0 と呼び，特に f(0) = 0 ∈ Rn のとき f : (Rm,0) →
(Rn,0)と表記する．
このように，写像芽は厳密には写像の同値類であるが，ここでは単に (0 ∈ Rm の十分小さな開

近傍で定義された) 写像と思っても差し支えない．

1.1 曲線の特異点

ここでは，N ∈ Z≥2 とし，写像芽 γ : (R, 0) → (RN ,0)をRN 内の曲線と呼ぶ．特に，R2 内の
曲線を平面曲線，R3 内の曲線を空間曲線と呼ぶ．また，曲線 γ に対し，γ′(c) = 0となる点 t = c
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を特異点と呼び，特異点をもたない曲線を正則曲線と呼ぶ*1．

定義 1.2 (曲線の重複度 [3] (同値な定義)). m ∈ Z>0. RN 内の曲線 γ が

γ(1)(0) = · · · = γ(m−1)(0) = 0 6= γ(m)(0)

を満たすとき，γ は t = 0 において重複度 m であると呼ぶ．また，すべての i ∈ Z>0 に対して
γ(i)(0) = 0となるとき，γ は t = 0において flatであると呼ぶ．

事実 1.3. 曲線 γ が t = 0に特異点をもつことは，γ が t = 0において重複度 2以上または flatで
あることと同値である．

以後，t = 0に特異点をもつRN 内の曲線 γ : (R, 0) →
(
RN ,0

)
を考える*2．

例 1.4. t = 0に特異点をもつ平面曲線の例として，標準的 (m,n)-カスプCusp(m,n) (t) := (tm, tn)

(m,n ∈ Z, 2 ≤ m < n) が挙げられる (重複度m) (図 3の一部)．
また，a > 0 を定数とするとき，次の 3 つの曲線も t = 0 に特異点をもつ (図 1)．これらは

Taylor展開により，t = 0において重複度 2であることがわかる．

• (サイクロイド) γ(t) = a(t− sin t, 1− cos t) = a

(
t3

6
,
t2

2

)
+ o

(
t3
)
,

• (カージオイド) γ(t) = a(1− cos t)(cos t, sin t) = a

(
t2

2
,
t3

2

)
+ o

(
t3
)
,

• (アステロイド) γ(t) = a3
(
cos3 t− 1, sin3 t

)
= a

(
−3

2
t2, t3

)
+ o

(
t3
)
.

(a) サイクロイド (b) カージオイド (c) アステロイド

図 1: t = 0に特異点をもつ平面曲線の例

平面上の正則曲線 Γ の左向き単位法線ベクトル場を nL(t)とする．δ ∈ Rに対し，

Γδ(t) := Γ (t) + δnL(t)

で定まる曲線を，曲線 Γ の (距離 δの) 平行曲線と呼ぶ．平面上を伝わる波の波面（つまり最前線）
は，Huygensの原理により，曲線 Γ の状態から時間 δ が経過すると平行曲線 Γδ に移る．そして，
正則曲線の平行曲線には，特異点が “しばしば”現れる．したがって，特異点をもつ平面曲線につ
いて調べることは妥当である．

*1正則な平面曲線や空間曲線についての基礎事項は [15]など，特異点をもつ平面曲線や曲面については [14]．
*2特異点 t = c 6= 0を考えたいときや γ(c) 6= 0のときは，γ̃(t) = γ(t+ c)− γ(c)と変換すれば γ̃ が条件を満たす．



例 1.5. 楕円 Γ (t) = (cos t, 2 sin t) は正則曲線である．この楕円の距離 δ =
3

2
の平行曲線 Γ 3

2
は

図 2のようになり，もとの楕円の縮閉線との共有点 (図では 4ヶ所) に特異点をもつ．

図 2: 楕円の平行曲線

1.2 曲線に現れる特異点の，A-同値に関する判定条件

2つの曲線 γ, γ̃ : (R, 0) →
(
RN ,0

)
に対して，

γ̃ = Φ ◦ γ ◦ ϕ

となる微分同相写像芽 ϕ : (R, 0) → (R, 0)と Φ :
(
RN ,0

)
→

(
RN ,0

)
が存在するとき，γ と γ̃ は

A-同値 (右左同値) であるという*3．

事実 1.6. t = 0 における曲線の重複度は A-同値で不変である．したがって，事実 1.3 により，
「t = 0が特異点である」という条件も A-同値で不変である．

