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概要

本稿では，高階 Painlevé 系である n 変数量子 Garnier 系，Sasano 系，Fuji-Suzuki-Tsuda

系について正則性による特徴付けを行う．

1 Painlevé方程式の Takano理論，高階 Painlevé系とその量子化

Painlevé 方程式 PJ (J = I, · · · ,VI)とは動く特異点は極のみ (これを Painlevé 性と呼ぶ)である

2階の非線型常微分方程式である [18, 19]．1980年代の Okamotoの一連の研究により，Painlevé方

程式の Hamilton構造が明らかにされ，Bäcklund変換として作用する Affine Weyl群対称性が示さ

れた [18]．また，Okamotoは, 各方程式 PJ に対してその初期値空間 (解を一意的にパラメトライズ

する空間)を定義し blow-upにより構成した [17]．[13, 14, 15]において，Nagoyaは古典版の Affine

Weyl群対称性をもつ Painlevé方程式 PII, PIII, PIV, PV, PVI の量子類似を構築した．

一方で，1990年代後半 Takano等により各 Painlevé方程式 PJ (J = II, · · · ,VI)が，その初期値

空間から一意的に再現できることが示された [10, 12, 16, 27, 30]．すなわち，Okamoto初期値空間

は，元の chart(q, p)にいくつかの chart(xi, yi)を追加し，それらをある双有理正準変換により張り

合わせることにより構成できる．そして，元の chart(q, p)と追加した chart(xi, yi)の全てにおいて，

Hamiltonian が正準変数の多項式になる．さらに上記のように構成した初期値空間において，全て

の chartで正則な Hamiltonianにより記述される Hamilton系は Painlevé方程式に限るという結果

である．これを Takano理論と呼ぶ．本稿では，この Takano理論と呼ばれる別の幾何的な観点から

Painlevé方程式の高階化である高階の量子 Painlevé系についての報告を行う．

古典の Painlevé 方程式は正準変数 q, pの多項式 Hamiltonianを持つ次のような Hamilton系で書

ける．
df

dt
= {f,HJ}+

∂f

∂t
, (1)

ここで，{ϕ, ψ} :=
∂ϕ

∂p

∂ψ

∂q
− ∂ϕ

∂q

∂ψ

∂p
は Poisson括弧であり，f は正準変数 q, pの多項式である．こ

のように Painlevé 方程式は Hamilton 系で書けるため，Poisson 括弧を交換子に置き換えるという

意味での量子化が可能である．それを実際に Painlevé方程式 PJ (J = II, · · · ,VI)に対して行ったも

のが [34] である．
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さらに 2000 年代に入ると Sakai により，対称性や初期値空間の観点から離散 Painlevé 方程式

の分類が行われた [20]．すなわち，対称性と初期値空間は affine root 系の観点から分類され，離

散 Painlevé方程式の連続極限を取ることにより Painlevé方程式が得られることが分かった．また，

Painlevé方程式の高階化についての研究も行われている [4, 5, 6, 7, 8]．それらをまとめたものが表

1である．本稿では，Painlevé 方程式の高階化にあたるGarnier系，Sasano系，Fuji-Suzuki-Tsuda

系について上記で述べた Takano理論的な特徴付けの量子化について，今現在分かっていることを報

告する．
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表 1 高階 Painlevé系

2 n変数量子 Garnier系

n 変数 Garnier 系 [3] とは，n + 3 個の特異点と n 個の見かけ上の特異点を持つ Riemann 球面

P1 上の 2 階 Fuchs 型常微分方程式のモノドロミー保存変形から得られる n 個の時間変数を持つ

Hamilton系である．Garnier系は Painlevé方程式の多変数拡張であり，n = 1のとき Painlevé VI

型方程式に一致する. 古典の場合，n変数 Garnier系 G(1, 1, . . . , 1)についての初期値空間の理論は

Kimuraによって構成されている [9]．また，n = 2の場合の量子 Ganier系の Takano理論的な特徴

付けは [35]によってなされおり，n = 3, 4の場合は昨年の発表で行った．今回は一般の n変数量子

Garnier系について考える．

Definition 2.1. n変数量子 Garnier系は独立変数が n個あり，Hamilton系は次で与えられる．

dqi =
1

h

n∑
j=1

[qi,Hj ]dti, dpi =
1

h

n∑
j=1

[pi,Hj ]dti (2)

ここで，

• q1, p1, . . . , qn, pn は [qi, pj ] = δi,jh (h ∈ C)を満たす正準変数であり，[, ]は交換子である．

• t1, . . . , tn は n個の時間発展 (flow)の独立変数 (全ての変数と可換)．

• Hamiltonian Hi は q1, p1, . . . , qn, pn の非可換多項式として，対応する flow の正則性の条件

から決める．

また量子正準座標は次のように定める．



Definition 2.2. i = 1, . . . , n + 4 に対して，original chart 上の座標 (q, p) = (q1, p1, . . . , qn, pn)

