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概要
近年, 松田氏により高次元のWitt 環が定義された. これは r 次元の級数 l(T ) が特定の関数
等式を満たす場合に, その係数行列を用いてWitt 環を定義できるというものである. 古典的な
Witt 環は完備離散付値環の一種 (strict p-ring) として特徴付けられる. 本講演ではこの性質を
高次元の場合に一般化する.

1 導入
Witt環は, 標数 p(> 0)の体の pn 次拡大を記述する目的で導入された概念である. 現在では, 標数

pの可換環を標数 0へ持ち上げる関手として整備されており, p進微分方程式や代数幾何, K 理論な
ど様々な分野への応用が知られている.

Witt 環にはいくつかの一般化があり, 体の分岐拡大に対応したものが分岐Witt 環である. 分岐
Witt環はより一般化され, Hazewinkel[5]は剰余体の Frobenius写像の持ち上げを利用してWitt多
項式の係数を捻った場合にも分岐Witt環が構成できることを示した. その後, 松田 [2]は離散付値環
上の可換環に対してねじれ分岐Witt環と π 指数関数 (π-exponential)を定義し, 収束半径が 1より
大きい (過収束)関数であることやWitt環の演算との関係を証明した.

近年, 松田はこの枠組みで高次元Witt環 [1]を定義した. 本稿では, 離散付値環 Oの剰余体の r次
元Witt環が完備化の直積 Ôr と加群として同型になることを示す.

古典的なWitt環
古典的なWitt環について復習する. 証明は Bourbaki[6]の 9章を参照頂きたい. 詳細に入る前に,

Witt環の定義がどのようなものであるかを述べる. 以下では可換環は単位的とし, N = {0, 1, . . . }と
する. Witt環は可換環 Aに対して定義できる. 直積環と演算を区別するためにW (A) = AN と書く.

W (A)における演算は, ゴースト写像と呼ばれる写像

ϕ :W (A) → AN ; (an)n≥0 7→ (ϕn(a0, . . . , an))n≥0

が環準同型になるように定義したものである. 実際にこのような演算が存在することを示すには, 環
Z[X0, X1, . . . ;Y0, Y1, . . . ]のWitt環の演算が存在することを利用する.
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定義 1.1 n ∈ Nに対して, n番目のWitt多項式を

ϕn(X0, . . . , Xn) =

n∑
i=0

piXpn−i

i

と定める.

定理 1.2 各 n ∈ Nに対して, Z係数の多項式 Sn, Pn, In ∈ Z[X0, . . . , Xn;Y0, . . . , Yn] が一意的に存
在して

ϕn(S0, . . . , Sn) = ϕn(X0, . . . , Xn) + ϕn(Y0, . . . , Yn)

ϕn(P0, . . . , Pn) = ϕn(X0, . . . , Xn)ϕn(Y0, . . . , Yn)

ϕn(I0, . . . , In) = −ϕn(X0, . . . , Xn)

が成り立つ.

定義 1.3 可換環Aに対して, W (A) = ANと定める. W (A)の演算を a = (an)n, b = (bn)n ∈W (A)

に対して

a+ b = (Sn(a0, ..., an, b0, ..., bn))n

a · b = (Pn(a0, ..., an, b0, ..., bn))n

と定める. このように定義した環W (A)を Aの (p-typical)Witt環という.

例 1.4 実際に定理 1.2 の状況で, Witt 環の元 (X0, X1, . . . ) と (Y0, Y1, . . . ) の和と積を表す多
項式 S1 と P1 を計算してみよう. ϕ0(X) = X0 だから, S0 = X0 + Y0 である. ϕ1(S0, S1) =

ϕ1(X0, X1) + ϕ1(Y0, Y1)より, pS1 = Xp
0 + Y p

0 − (X0 + Y0)
p + p(X1 + Y1) なので

S1 = X1 + Y1 −
1

p

(
p−1∑
i=1

(
p

i

)
Xp−i

0 Y i
0

)
∈ Z[X0, X1;Y0, Y1]

である. 同様に P0 = X0Y0 で, ϕ1(P0, P1) = ϕ1(X0, X1)ϕ1(Y0, Y1)より, pP1 = (Xp
0 + pX1)(Y

p
0 +

pY1)−Xp
0Y

p
0 なので

P1 = p2X1Y1 +X1Y
p
0 + Y1X

p
0

である.

注意 1.5 A を可換環とする. このとき, W (A) の加法の単位元は (0, 0, . . . ) で, 乗法の単位元は
(1, 0, . . . )である.

次に strict p環の定義や性質を述べる.