このことから，A-同値は「t = 0に特異点をもつ曲線」に関する同値関係である．この同値関係
に関して，曲線の特異点を分類することを考える．しかし一般に，曲線の特異点が 2つ与えられた
とき，それらが A-同値か否かを定義から直接判定することは困難である．そこで，与えられた特
異点が特定の A-同値類に属するかを容易に判定できる必要十分条件を構成し，これを「判定条件」
と呼ぶ．多くの場合，まずは

Cusp(m1,...,mk)
(t) := (tm1 , . . . , tmk) (k ∈ Z≥2, (m1, . . . ,mk) ∈ Zk, m1 < · · · < mk)

*3微分同相写像芽 ϕ : (R, 0) → (R, 0)を “パラメータ変換”，Φ : (RN ,0) → (RN ,0)を “RN の座標変換”と呼ぶ
ことにする．



を代表元とする A-同値類の判定条件を構成することを考える．
なお，これまで，既知の判定条件は微分係数を用いて記述されてきたが，判定条件を構成する際

には Taylor展開の形式を用いたほうが扱いやすい．そのため，以後，RN 内の曲線 γ に対して，

i[γ] :=
1

i!
i(γ)(0) =

1

i!

diγ

dti

∣∣∣∣
t=0

(i ∈ Z≥0)

と表記する．
平面曲線に現れる特異点については，次のような判定条件が知られている*4：

事実 1.7 ([4, 6, 7, 9, 14]). 平面曲線 γ が

(1) (i)
(
t2, t3

)
, (ii)

(
t2, t5

)
, (iii)

(
t2, t7

)
,

(2)
(
t3, t4

)
,

(3)
(
t3, t5

)
,

(4)
(
t4, t5 + σ t7

)
(σ ∈ {0,±1})

と A-同値であるための必要十分条件は，γ[1] = 0および以下の各条件を満たすことである*5：

(1) (i) det
(
γ[2], γ[3]

)
6= 0，

(ii) λ ∈ Rが存在して γ[3] = λ γ[2] かつ det
(
γ[2], γ[5] − 2λ γ[4]

)
6= 0,

(iii) λ, µ ∈ Rが存在して γ[3] = λ γ[2]，γ[5] − 2λ γ[4] = µγ[2]，
かつ det

(
γ[2], γ[7] − 3λ γ[6] +

(
3λ3 − 2µ

)
γ[4]

)
6= 0,

(2) γ[2] = 0かつ det
(
γ[3], γ[4]

)
6= 0,

(3) γ[2] = 0かつ det
(
γ[3], γ[4]

)
= 0 6= det

(
γ[3], γ[5]

)
,

(4) γ[2] = γ[3] = 0，det
(
γ[4], γ[5]

)
6= 0，

かつそれぞれ sgn
(
µ2 −

5

4
λ2 −

11

10
µ2
1

)
= σ (σ ∈ {0,±1})．

ただし，λ, µ ∈ Rは γ[6] = λ2 γ
[4] + µ1 γ

[5] および γ[7] = λ3 γ
[4] + µ2 γ

[5] を満たす．

この判定条件から，例 1.4で挙げたサイクロイド，カージオイド，アステロイドの特異点はすべ
て

(
t2, t3

)
と A-同値であることがわかる．

*4平面曲線に現れる特異点について，[2]は，ここで紹介した判定条件とは別に，曲率関数を用いた判定条件を与えて
いる．その中では，事実 1.7の形式ではこれまで知られていなかった，