と i番目の変換された chart上の座標 (x, y) = (x1, y1, . . . , xn, yn)との関係を与える変換 ri を次の

ように定義する．

ri : qi = −(xiyi − αi)yi, pi =
1

yi
, (i = 1, . . . , n). (3)

ri : qj =


1

x1
(j = 1),

xj
x1

(j ̸= 1),
pj =


−x1(

n∑
k=1

xkyk + αi) (j = 1),

x1yj (j ̸= 1),

(i = n+ 1, n+ 2). (4)

rn+3 : qj =

 1 + y21 −
n∑

i=2

xi − (

n∑
i=1

xiy1 − αn+3)y1 (j = 1),

xj (j ̸= 1),

(5)

pj =


1

y1
(j = 1),

yj +
1

y1
− y1 (j ̸= 1).

(6)

rn+4 : qj =

 t1 + t1y
2
1 −

n∑
i=2

t1
ti
xi − (

n∑
i=1

t1
ti
xiy1 − αn+4)y1 (j = 1),

xj (j ̸= 1),

(7)

pj =


1

y1
(j = 1),

yj +
t1
tj
(
1

y1
− y1) (j ̸= 1).

(8)

Remark 2.1. ri における座標 (x, y) と rj における座標 (x, y) とは区別する必要がある．また，i

番目の変換 ri はパラメータ αi に，rn+4 は時間変数 t1, . . . , tn に依存するものである．

これらの変換 r1, . . . , rn+4 は古典の場合の変換 [26]の一般化である. 各変換 ri は双有理正準変換

であり，その逆変換は (q, p)を (x, y)に置き換えたものである. このとき，次が予想できる．

Conjecture 2.1. 正準変数 q1, p1, . . . , qn, pn に関する非可換Hamiltonian Hiを持つ多項式Hamil-

ton系を考え，以下を仮定する：

1. Hamiltonian Hi の次数の合計は q1, p1, . . . , qn, pn に関して 5次.

2. 対応する変換 ri の下で，この系は多項式 Hamiltonianを持つ Hamilton系に再び変換される．

このとき，そのような Hamiltonian Hi は次のようにただ一つに決まる.

ti(ti − 1)κHi =qi

( n∑
j=1

qjpj + an+1

)( n∑
j=1

qjpj + an+2

)
+
{
qi(an+3ti + an+4 − κ) + (ti − tiqi − qi)vi

}
pi (9)



−
n∑

j( ̸=i)=1

{
qjvi(pjXi,j + piX̃i,j) + qivj(piXi,j + pjXj,i)

}
,

ここで，

vi = qipi − ai, κ =

n+4∑
i=1

ai − h, Xi,j =
ti(tj − 1)

tj − ti
, X̃i,j =

ti(ti − 1)

ti − tj
.

この予想に対して，n ≤ 8までは確認済みである．

Remark 2.2. 量子 Hamiltonian (9)は既知の古典的な Garnier系の Hamiltonianの [9]の量子化

とみなすことができる．

3 Sasano系とその量子化

Sasano系とは D 型 Affine Weyl群対称性をもつ高階 Painlevé型微分方程式系である．

Definition 3.1. D
(1)
2n+2 型 Sasano系は Painlevé VI方程式の Hamiltonian

HVI(q, p : a, b, c, d) = q(q−1)(q− t)p2−{(a−1)q(q−1)+ bq(q− t)+ c(q−1)(q− t)}p+dq (10)

を用いて定まる

t(t− 1)H =

k∑
i=1

HVI(qi, pi : ai, bi, ci, di) + 2
∑

1≤i≤j≤k

pi(qi − t)qj{pj(qj − 1) + α2j} (11)

を Hamiltonianとする Hamilton系 (正準方程式)

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, (i = 1, 2, . . . , n) (12)

として定式化される．ここで，

ai = α0 +
i−1∑
j=1

α2j+1, bi = α2n+1 +
n−1∑
j=i

α2j+1 + 2
n−1∑
j=i

α2j+2,

ci = α2n+2 +
n−1∑
j=i

α2j+1, di = α2i(αi + α2i + 2
i−1∑
j=1

α2j +
i−1∑
j=1

α2j+1).