定義 1.6 可換環 Aにおける p乗写像 x 7→ xp が同型のとき, Aを完全であるという.

定義 1.7 Aを可換環とし, a1 ⊃ a2 ⊃ . . . を Aのイデアルの降鎖列で, am · an ⊂ am+n をみたすと
する. Aが上のイデアルの降鎖列から定まる位相に関して完備であり, かつ剰余環 A/a1 が標数 pの
完全環のとき, Aを p環という.



Aを p環とする. Aのイデアルの降鎖列が an = pnAで与えられ, かつ pが Aの非零因子である
とき, Aを strict p環という.

例 1.8 Zp は strict p 環である. 実際, {pnZp}n≥1 から定まる p 進位相に関して Zp は完備で,

Zp/pZp
∼= Fp は標数 pの完全環である.

Strict p環に関しては以下のような性質が成り立つ. 証明は [3]を参照.

命題 1.9 同じ剰余環を持つ 2つの strict p環は同型である.

定理 1.10 k を標数 pの完全環とする. このとき k のWitt環W (k)は strict p環で, その剰余環は
k である.

例 1.11 W (Fp) ∼= Zp である. 実際, 定理 1.10より, W (Fp)は Fp を剰余体に持つ strict p環で, 例
1.8より, Zp も Fp を剰余体に持つ strict p環である.

分岐Witt環
本稿におけるWitt 環の高次元化は, ねじれ分岐Witt 環の枠組みで定義される. そのため, 分岐

Witt環について述べる. K を p進数体 Qp の有限次拡大体, K の整数環を OK , 剰余体を Fq とする.

このとき, W (Fq)において素元は pである. 拡大 K/Qp が不分岐のときは pは OK において素元な
のでW (Fq) ∼= OK である. 一方, 拡大 K/Qp が分岐しているときは, pは OK において素元ではな
いのでW (Fq) と OK は同型ではない. このような場合に, Fq を OK と同型な環に写す関手が分岐
Witt環である. 分岐Witt環のWitt多項式は

ϕn(X0, . . . , Xn) =

n∑
i=0

πiXqn−i

i

で定義される. この場合も, 古典的な議論と同様にWitt環を構成することができる (例えば, [4]を参
照). 剰余体における Frobenius写像の K への持ち上げを σ : K → K とする. Hazewinkelは, 分岐
Witt環のWitt多項式を σ を用いて

ϕn(X0, . . . , Xn) = Xqn

0 + σn−1(π)Xqn−1

1 + · · ·+ σn−1(π)σn−2(π) . . . σ(π)πXn

と捻った場合にも, 同様にWitt環が構成できることを示した [5]. 松田はこの概念をより一般化した
[2].

考察
ここで, Artin-Hasse指数関数とWitt環の関係を考察してみよう. Artin-Hasse指数関数は

exp

( ∞∑
i=0

T pi

pi

)



で定義される関数であった. この対数関数を l(T ) =
∑∞

i=0
Tpi

pi とし, γi = p−i とする. γ−1
n γn−i =

pn · p−(n−i) = pi である. なので, l(T )は p-typicalなWitt環のWitt多項式
n∑

i=0

γ−1
n γn−iX

pn−i

i =

n∑
i=0

piXpn−i

i = ϕn(X0, . . . , Xn)

を復元する. 同様に, l(T ) =
∑∞

i=0
T qi

πi とし, γi = π−i とすると, 分岐Witt環のWitt多項式
n∑

i=0

γ−1
n γn−iX

qn−i

i =

n∑
i=0

πiXqn−i

i

を復元する.

この考察は, Witt多項式が形式的冪級数から得られることを示しており, 係数環や素元を変更する
ことで分岐や高次元の場合へ自然に拡張できることを示唆している.

2 高次元Witt環の構成
本稿で扱う高次元Witt環は, 係数の付値に関する条件をみたす級数に対して定義できる. このよ

うな級数をWitt型級数と呼ぶ.

以下では記号を述べる. pを素数, qを pのべきとする. Oを離散付値環, mを極大イデアル, π ∈ O
を mの生成元とする. K を O の商体, κ = O/π を O の剰余体で標数 pと仮定する. σ を K の自己
同型で, σ(O) ⊂ O, σ(π)/π ∈ O×, 各 a ∈ O に対して σ(a) ≡ aq mod π をみたすものとする. 正整
数 r を固定し, r 次元Witt関手を考察する.