(
t3, t7

)
や

(
t3, t7 + t8

)
といった種類につい

ても，曲率関数を用いた判定条件が述べられている．
*5ここで述べている判定条件は，Taylor係数を用いて書き換えたものである．

(
t2, t3

)
と

(
t3, t4

)
については [14]に

記載あり．
(
t2, t5

)
は [9]，

(
t2, t7

)
は [4]，

(
t3, t5

)
は [6]，

(
t4, t5

)
および

(
t4, t5 ± t7

)
は [7]．



(左から
(
t2, t3

)
,
(
t2, t5

)
,
(
t2, t7

)
,
(
t3, t4

)
,
(
t3, t5

)
,
(
t4, t5

)
,
(
t4, t5 + t7

)
,
(
t4, t5 − t7

)
)

図 3: 平面曲線に現れる特異点のうち事実 1.7の 8種の標準形

2 主結果—RN 内の曲線に現れる特異点の判定条件の構成法
事実 1.7では，平面曲線に現れる特異点について，既知の判定条件を紹介した．これまで，曲線

に現れる特異点の判定条件の構成・証明は，

1. 標準的 (m,n)-カスプなどに A-同値であるための十分条件の構成
2. 構成した条件が A-同値で不変であること (必要性) の証明

という 2つのステップに分けて行なわれており，どれも手順は似通っている．
しかし，判定条件の構成・証明は，種類ごとに都度行なわれてきており，統一的な議論は十分に

なされていなかった．また，これまでに構成・証明されてきた判定条件は平面曲線に関するものの
みであり，RN (N ≥ 3) 内の曲線の特異点の判定条件は明示的に与えられていない．
そこで本節では，RN (N ≥ 2) 内の曲線に現れる特異点について，判定条件を構成する系統的

な枠組みを構築する．さらに，その枠組みを用いて得られる判定条件の例を紹介する．

例 2.1. 次に挙げる例のように，特異点をもつ曲面*6 f の特異曲線 γ(t)の，f による像 (f ◦ γ)(t)
として，特異点をもつ空間曲線が “しばしば”現れる．したがって，平面曲線以外の曲線に対して
も特異点を調べることは妥当である．

(a) (ツバメの尾) 曲面 fSW (u, v) :=
(
3u4 + u2v,−4u3 − 2uv, v

)
の特異曲線は γ(t) =

(
t,−6t2

)
で与えられる．特異曲線 γ の fSW による像は (fSW ◦ γ)(t) =

(
−3t4, 8t3,−6t2

)
となる．これ

は t = 0に特異点をもち，Cusp(2,3) (t) :=
(
t2, t3, 0

)
と A-同値である．

(b) (カスプ状バタフライ) 曲面 fCB(u, v) :=
(
u, 5v4 + 2uv, uv2 + 4v5

)
の特異曲線は γ(t) =(

−10t3, t
)
で与えられる．特異曲線 γの fCB による像は (fCB ◦ γ)(t) =

(
−10t3,−15t4,−6t5

)
となる．これは t = 0に特異点をもち，Cusp(3,4,5) (t) :=

(
t3, t4, t5

)
と A-同値である．

*6 uv-平面上の開集合 U ⊂ R2 で定義された曲面 f : U → R3 に対して，fu(p)，fv(p)が線型従属となる点 p ∈ U

を曲面 f の特異点と呼ぶ．フロンタル f の非退化特異点 p (定義は省略) を考えると，f の特異点集合は p ∈ U のま
わりにおいて，U 上の正則曲線となる．これを曲面 f の特異曲線と呼ぶ．



(a) ツバメの尾 (b) カスプ状バタフライ

図 4: 特異点をもつ曲面とその特異曲線の像

2.1 A-同値であるための十分条件の構成

平面曲線に現れる (4, 5)-カスプ (Cusp(4,5) (t) :=
(
t4, t5

)
と A-同値な特異点) の判定条件を構成

するために，[7]は次の命題を用いた：

命題 2.2 ([7, Proposition 4.6]). 平面曲線M : (R, 0) →
(
R2,0

)
が

すべての i ∈ {1, 2, 3, 4, 5, 6, 7, 11} に対して M (i)(0) = 0 (2.1)

