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概要
幾何学において, 特別な計量の分類は重要な課題である. 本研究では, リー群上の特別な左不変
擬リーマン計量を考える. 与えられたリー群に対して, その上の左不変擬リーマン計量全体の空
間には, スカラー倍と自己同型による自然な群作用がある. この群作用による軌道空間はモジュ
ライ空間と呼ぶ. しかし一般的に, モジュライ空間はハウスドルフではなく複雑である. 我々は,

この軌道空間の中でも特に, 閉軌道全体のなす空間である閉軌道空間に焦点をあてて研究を行っ
ている. 本講演では,「特別な計量の存在・非存在を調べるには閉軌道空間上の計量のみを見れば
十分である」という結果を紹介する. また, あるリー群に対して, 閉軌道空間を決定した結果につ
いて述べる.

1 導入
多様体上において, アインシュタイン計量やリッチソリトン計量などの特別な計量の存在について

調べることは, 幾何学における重要な問題である. リーマン計量および擬リーマン計量ともに重要で
興味深い例が研究されており, リーマン計量については近年多くの結果が発表されてきた. しかし, 擬
リーマン計量の性質や手法についてはまだ多くの未解明な点がある. これはリー群上の左不変擬リー
マン計量についても同様である.

我々は, 与えられたリー群上の左不変擬リーマン計量について, 特別な計量の存在・非存在を研究
している. 左不変擬リーマン計量の空間は非常に大きいため, 適切に対象を小さくする必要がある.

リー群上の左不変擬リーマン計量は, そのリー代数上の符号 (p, q)の内積と 1:1に対応していること
が知られている. 研究内容は与えられたリー群に対応するリー代数上の符号数 (p, q)の内積について,

特別な内積の存在・非存在を研究することと同じ意味である. 以下のように内積から曲率を定義する.

定義 1.1. 内積付き Lie代数 (g, ⟨, ⟩)に対して, U : g× g → gを,

2⟨U(X,Y ), Z⟩ = ⟨[Z,X], Y ⟩+ ⟨X, [Z, Y ]⟩ (∀X,Y, Z ∈ g)

で定める. また, ∇ : g× g → gを以下で定義してLevi-Civita接続という:

∇XY :=
1

2
[X,Y ] + U(X,Y ).

定義 1.2. 符号数 (p, q)の内積付き Lie代数 (g, ⟨, ⟩(p,q))に対して, X,Y, Z ∈ gとする.

∗ E-mail:sd24899j@st.omu.ac.jp



(1) R(X,Y )Z := [∇X ,∇Y ]−∇[X,Y ] をリーマン曲率という.

(2) Ric(X) :=

p∑
i=1

R(X,xi)xi −
p+q∑

i=p+1

R(X,xi)xi をリッチ曲率という. ここで, {x1, ..., xp+q}

は gの擬正規直交基底である.

ここでは, 特別な計量として, 平坦計量, リッチ平坦計量, アインシュタイン計量, 代数的リッチソ
リトン計量などを考えており, 定義は以下の通りである.

定義 1.3. 内積付き Lie代数 (g, ⟨, ⟩)に対して,

(1) (g, ⟨, ⟩)が平坦であるとは, R ≡ 0を満たすことである.

(2) (g, ⟨, ⟩)はリッチ平坦であるとは, Ric ≡ 0を満たすことである.

(3) (g, ⟨, ⟩) がアインシュタインであるとは, c ∈ Rが存在して Ric = c · idを満たすことである.

(4) (g, ⟨, ⟩) が代数的リッチソリトンであるとは, c ∈ RとD ∈ Der(g)が存在して Ric = c · id+D

を満たすことである.

2 軌道空間
ここでは, 軌道空間による先行研究 ([1],[2]) について説明する. g ∼= Rp+q と同一視することで,

リー代数上の符号数 (p, q)の内積の空間M(p,q)(g)に GLp+q(R)を自然に作用させる. x, y ∈ gに対
して, この群作用を以下で定める:

g.⟨x, y⟩ := ⟨g−1x, g−1y⟩.

この群作用は推移的である.

命題 2.1. リー代数 gと符号数 (p, q)の内積空間M(p,q)(g)に対して, 以下が成り立つ:

M(p,q)(g) = GLp+q(R)/O(p, q).

ここで, O(p, q) := {g ∈ GLp+q(R) | tgIp,qg = Ip,q}である.

命題は O(p, q)が ⟨, ⟩0 の固定部分群より従う. ここで ⟨, ⟩0 = txIp,qy, ただし

Ip,q =

(
Ip 0
0 −Iq

)
.

次に, スカラー倍と自己同型群からなる群 R×Aut(g)からM(p,q)(g)への群作用を, GLp+q(R)の
部分群として作用させる. この自然な群作用は曲率の性質を保つことが知られている. そのため, 特
別な計量の存在・非存在を調べるには, R×Aut(g)\M(p,q)(g) で表される軌道空間のみを調べれば
よい.

