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概 要
Castro-Ozbagciらは (−1)-sectionをもつLefschetz fibrationのモノドロミーから,その多様

体の trisection図式を描く方法を確立した. 本講演では,(−n)-sectionをもつ Lefschetz fibration
を許容する多様体のモノドロミーから, その多様体に CP 2 あるいは CP 2 を sectionに対応す
る個数連結和した多様体の Trisection図式が同様に描けることについて話し, その概要と準備
について本稿で説明する. 本研究は慶応義塾大学の磯島司氏との共同研究に基づく.

1 導入
Gay と Kirby によって導入された trisection は，任意の閉 4 次元多様体を 3 つの 1ハンドル

体に分解する理論であり，4 次元多様体に対する新たな図式的記述を与えるものとして注目され
ている.

Castro–Ozbagciらは,(−1)-sectionをもつ S2上 Lefschetz fibrationを許容する 4次元閉多様体
の trisection diagramの描く方法を [3]で導入した. 彼らの手法は,その 4次元多様体を Lefschetz

fibrationのモノドロミーの情報から 2つの部分に分けて relative trisection diagramを描きそれら
をつなぎ合わせるというものである. その手法では,2つの relative trisection diagramの（境界に
誘導する open book分解が適合するように）貼り合わせるために, (−1)-sectionであるという設定
での主張であった. 加えて,それ以外の sectionでは境界に誘導する open book分解が適合しない
ということにも言及されている.

そこで本研究では一般の (−n)-sectionを持つ S2上 Lefschetz fibrationを許容する多様体につい
て考察し,彼らの手法を応用し結果を得た. Castro–Ozbagciらの分割とは異なる部分に分けること
によって, 2つの open book分解が適合するようにモノドロミーを与え, D2上 Lefschetz fibration

を許容する多様体のモノドロミーから対応する多様体が何に微分同相かを検証した. その結果,n

が正のとき,元の多様体に n個のCP 2を連結和した (nが負のとき,−n個のCP 2を連結和した) 多
様体の trisection diagramを描く手法を得た. これについて本稿で解説する.本研究の詳細な構成
および完全な証明は，我々のプレプリント [7] に委ねる．

2 準備
本研究では，trisection およびその相対版，achiral Lefschetz fibration を用いる. 本節ではその

準備として，これらの基本的概念の定義をまとめる.
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2.1 Trisection と trisection diagram

Definition 2.1 (Trisection [5]). ki ≤ g を満たす非負整数 g, ki (i = 1, 2, 3) と，滑らかで向き付
けられた 4 次元閉多様体 X に対して，

X = X1 ∪X2 ∪X3

が (g; k1, k2, k3)–trisection であるとは，次を満たすことをいう：

1. 各 i ∈ {1, 2, 3} に対して，Xi は 4 次元 1–ハンドル体である：

Xi
∼= ♮ki(S1 ×B3).

2. 任意の相異なる i, j ∈ {1, 2, 3} に対し，Xi ∩Xj は 3 次元 1–ハンドル体

Xi ∩Xj
∼= ♮g(S1 ×B2)

に微分同相である.

3.

Σ := X1 ∩X2 ∩X3
∼= #g(S

1 × S1) =: Σg

は genus g の閉曲面である.

Hα = X3 ∩X1, Hβ = X1 ∩X2, Hγ = X2 ∩X3 とする．このとき Hα ∪Hβ ∪Hγ を spine とい
う．trisection はその spine によって一意に定まることが知られている（[5]）．
4つ組 (g; k1, k2, k3)を trisection の type といい，特に k1 = k2 = k3(=: k)であるとき balanced

trisection，そうでないとき unbalanced trisection という．balanced のとき，簡単のため type を
(g, k) と書く．

Definition 2.2. 4 つ組 (Σg;α, β, γ) が (g; k1, k2, k3)–trisection diagram であるとは，次の条件
をすべて満たすことをいう．

• (Σg;α, β) は#k1S
1 × S2 の Heegaard 図式である．

• (Σg;β, γ) は#k2S
1 × S2 の Heegaard 図式である．

• (Σg; γ, α) は#k3S
1 × S2 の Heegaard 図式である．

2.2 Relative trisection と relative trisection diagram

境界をもつ 4 次元多様体の trisection は relative trisection と呼ばれる（[2]）．以下では，その
定義を紹介する．
複素平面 C 内の円板

D = {reiθ | r ∈ [0, 1], −π/3 ≤ θ ≤ π/3} ⊂ C

に対し，∂D の部分集合 ∂−D, ∂0D, ∂+D を次のように定める：

∂−D = {reiπ/3 ∈ ∂D | r ∈ [0, 1]},



∂0D = {eiθ ∈ ∂D | −π/3 ≤ θ ≤ π/3},

∂+D = {re−iπ/3 ∈ ∂D | r ∈ [0, 1]}.