但し，α0 + α1 + 2(α2 + · · ·+ α2n) + α2n+1 + α2n+2 = 1とする．

Definition 3.2. D
(1)
2n+1 型 Sasano系は Painlevé V方程式の Hamiltonian

HV(q, p : a, b, c) = q(q − 1)p(p+ t) + ap+ btq − cpq (13)

を用いて定まる

tH =

k∑
i=1

HV(qi, pi : ai, bi, ci) + 2
∑

1≤i≤j≤k

piqi{pj(qj − 1) + α2j−1} (14)



を Hamiltonianとする Hamilton系 (正準方程式)

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, (i = 1, 2, . . . , n) (15)

として定式化される．ここで，

ai = α2k+1 +

k−1∑
j=1

α2j , bi = α2i−1, ci = α2k + α2k+1 +

k−1∑
j=i

(α2j + α2j+1)

但し，α0 − α1 − 2(α2 + · · ·+ α2n) + α2n+1 + α2n+2 = 1とする．

次にその量子化の方法について述べる．

Definition 3.3. 量子 Sasano系は独立変数が n個あり，Hamilton系は次で与えられる．

dqi =
1

h

n∑
i=1

[qi,H]dt, dpi =
1

h

n∑
i=1

[pi,H]dt (16)

ここで，

• q1, p1, q2, p2, . . . , qn, pn は [qi, pj ] = δi,jh (h ∈ C)を満たす正準変数であり，[, ]は交換子で

ある．

• tは時間発展の独立変数 (全ての変数と可換)．

• Hamiltonian H は q1, p1, q2, p2, . . . , qn, pn の非可換多項式として，正則性の条件から決める．

Definition 3.4. D
(1)
2n+2 型量子 Sasano系の双有理正準変換 ri(i = 0, . . . , n)を次で定義する．

r0 : q1 = −x1y21 + ty21 + α0y1 + t, p1 =
1

y1
,

r1 : q1 =
1

x1
, p1 = −x21y1 − (α1 + α2)x1,

r2i : qi =
1

xi
, pi = −x2i yi − α2ixi, (i = 1, . . . , k)

r2i+1 : qi = xi+1 − xiy
2
i + xi+1y

2
i + α2i+1yi, pi =

1

yi
,

pi+1 = yi+1 + yi −
1

yi
, (i = 1, . . . , k − 1)

rn−1 : qk = −xky2k + y2k + αn−1yk + 1, pk =
1

yk
,

rn : qk = −xky2k + αnyk, pk =
1

yk
. (17)

Definition 3.5. D
(1)
2n+1 型量子 Sasano系の双有理正準変換 ri(i = 0, . . . , n)を次で定義する．

r0 : q1 =
1

xi
, p1 = −x21y1 − tx21 − α0x1 − t,

r1 : q1 =
1

x1
, p1 = −x21y1 − α1x1,

r2i : qi = xi+1 − xiy
2
i + xi+1y

2
i + α2iyi, pi =

1

yi
,



pi+1 = yi+1 + yi −
1

yi
, (i = 1, . . . , k − 1)

r2i+1 : qi+1 =
1

xi+1
, pi+1 = −x2i+1yi+1 − α2i+1xi+1, (i = 1, . . . , k − 1)

rn−1 : qk = −xky2k + y2k + αn−1yk + 1, pk =
1

yk
,

rn : qk = −xky2k + αnyk, pk =
1

yk
. (18)

Conjecture 3.1 ([36]). このとき，次のことが予想できる．

1. Sasano の結果を元に構成した張り合わせ関数は自然に量子化され, 双有理量子正準変換と

なる．

2. n+ 1個の量子正準変換に対して正則性を保つ Hamilton系が一意に決まる．

この予想に対して，D(1)
n+2 型については k = 2，D(1)

n+1 型については k = 3のときまでは確認済み

である．以下に得られた Hamiltonianを述べる．

• D
(1)
2n+2 型: k = 2のとき

κH =− q31p
2
1 − 2q1q

2
2p1p2 − q32p

2
2 + (t+ 1)q21p

2
1 + 2q1q2p1p2 + 2tq22p1p2

+ (t+ 1)q22p
2
2 + (h− α1)q

2
1p1 − 2α4q1q2p1 + (h− α1 − α3 − 2α4)q

2
2p2

− tq1p
2
1 − 2tq2p1p2 − tq2p

2
2

+ {−h+ α1 + (1− 2t)α3 + 2(1− t)α4 + (1− t)α5 − α6t}q1p1 + 2α4tq2p1

+ {−h+ α1 + α3 + 2α4 + (1− t)α5 − α6t}q2p2 − α2(α1 − α2)q1

− α4(α1 + α3 + α4)q2 + (α3 + α6)tp1 + α6tp2. (19)