Aを可換環, l ∈ Nとする. m × n行列 a = (aij)i,j ∈ Mm,n(A)に対して, 各成分を l 乗した行列
(alij)i,j を a⟨l⟩ と書く. Aにおいて写像 x 7→ xq が全単射であるとき, q−k に対してもこの記号を用い
る. Mm,n(A)の元からなる列 a = (ak)k に対して, 列 (a

⟨l⟩
k )k を a⟨l⟩ で表す. I を Aのイデアルとす

る. a, b ∈Mm,n(A)に対して a− b ∈Mm,n(I)のとき a ≡ b mod I と書く.

定義 2.1 T =
t
(T1, . . . , Tr)とする. l(T ) =

∑∞
i=0 γiT

⟨qi⟩ ∈ KJT Kr (γi ∈ Mr(K))を r 個の形式的
冪級数の組とする. l(T )の各係数行列 γi が以下の条件をみたすとき, l(T )をWitt型級数という:

(1) γ0 = I.

(2) 各 n ∈ Nに対して πnγn ∈ GLr(O).

(3) 各 n ∈ Nに対して σ(γ−1
n+1γn) ≡ γ−1

n+2γn+1 mod πn+2.

定義 2.2 l(T )をWitt型級数とする. 各 n ∈ Nに対して, l(T )の n番目のWitt多項式を

ϕn(X0, . . . , Xn) =

n∑
i=0

γ−1
n γn−iX

⟨qn−i⟩
i

と定義する.

以下, 本稿ではWitt型級数 l(T )を固定する. 高次元Witt環の場合も, 次の定理によってWitt環
の演算が定まる.



定理 2.3 任意の n ∈ N に対して, O 係数の多項式 Sn, Pn, In, Cn,a ∈ O[X0, . . . , Xn;Y0, . . . , Yn]
r

が一意的に存在して

ϕn(S0, . . . , Sn) = ϕn(X0, . . . , Xn) + ϕn(Y0, . . . , Yn)

ϕn(P0, . . . , Pn) = ϕn(X0, . . . , Xn)ϕn(Y0, . . . , Yn)

ϕn(I0, . . . , In) = −ϕn(X0, . . . , Xn)

ϕn(C0,t, . . . , Cn,t) = tϕn(X0, . . . , Xn)

が成り立つ. ただし, t ∈ O である.

定義 2.4 Aを可換 O 代数とする. W (A) =
∏

n∈NA
r と定める. a = (an)n, b = (bn)n ∈ W (A)と

t ∈ O に対してW (A)の演算を

a+ b = (Sn(a0, ..., an, b0, ..., bn))n

a · b = (Pn(a0, ..., an, b0, ..., bn))n

t · a = (Cn,t(a0, . . . , an))n

と定める. このように定義した O 代数W (A)を Aの r 次元Witt環という.

3 Strict p環による高次元Witt環の特徴付け
先ほども述べたように, 分岐拡大を扱う場合, pは整数環において素元ではないので, 離散付値環と

その素元 π を中心に考える. そこで, strict p環の一般化である strict π 環の定義や性質を述べる.

定義 3.1 Aを可換 O 代数とし, a1 ⊃ a2 ⊃ . . . を Aのイデアルの降鎖列で, am · an ⊂ am+n かつ
π ∈ a1 をみたすとする. Aが上のイデアルの降鎖列から定まる位相に関して完備であり, かつ剰余環
A/a1 が標数 pの完全環のとき, Aを π 環という.

π 環 Aのイデアルの降鎖列が an = πnAで与えられ, かつ π が Aの非零因子のとき, Aを strict

π 環という.

以下の命題 3.2, 3.3, 3.4の証明は [3]を参照.

命題 3.2 Aをイデアルの降鎖列 a1 ⊃ a2 ⊃ . . . から定まる π 環, k = A/a1 を標数 pの剰余環とす
る. 以下が成り立つ:

(i) 任意の λ ∈ k に対して f(λq) = f(λ)q をみたす唯一の k の代表系 f : k → Aが存在する.

(ii) a ∈ Aが f(k)の元であることと, aが任意の nに対して qn 乗の形で表せることは同値である.

(iii) f は乗法的である. すなわち, 任意の λ, µ ∈ k に対して f(λµ) = f(λ)f(µ)が成り立つ.

命題 3.3 同じ剰余環を持つ 2つの strict π 環は同型である.

命題 3.4 Aを π 進付値に関して完備な離散付値環, kを剰余体とする. f : k → Aを命題 3.2の写像



とし, S = f(k)を代表系とする. 任意の a ∈ Aは

a =

∞∑
n=0

snπ
n, sn ∈ S

の形で一意的に展開できる.

以下では, 命題 3.2の代表系 f : k → Aから定まる写像 kr → Ar; (ai)1≤i≤r 7→ (f(ai))1≤i≤r も同
様に f と書く.

