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概要

本講演では空間 1次元の準線形波動方程式の初期データが十分小さいときの古典解の長時間存在と有限時
間爆発について、解の最大存在時刻を初期データの大きさによって上からと下からの評価を行うことにより
考察する。証明は Lax [5]の特性曲線の方法に基づく。有限時間爆発の証明の鍵は、特性曲線上で c′(u)の下
からの評価をする際に、時間局所解が長時間存在することを用い、時刻を十分大きくとって考える点である。

1 導入

1.1 はじめに

非線形波動方程式の研究において、解が未来永劫存在し続けるか (時間大域解の存在)、あるいは有限時間内
に何かしらの特異性を形成して崩壊してしまうか (有限時間爆発)という問題は、最も基本的なテーマの一つで
ある。物理的な直観としては、初期の波の乱れが十分に小さい場合には、波は安定して伝播し続けることが期
待されるが、非線形項による相互作用が特定の条件を満たす場合には、解そのものやその導関数が有限時間で
無限大に発散する「爆発現象」が生じることが知られている。本研究では、こうした解の長時間挙動を数学的
観点から考察することが研究目的である。

1.2 問題設定と主定理

本講演では以下の空間 1次元準線形波動方程式の初期値問題について考える。{
utt − (c(u)2ux)x = 0,

u(0, x) = εϕ(x), ut(0, x) = εψ(x)
(1)

ここで、c(u) = (1 +A|u|p−2u)
1
2 , A > 0 , p ≥ 2である。

この古典解の爆発時刻を考察する。

(1)の解の最大存在時刻 T ∗ を以下で定める。

T ∗ = sup{T > 0 | sup
t∈[0,T )

(‖u(t)‖L∞ + ‖ut(t)‖L∞ + ‖ux(t)‖L∞ + ‖c(u(t))−1‖L∞) <∞}.

定理 1 (長時間存在). ϕ ∈ C2
0 (R), ψ ∈ C1

0 (R)とする。このとき、ある ε0 > 0が存在し、

0 < ε ≤ ε0 ならば Cε−(p−1) ≤ T ∗

が成り立つ。ただし、C > 0は εに無関係な正定数である。
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定理 2 (有限時間爆発). ϕ ∈ C2
0 (R), ψ ∈ C1

0 (R)とする。空間上のある点 x0 ∈ Rにおいて、ψ(x0) > 0で以
下 2つの条件のうちどちらかを満たしているとする。

(i) ϕ(x0) ≥ 0 かつ
∫ x0

−∞
ψ(x)dx > −ϕ(x0),

(ii) ϕ(x0) < 0 かつ
∫ ∞

x0

ψ(x)dx > −3ϕ(x0).

このとき、ある ε0 > 0が存在し、

0 < ε ≤ ε0 ならば T ∗ ≤ C ′ε−(p−1)

が成り立つ。ただし、C ′ > 0は εに無関係な正定数である。

注意 3. 定理１の長時間存在については c(u) = (1 +A|u|p−2u)
1
2 でなくとも、条件

c(0) = 1 , c′(0) = ... = c([p−1])(0) = 0 , |c([p−1])(θ)| . |θ|p−2−[p−2]

を満たしていれば良い。ここで、[・]はガウスの床関数で、c(m) は cのm階導関数である。

1.3 先行研究・背景

まずCourant-Lax [1]と Hartman-Wintner[2]の結果より、初期値問題 (1)の時間局所解の存在と一意性が知
られている。すると、自然な疑問としては時間大域解や爆発解を調べることが研究対象として挙げられる。また、
John [4]の結果を適用することにより (1)の p = 2の場合で T ∗ ∼ ε−1 が得られる。Haruyama-Takamura [3]
では (1)と形式的に同値な方程式 {

vtt − vxx = A|vx|p−2vxvxx,

v(0, x) = εϕ(x), vt(0, x) = εψ(x)
(2)

について、十分小さい ε > 0に対して T ∗ ≤ Cε−(p−1) が示されている。彼らは、d’Alembertの波動公式と逐
次代入の方法に基づいて証明を行った。我々は彼らとは異なるアプローチで T ∗ ≤ ε−(p−1) を示し、どのよう
な爆発が起こるかを与えた。また、T ∗ の下からの評価も与えた。T ∗ の下からの評価は時間局所解の長時間存
在を保証するものである。

注意 4. Haruyama-Takamura [3] の初期値問題 (2) でも主定理と同様の結果が成り立つ。ϕ ∈ C3
0 (R), ψ ∈

C2
0 (R)であれば定理 1と同様の結果が得られ、さらに ψx(x0) > 0とし、(i),(ii)に対応する仮定

(i)′ ϕx(x0) ≥ 0 かつ ψ(x0) > −1

2
ϕx(x0),

(ii)′ ϕx(x0) < 0 かつ ψ(x0) <
3

2
ϕ(x0)