このとき
∂D = ∂−D ∪ ∂0D ∪ ∂+D

が成り立つ．
境界成分を b 個もつ genus-p の曲面 Σp,b に対し，

U := Σp,b ×D

とおく．Σp,b は 1 個の 0–ハンドルと 2p+ b− 1 個の 1–ハンドルからなるため，U は境界連結和

U ∼= ♮2p+b−1(S
1 ×B3)

と微分同相である．
さらに，その境界は

∂0U = (Σp,b × ∂0D) ∪ (∂Σp,b ×D)

および
∂±U = Σp,b × ∂±D

に分解される．
非負整数 n, s に対し，

Vn := ♮n(S
1 ×B3)

とおき，
∂Vn = H−

s ∪H+
s

を ∂Vn の genus-(n+ s) の Heegaard 分解とする．
ここで

s = g − k + p+ b− 1, n = k − 2p− b+ 1

とおくと，
Zk

∼= U♮Vn
∼= ♮k(S

1 ×B3)

が成り立つ．また，

∂Zk = Y +
g,k;p,b ∪ ∂0U ∪ Y −

g,k;p,b, Y ±
g,k;p,b = ∂±U♮H±

s

である．

Definition 2.3. 境界が連結な 4 次元多様体 W に対し，

W = W1 ∪W2 ∪W3

が (g, k; p, b)–relative trisection であるとは，次の条件を満たすことをいう：

• i = 1, 2, 3 に対して Wi
∼= Zk が成り立つ．



図 1: The standard diagram for relative trisection diagrams.

• i = 1, 2, 3 に対して

Wi ∩Wi+1
∼= Y +

g,k;p,b, Wi ∩Wi−1
∼= Y −

g,k;p,b

が成り立つ．

これらの条件から，
W1 ∩W2 ∩W3

は境界成分を b個もつgenus-gの曲面 Σg,bとなる．この定義における relative trisectionは balanced

であることに注意する．閉多様体の場合と同様に，unbalanced な relative trisection も定義できる．

Lemma 2.4 ([2, Lemma 11]). 境界が空でない 4 次元多様体 X の (g, k; p, b)–relative trisection

は，ページが Σp,b である open book 分解を ∂X 上に誘導する．

閉多様体の場合と同様に，relative trisection に対しても relative trisection diagram を定義で
きる（[2]）．

Definition 2.5. 境界成分を b 個もつ genus-g の曲面 Σ と，Σ 上の g− p 本の単純閉曲線からな
る 3 つの集合 α, β, γ が与えられているとする．このとき (g, k; p, b)–relative trisection diagram

とは，4 つ組
(Σ;α, β, γ)

であって，
(Σ;α, β), (Σ;β, γ), (Σ; γ, α)

のそれぞれが，図 1 に示される標準図式と，曲面の微分同相および同一族の曲線間の handle slide

によって互いに移り合うものをいう．

Lemma 2.6 ([2, Lemma 2.7]). X および X ′ を境界が空でなく連結な 4 次元多様体とし，T，T ′

をそれぞれ X，X ′ の relative trisection とする．また，T，T ′ によって ∂X，∂X ′ 上に誘導され
る open book 分解をそれぞれ

OX = (B, π), OX ′ = (B′, π′)

とする．
f : ∂X → ∂X ′ を向きを反転する微分同相写像であって，次の条件を満たすものとする：

• f(B) = B′ が成り立つ．



• ∂X \B 上で
π′ ◦ f = π

が成り立つ．

（すなわち，f は open book 分解 OX を OX ′ に写す同型である．）
このとき，T と T ′ を貼り合わせることにより，閉 4 次元多様体

X̂ = X ∪f X ′

の trisection が得られる．

2.3 Achiral Lefschetz fibration

Definition 2.7. コンパクトで向き付けられた 4 次元多様体 X と 2 次元多様体 B に対し，C∞

級写像 f : X → B が genus-g Lefschetz fibration であるとは，次を満たすことをいう：

1. ∂X = f−1(∂B)．

2. f の特異点集合は有限であり，各特異点は Lefschetz 型である．さらに，異なる特異点は異
なる特異値をもつ（すなわち critical values は互いに相異なる）．

3. 制限写像
f : X \ f−1(C) → B \ C

は，genus-g の閉曲面 Σg をファイバーとする滑らかなファイバー束である．

4. 各特異点 pi の近傍において，X の局所複素座標 (z1, z2) と B の局所複素座標 w が存在し，
f は次のいずれかの形で表される：

w = f(z1, z2) = z21 + z22 (chiral Lefschetz singularity)

または
w = f(z1, z2) = z 2

1 + z22 (achiral Lefschetz singularity).