補題 3.5 X = (Xi)i, Y = (Yi)i をそれぞれ Xi = (Xi,j)1≤j≤r, Yi = (Yi,j)1≤j≤r であるような変数
の族とする. 環 Aを O[Xq−k

i,j , Y q−k

i,j | i ≥ 0, 1 ≤ j ≤ r, k ≥ 0]と定め, Âを Aの π 進完備化とする.

また, 写像 f : Â/πÂ→ Âを命題 3.2の代表系とする.

さらに, O の剰余体 κ = O/π が完全体と仮定する. このとき, a ∈W (Â/πÂ)に対して次のように
定義される写像 θ :W (Â/πÂ) → Âr

θ(a) =

∞∑
i=0

γ−1
i f(a

⟨q−i⟩
i )

は O 加群の準同型である.

証明 κ は完全という仮定より, Â が strict π 環であることに注意する. 変数の族 X, Y に対して θ

が加法的であることを示せば十分である. S = (Si)i を任意の nに対して ϕn(S) = ϕn(X) + ϕn(Y )

となる Mr(O) 係数多項式の列とし, θ(S) = θ(X) + θ(Y ) を示す. 右辺は Â の元より, 命題 3.4

からベクトルの列 (ψi)i ∈
∏

i∈N Â
r で, θ(X) + θ(Y ) =

∑∞
i=0 γ

−1
i f(ψ

⟨q−i⟩
i ) となるものが存在

する. ただし, ψi は ψi の (Â/πÂ)r における像である. Â の完備性より, 展開は一意的なので,

f(X
⟨q−i⟩
i ) + f(Y

⟨q−i⟩
i ) = f(ψ

⟨q−i⟩
i )が任意の iに対して成り立つ. この等式の各成分を qn 乗するこ

とで, f(X
⟨qn−i⟩
i ) + f(Y

⟨qn−i⟩
i ) ≡ f(ψ

⟨qn−i⟩
i ) mod πn が成り立つ. また, Xi,j 7→ Xqn

i,j , Yi,j 7→ Y qn

i,j

で定義される環準同型 Â→ Âを等式 θ(X) + θ(Y ) =
∑∞

i=0 γ
−1
i f(ψ

⟨q−i⟩
i ) に適用すると

θ(X⟨qn⟩) + θ(Y ⟨qn⟩) ≡
n∑

i=0

γ−1
i f(ψ

⟨qn−i⟩
i ) mod πn+1

が得られる.

以下, nについての帰納法で Sn ≡ ψn mod π を証明する. n = 0のときは X0 + Y0 ≡ ψ0 mod π

なので成り立つ. n > 0のとき, 0 ≤ i ≤ n− 1に対して Si ≡ ψi mod π と仮定する.

ϕn(S0, . . . , Sn)− ϕn(ψ0, . . . , ψn) =

n∑
i=0

γ−1
n γn−i(X

⟨qn−i⟩
i + Y

⟨qn−i⟩
i − ψ

⟨qn−i⟩
i )

≡
n∑

i=0

γ−1
n γn−i(f(X

⟨qn−i⟩
i ) + f(Y

⟨qn−i⟩
i )− f(ψ

⟨qn−i⟩
i ))

≡
n∑

i=0

γ−1
i (f(X

⟨qn−i⟩
i ) + f(Y

⟨qn−i⟩
i )− f(ψ

⟨qn−i⟩
i ))

≡ θ(X⟨qn⟩) + θ(Y ⟨qn⟩)− θ(X⟨qn⟩)− θ(Y ⟨qn⟩) ≡ 0 mod πn+1



である. 帰納法の仮定より, 0 ≤ i ≤ n − 1に対して S
⟨qn−i⟩
i ≡ ψ

⟨qn−i⟩
i mod πn−i+1 なので, 上式は

γ−1
n Sn ≡ γ−1

n ψn mod πn+1 を意味する. よって, Sn ≡ ψn mod π が従う. 同様に, t ∈ O に対して
θ(t ·X) = tθ(X)が成り立つ.

よって, 次の主定理が得られる.

定理 3.6 O を離散付値環, π を O の素元, κ = O/π を剰余体とする. κが完全体のとき, O 加群と
しての同型W (κ) ∼= Ôr が成り立つ. ただし, Ô は O の π 進完備化である.

証明 写像 θ :W (κ) → Ôr を
θ(a) =

∞∑
i=0

γ−1
i f(a

⟨q−i⟩
i )

と定義する. 任意の Ôr の元は αi ∈ κr を用いて∑∞
i=0 γ

−1
i f(αi)という形で一意的に書けるので, 補

題 3.5より, θ は O 加群としての同型を与える.
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