を満たすとき，Cusp(4,5)+M : t 7→
(
t4, t5

)
+M(t)は Cusp(4,5) と A-同値である．

これをもとに，次のように一般化した：

定理 2.3. RN 内の曲線 Γ : (R, 0) →
(
RN ,0

)
に対し，

NR2(Γ ) :=
{
i ∈ Z>0

∣∣ (f ◦ Γ )(t) = ti かつ (df)0 = 0となる f : (RN ,0) → (R, 0)が存在しない
}

と定める．NR2(Γ ) ⊂ Z>0 が有限集合であり，曲線 M がすべての i ∈ NR2(Γ ) に対して
M (i)(0) = 0を満たすとき，曲線 Γ +M は Γ と A-同値である*7．

この定理は，以下のように理解できる：

• NR2(Γ ) ⊂ Z>0 は，「冪関数 ti が Γ で “うまく表せない”」ような iの集合である．
• 代表の曲線 Γ からのズレM に Γ で “うまく表せない”部分が無ければ，Γ +M は Γ とA-
同値である．

*7この定理は [1, Corollary 2.5.1]から得られる結果を，判定条件の構成に適した形式に変形したものでもある．



注意 2.4. 命題 2.2の (2.1)は，

NR2(4, 5) :=
{
a ∈ Z≥0

∣∣∣ 4p+ 5q = aかつ p+ q ≥ 2となる (p, q) ∈ (Z≥0)
2 が存在しない

}
とおくとNR2(4, 5) = {0, 1, 2, 3, 4, 5, 6, 7, 11}であることに由来する*8．また，定理 2.3が命題 2.2
の一般化である所以は，

NR2
(

Cusp(4,5)

)
⊂ NR2(4, 5) \ {0} = {1, 2, 3, 4, 5, 6, 7, 11}

であることにある．

2.2 主結果—RN 内の曲線に現れる特異点の判定条件の構成法

定理 2.3を用いて，RN 内の曲線に現れる特異点の判定条件の構成法を構築した．
判定条件を求めたい A-同値類の代表の曲線 Γ を決め，以下の手順で判定条件を構成する：

1. NR2(Γ )を求め，定理 2.3から，Γ と A-同値であるための十分条件を得る
(大抵かなり強め)．

2. より弱い十分条件 (判定条件と思しき条件) を構成する
(パラメータ変換とRN の座標変換を用いる)．

3. 線型独立性の条件に言い換える
(RN の線型変換を用いる)．

4. 必要条件でもあることを証明する
(Faà di Brunoの公式とその一般化を用いた微分計算を行なう*9)．

例 2.5. 上記の手順を用いると，以下のようにして，(3, 4)-カスプ (Cusp(3,4) (t) :=
(
t3, t4, 0, . . . , 0

)
を代表元とする A-同値類) の判定条件が構成できる：

1. NR2
(

Cusp(3,4)

)
⊂ {0, 1, 2, 3, 4, 5}と計算できるから，定理 2.3により，

(
t3, t4, 0, . . . , 0

)
+

o
(
t5
)
という形式の曲線は Cusp(3,4) と A-同値である．

2.
(
t3 + a t5, t4 + b t5, 0, . . . , 0

)
+ o

(
t5
)

(a, b ∈ Rは定数) は Cusp(3,4) と A-同値．
3. γ[1] = γ[2] = 0 6= γ[3], γ[4] /∈ span

(
γ[3]

)
, γ[5] ∈ span

(
γ[3], γ[4]

)
ならば γ は Cusp(3,4) と

A-同値である．
4. (微分計算)

注意 2.6. 例 2.5の手順 2は以下のように示す：
まず，曲線 γ(t) =

(
t3 + a t5, t4 + b t5, 0, . . . , 0

)
+ o

(
t5
)