ただし C ⊂ B は特異値の有限集合である．

chiral singularity のみを含むとき chiral Lefschetz fibration と呼び，achiral singularity も許す
とき achiral Lefschetz fibration と呼ぶ．
正則値 q0 ∈ B \C の逆像 f−1(q0) を 一般ファイバーと呼び，特異値 qi ∈ C の逆像 f−1(qi) を

（Lefschetz 型）特異ファイバーと呼ぶ．
以降，本稿では簡単のため，底空間が B = S2 または B = D2 の場合に限って考える．
f : X → B を genus-g achiral Lefschetz fibration とし，特異値集合を

C = {q1, . . . , qk} ⊂ B

とする．基点 q0 ∈ B \ C を固定し，一般ファイバー

F := f−1(q0) ∼= Σg

を取る．



B \C 上では f は局所自明なファイバー束である．各特異値 qi に対して，q0 を始点とし qi を
一周して戻る B \ C 内の単純閉曲線

ℓi : [0, 1] → B \ C, ℓi(0) = ℓi(1) = q0

を取ると，一般ファイバー F の自己微分同相が定まる．この自己微分同相の同位写像類は，曲面
Σg の mapping class group

Mod(Σg)

の元を与える．
定義より，各 ℓi に対応するモノドロミーは，ある単純閉曲線 γi ⊂ Σg に沿った Dehn twist

tεiγi ∈ Mod(Σg)

に一致する．ここで

εi =

+1 (pi が chiral singularityの場合),

−1 (pi が achiral singularityの場合)

である．この曲線 γi を qi に対応する vanishing cycle と呼ぶ．
以上により，achiral Lefschetz fibration f に対して，Dehn twist の積

tεmγm · · · tε1γ1 ∈ Mod(Σg)

が定まる．これを f の モノドロミーと呼ぶ．なお，ループ系の取り方に依存してこの積表示は
Hurwitz 変換と同時共役により変化する．
底空間が B = S2 の場合，モノドロミーは

tεmγm · · · tε1γ1 = id

を満たす．

2.4 主定理
Theorem 2.8. X を，特異ファイバーを m 個もち，(−n)–section を備えた genus-p の achiral

Lefschetz fibration を S2 上にもつ閉 4 次元多様体とする．ここで n は任意の整数である．この
とき，

X#

nCP 2 (n ≥ 0),

−nCP 2 (n < 0)

は
(2p+m+ |n|+ 5, 2p+ 1)

型の trisection を許容し，その対応する trisection diagram は，X の Lefschetz fibration のモノ
ドロミーから明示的に構成することができる．
次に，ファイバー和に関する結果を述べる．i = 1, 2 に対し，正則ファイバー F ⊂ Xi をもつ

genus-p の achiral Lefschetz fibration

fi : Xi → S2

が与えられているとする．



Theorem 2.9. i = 1, 2 に対し，S2 上の genus-p の achiral Lefschetz fibration をもち，特異ファ
イバーをそれぞれ ni 個もつ閉 4 次元多様体 Xi をとる．さらに，X1 と X2 の Lefschetz fibration

が，それぞれ (−n)–section および n–section をもつと仮定する．ここで n は任意の正の整数で
ある．このとき，ファイバー和

X1#FX2

は
(2p+ n1 + n2 + 5, 2p+ 1)

型の trisectionを許容し，その対応する trisection diagramは，X1 および X2 の Lefschetz fibration

のモノドロミーから明示的に構成することができる．

2.5 証明の概略
主定理の証明の概略を述べる．Castro–Ozbagci らは，(−1)–section をもつ S2 上の achiral

Lefschetz fibration を許容する閉 4 次元多様体 X に対して，その Lefschetz fibration のモノドロ
ミーからX の trisection diagram を構成する方法を与えた（[3]）．彼らの方法では，X を 2 つ
の部分に分割し，それぞれについてモノドロミーから relative trisection diagram を描き，境界に
誘導される open book 分解が適合することを用いて貼り合わせ，閉多様体の trisection diagram

を得る．ここで重要なのは，貼り合わせに必要な open book の適合性が (−1)–section の仮定の下
で保証される点である．また，それ以外の自己交点をもつ section では同様の適合性が一般には
成り立たないことにも言及されている（[3]）．
本研究では，一般の (−n)–section をもつ S2 上の achiral Lefschetz fibration を許容する閉 4

次元多様体 X を考える．我々の構成により得られる trisection diagram が表す多様体は，定理
2.8 の通り

X#

nCP 2 (n ≥ 0),

−nCP 2 (n < 0)

である．
証明の基本方針は，この多様体を 2 つの部分に分割し，それぞれを D2 上の achiral Lefschetz

fibration に境界上の open book 分解が適合するようにモノドロミーを調整することである．具体
的には，X における (−n)–section の補集合と，(−n)–section とnCP 2 (n ≥ 0),

−nCP 2 (n < 0)

との連結和で得られる部分とに分ける．
この分割が自然に現れる理由は，(−n)–section をもつ S2 上の Lefschetz fibration のモノドロ

ミーが，（適切な境界曲線 δ を用いて）

tε1γ1t
ε2
γ2 · · · t

εk
γk

= tnδ ∈ Mod(F )

と表されることにある．この等式を 2 つの D2 上の Lefschetz fibration に対応する形へ組み替え
ると，上記 2 部分の境界に誘導される open book 分解が一致するようにできる．あとは Castro–

Ozbagci らの手法に従い，それぞれのモノドロミーから relative trisection diagram を構成し，補
題 2.6 に沿って貼り合わせることで，多様体の trisection diagram を得る．
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