があれば定理 2と同様の結果が得られる。

2 準備

G(u) =

∫ u

0

c(θ)dθ とする。Riemann不変量と呼ばれる r, sを




r(t, x) =

∫ x

−∞
ut(t, y)dy +G(u),

s(t, x) =

∫ x

−∞
ut(t, y)dy −G(u)

(3)

と定める。
ここで、時刻 τ で空間上の点 y を通る特性曲線 x±(t; τ, y)を初期値問題

dx±
dt

(t) = ±c(u(t, x±(t))),

x±(τ) = y

の解として定義する。以下、混乱の恐れがない場合は x±(t; τ, y)を単に x±(t)と書く。
定義から、以下がわかる。 

d

dt
r(t, x−(t)) = 0,

d

dt
s(t, x+(t)) = 0

(4)

を得る。すなわち、負の特性曲線上では r、正の特性曲線上では sの値は不変である。
また、F1 =

√
crx , F2 =

√
csx とおくと、次のリッカチ型微分方程式を得る。

負の特性曲線 x−(t)上では
dF1

dt
= γF 2

1 , (5)

正の特性曲線 x+(t)上では
dF2

dt
= γF 2

2 (6)

が成り立つことがわかる。ここで、γ =
c′(u)

2c(u)
3
2

である。

Riemann不変量 r, sについては次の保存則が成り立つ。

補題 5. t ∈ [0, T ∗)に対し、

‖r(t)‖L∞ = ‖r(0)‖L∞ , ‖s(t)‖L∞ = ‖s(0)‖L∞ (7)

が成り立つ。

3 証明の概略

3.1 定理 1について

x ∈ Rを任意に固定する。(5)より、特性曲線 x−(t)上では、

F1(t) = F1(0) +

∫ t

0

γ(τ)F1(τ)
2dτ

が成り立つ。この式と比較定理を用いて T ∗ の評価を行う。そのために γ を評価する、すなわち c(u)と c′(u)

の評価を行う。|u|を評価すれば、両者共に評価できることに注意して、以下の命題を示す。

命題 6. ある ε0 > 0が存在し、0 < ε ≤ ε0 ならば

‖c′(u)‖L∞ ≤ C1ε
p−2, (8)

‖c(u)− 1‖L∞ ≤ C1ε
p−1 (9)



が成り立つ。

G(u) =

∫ u

0

c(θ)dθ

= u+

∫ u

0

(c(θ)− 1)dθ

の分解と、保存則 (7)より

‖u(t)‖L∞ ≤ C2ε+
A

p
‖u(t)‖pL∞ (10)

が成り立つことがわかる。
(10)から |u|の評価を示すために、次の補題を用意する。

補題 7. ε > 0を十分小さくとると、t ∈ [0, T ∗) に対し、

A‖u(t)‖p−1
L∞ ≤ p

2
(11)

が成り立つ。

補題の証明は、不等式 (11)が成り立つ時刻がどこかの T < T ∗ で止まると仮定し、解の連続性から矛盾を導
くことで示す。

(10)、(11)より、‖u‖L∞ . εを得るので、c′(u) =
A(p− 1)|u|p−2

2c(u)
に注意すると、(8)、(9)を得る。

(9)から、特に
1

2
≤ c(u) ≤ 3

2
(12)

とできる。よって、比較定理が適用でき、証明が終わる。

3.2 定理 2について

定理 1と同様にリッカチ型方程式を比較定理を用いて証明を行う。そのために c′(u)の下からの評価を行う
点が定理 1と異なる点である。同じように、|u|を評価することを目指して、次の命題を示す。

命題 8. 十分小さい ε > 0と十分大きい時刻 t > 0に対して

仮定 (i)のもとでは、(0, x0)を通る負の特性曲線 x−(t)上で、c′(u) ≥ C3ε
p−2, (13)

仮定 (ii)のもとでは、(0, x0)を通る正の特性曲線 x+(t)上で、c′(u) ≥ C3ε
p−2 (14)

が成り立つ。

まず十分小さい ε > 0では、 
1

2
u ≤ G(u) ≤ 3

2
u (u ≥ 0),

3

2
u ≤ G(u) ≤ 1

2
u (u < 0)

(15)

とできることに注意する。

十分大きい時刻 tでは、(0, x0)を通る特性曲線を考えることで、x0 が ϕ,ψ の台の外に出る。これより、十
分大きい時刻では、仮定 (i),(ii)の効果で、それぞれ特性曲線 x−(t) ,x+(t)上で G(u) & Cεがわかるが、(15)
より、|u| & εもわかるので、(13)、(14)を得る。
比較定理を用いる際、ϕx(x0)の正負で F1 を用いるか F2 を用いるかが変わってくるため、(5)、(6)の両方

を考える必要があることに注意しなければならないが、本質的な議論は定理 1と同じである。
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