命題 2.1.より, 軌道空間 R×Aut(g)\M(p,q)(g)は R×Aut(g)\GLp+q(R)/O(p, q)と同相である. つ
まり, 軌道空間は行列を代表元とする集合として表すことができる. この方法によって, 左不変リーマ
ン計量に対しては多くのことが解明された ([3]).



3 主定理
左不変擬リーマン計量の場合, 多くのリー群上で軌道空間は複雑である. リーマン計量では軌道空

間がハウスドルフになることが知られている. しかし, 擬リーマン計量ではハウスドルフにならない
ことが多い. このような複雑な軌道空間の中から, より適当な代表元のとり方として閉軌道空間に
着目する. ここでいう特別な計量とは, 定義 1.3による平坦, リッチ平坦, アインシュタイン, 代数的
リッチソリトンのいずれかを意味する.

定理 3.1. 与えられたリー群上の左不変擬リーマン計量に特別な計量 ⟨, ⟩ が存在するとき,

R×Aut(g).⟨, ⟩′ が閉である特別な計量 ⟨, ⟩′ が存在する.

つまり, 特別な計量の存在非存在を調べたければ, 閉軌道空間のみを調べればよい. ここから, 証明
の概略を説明する.

定義 3.2. 位相群H, 位相空間X に対して, H ↷ X を連続な群作用とする. H.x,H.y を異なる軌道
(H.x ̸= H.y)とする. H.xが H.y に退化するとは H.y ⊂ H.x を満たすことである. また, そのとき
(H.x → H.y)と書く. ここで, H.xは H.xの閉包である.

退化の定義より, 次の 2つの命題が成り立つ.

命題 3.3. 軌道の退化は曲率の性質を保つ.

つまり, ⟨, ⟩が平坦, リッチ平坦, アインシュタイン, 代数的リッチソリトンのいずれかであり, ⟨, ⟩
が ⟨, ⟩′ に退化するとき, ⟨, ⟩′ も ⟨, ⟩と同じ性質をもつ.

命題 3.4. 異なる軌道 H.x,H.y(H.x ̸= H.y)に対して,

(1) H.xが H.y に退化することと H.y ∩H.x ̸= ∅であることは同値.

(2) 退化を繰り返すと, 軌道は閉軌道になる.

特別な計量が存在するとき, その計量の退化した計量もまた特別であるといえる. さらに, 軌道は退
化を繰り返すことにより閉軌道になる. すなわち, 特別な計量の存在・非存在を調べるには閉軌道空
間のみ調べればよい.

4 具体例
三次元リー群上の左擬リーマン計量の先行研究 ([4],[5]) はあるが, 閉軌道に着目した研究はまだ

ない. ここでは, あるリー群上のローレンツ計量について, 特別な内積の存在・非存在を考える.

GRH2 × Rに対して閉軌道空間を決定し曲率を計算した. GRH2 × Rは次のリー代数 gRH2 ⊕ Rを持
つ連結かつ単連結なリー群である:

gRH2 ⊕ R = span{e1, e2, e3} with [e1, e2] = e2.

軌道空間は両側剰余類で求めることができる. 退化も以下のように両側剰余類で表せる.



命題 4.1. g, g′ ∈ GLp+q(R) に対して, R×Aut(g).(g.⟨, ⟩0) が R×Aut(g).(g′.⟨, ⟩0) に退化すること
と, 以下は同値:

g′ ∈ R×Aut(g)gO(p, q).

よって, 閉軌道空間の特定は両側剰余類を見ればよい.

命題 4.2. リー代数 gRH2 ⊕ Rに対して, 基底 {e1, e2, e3}に関する R×Aut(g)は以下で表される:

R×Aut(g) =


 ∗ 0 0

∗ ∗ 0
∗ 0 ∗

 ∈ GL(3,R)

 .

命題 4.3. リー群 GRH2 × Rに対して, 閉軌道空間は次の 3点集合との間に全単射を持つ:

閉軌道空間 ∼= {X00, X+0, X0+} .

ここで,

X00 :=

 1 0 0
0 1 1
0 1 −1

 , X+0 :=

 1 0 1
0 1 0
0 0 1

 , X0+ :=

 1 0 1
0 0 1
0 1 0

 .

注意 4.4. R×Aut(g)は Z(g)や [g, g]を保つ. そのため, R×Aut(g)による作用は, Z(g)や [g, g]に
制限した内積の符号数を保つ. ここで, リー代数 gRH2 ⊕ Rに対して, Z(g)と [g, g]は以下である:

Z(g) = span{e3}, [g, g] = span{e2}.

Z(g) と [g, g] が一次元であるため, R×Aut(g) で, ⟨e2, e2⟩ や ⟨e3, e3⟩ の符号は保たれる. そのため,

命題 4.3.では ⟨e2, e2⟩の符号を a, ⟨e3, e3⟩の符号を bとおき, Xab を名付けている.

命題 4.5. X00, X0+に対応する計量はそれぞれアインシュタイン計量と平坦計量である.

よって, 特に上記で定めたリー代数 gは平坦なローレンツ計量を持つ.
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