(a, b ∈ Rは定数) を考える．このとき，
指数に着目すると，第 1成分について 5− 3 = 2，第 2成分について 5− 4 = 1であるから，適切

*8集合NR2(4, 5)は Frobenius数に関する文献 [5,10]における集合NR(A)をもとに定義した．Frobenius数につ
いては [11–13]など．

*9 Faà di Brunoの公式については [16]など，一般化については [8]．



なパラメータ変換
t = ϕ(s) = s+ c1 s

2 + c2 s
3 (c1, c2 ∈ Rは定数)

を用いて t5 の項を消去し，

(γ ◦ ϕ)(s) =
(
s3 + ã1 s

4, s4, 0, . . . , 0
)
+ o

(
s5
)

(ã1 ∈ Rは定数)

へと変換することができる．ただし第 1成分に余分な s4 の項が生じる．そこで，さらに座標変換

Φ(X1, X2, . . . , XN ) = (X1 − ã1X2, X2, . . . , XN )

を施すことで第 1成分の s4 の項を消去し，

(Φ ◦ γ ◦ ϕ)(s) =
(
s3, s4, 0, . . . , 0

)
+ o

(
s5
)

へと変換することができる．

例 2.5 の手順により，(3, 4)-カスプの判定条件を (同様にして (3, 4, 5)-カスプの判定条件も)
得た：

定理 2.7. RN 内の曲線 γ : (R, 0) → (RN ,0)が

(i) Cusp(3,4,5) : t 7→
(
t3, t4, t5, 0, . . . , 0

)
,

(ii) Cusp(3,4) : t 7→
(
t3, t4, 0, . . . , 0

)
と A-同値であるための必要十分条件は，γ が

γ[1] = γ[2] = 0 6= γ[3], γ[4] /∈ span
(
γ[3]

)
を満たし，さらにそれぞれ

(i) γ[5] /∈ span
(
γ[3], γ[4]

)
,

(ii) γ[5] ∈ span
(
γ[3], γ[4]

)
を満たすことである．

これにより，これまで平面曲線についてのみ知られていた (3, 4)-カスプの判定条件を一般次元に
拡張することができた．また，N ≥ 3の場合にのみ現れる*10，(3, 4, 5)-カスプの判定条件も構成す
ることができた．
定理 2.7と同様にして，RN (N ≥ 2) 内の曲線に現れる特異点のうち，以下の 16種について判

定条件を得た：

(1) (i)
(
t2, t3, 0, . . . , 0

)
,

(ii)
(
t2, t5, 0, . . . , 0

)
,

*10 判定条件のうち γ[4] /∈ span
(
γ[3]

)
と γ[5] ∈ span

(
γ[3], γ[4]

)
から．



(iii)
(
t2, t7, 0, . . . , 0

)
,

(2) (i)
(
t3, t4, t5, 0, . . . , 0

)
(N ≥ 3),

(ii)
(
t3, t4, 0, . . . , 0

)
,

(3) (i)
(
t3, t5, t7, 0, . . . , 0

)
(N ≥ 3),

(ii)
(
t3, t5, 0, . . . , 0

)
,

(4) (i)
(
t4, t5, t6, t7, 0, . . . , 0

)
(N ≥ 4),

(ii)
(
t4, t5, t6, 0, . . . , 0

)
(N ≥ 3),

(iii)
(
t4, t5, t7, 0, . . . , 0

)
(N ≥ 3),

(iv) (a)
(
t4, t5 + σ t7, t11, 0, . . . , 0

)
(N ≥ 3, σ ∈ {0,±1}),

(b)
(
t4, t5 + σ t7, 0, . . . , 0

)
(σ ∈ {0,±1}).

このうち，“N ≥ 3” または “N ≥ 4” と括弧書きしたものは，これらの場合にのみ現れる (平面
曲線には現れない) ものである．また，括弧書きがないものについて N = 2とすれば，事実 1.7の
判定条件はすべて系として得られる．
なお，平面曲線に現れる

(
t3, t7 + σ t8, 0, . . . , 0

)
の 2種の特異点の判定条件も構成した．
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