但し，κ = t(t− 1)(h− α0 − α1 − 2α3 − 2α4 − α5 − α6)とする．

• D
(1)
2n+1 型: k = 3のとき

κH =q21p
2
1 + 2tq22p1p2 + q22p

2
2 + 2q23p1p3 + 2q23p2p3 + q23p

2
3

+ t(q21p1 + q22p2 + q23p3)− q1p
2
1 − 2q2p1p2 − q2p

2
2 − 2q3p1p3 − 2q3p2p3

− q3p
2
3 − {t+ 2(α2 + α3 + α4 + α5) + α6 + α7}q1p1 + 2α3q2p1 + 2α5q3p1

+ 2α5q3p2 − {t+ 2(α4 + α5) + α6 + α7}q2p2 − (t+ α6 + α7)q3p3

+ t(α1q1 + α3q2 + α5q3) + (α2 + α4 + α6)p1 + (α4 + α7)p2 + α7p3. (20)

但し，κ = t(t− 1){α0 + α1 + 2(α2 + α3 + α4 + α5) + α6 + α7}とする．

4 Fuji-Suzuki-Tsuda系とその量子化

Fuji-Suzuki-Tsuda系について述べる．



Definition 4.1. Fuji-Suzuki-Tsuda系は Painlevé VI方程式の Hamiltonianを用いて定まる

t(t− 1)H =HVI(q1, p1;α2, α0 + α4, α3 + α5,−η, ηα1) +HVI(q2, p2;α0 + α2, α4, α3 + α1,−η, ηα5)
(21)

+ (q1 − t)(q2 − 1){(q1p1 + α1)p2 + p1(q2p2 + α5)}

を Hamiltonianとする Hamilton系 (正準方程式)

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, (i = 1, 2) (22)

として定式化される．但し，α0 + α1 + α2 + α3 + α4 + α5 = 1とする．

Remark 4.1. 上記で述べた F-S-T系には独立した以下の 2つの導出方法がある．

• “UC階層”（KP階層のある一般化）の similarity reductionによる方法 [33]

• Drinfeld-Sokolov階層 [1, 2]

次にその量子化の方法について述べる．

Definition 4.2. 量子 Fuji-Suzuki-Tsuda 系とは独立変数が 2 つあり，Hamilton 系は次で与えら

れる．

dqi =
1

h

2∑
i=1

[qi,H]dt, dpi =
1

h

2∑
i=1

[pi,H]dt

ここで，

• q1, p1, q2, p2 は [qi, pj ] = δi,jh (h ∈ C)を満たす正準変数であり，[, ]は交換子である．

• tは時間発展の独立変数 (全ての変数と可換)．

• Hamiltonian H は q1, p1, q2, p2 の非可換多項式として，正則性の条件から決める．

また，双有理量子正準変換を次で定める．

Definition 4.3. 双有理正準変換 ri(i = 0, . . . , 6)を次で定義する．

r0 : q1 = −x1y21 + x2y
2
1 + α0y1, p1 =

1

y1
,

q2 = x2, p2 = y1 + y2,

r1 : q1 =
1

x1
, p1 = −x21y1 − α1x1,

q2 = x2, p2 = y2,

r2 : q1 = −x1y21 + ty21 + α2y1, p1 =
1

y1
,

q2 = x2, p2 = y2,

r3 : q1 = −x1y21 − x2y1y2 + (α3 − η)y1, p1 = y1,

q2 = x2y1, p2 =
y2
y1
,

r4 : q1 = x1, p1 = y1,



q2 = −x2y22 + y22 + α4y2, p2 =
1

y2
,

r5 : q1 = x1, p1 = y1,

q2 =
1

x2
, p2 = −x22y2 − α5x2,

r6 : q1 = −X1Y
2
1 −X2Y1Y2 + (η − α1 − α5)Y1, p1 =

1

Y1
,

q2 = X2Y1, p2 =
Y2
Y1
. (23)

Remark 4.2. 変換 r6 における正準座標 (X1, Y1, X2, Y2)は次で与えられる．

r5 ◦ r1 : (X1, Y1, X2, Y2) := (
1

x1
,−x21y1 − α1x1,

1

x2
,−x22y2 − α5x2) (24)

このとき，次が成り立つ．

Theorem 4.1 ([36]). Sasano による張り合わせ関数は自然に量子化され, 双有理量子正準変換と

なる．

また，全ての量子正準変換に対して正則性を保つ Hamilton系が一意に決まる．

なお，証明は数式処理ソフト Mathematica による計算によるものである．以下に得られた

Hamiltonian を述べる．

κH =− q31p
2
1 − q21q2p1p2 − q1q

2
2p1p2 − q32p

2
2 + (t+ 1)q21p

2
1 + q21p1p2 + (t+ 1)q1q2p1p2

+ tq22p1p2 + (t+ 1)q22p
2
2 + (2h− η − α1)q

2
1p1 − α5q1q2p1 − α1q1q2p2

+ (2h− η − α5)q
2
2p2 − t(q1p

2
1 + q1p1p2 + q2p1p2 + q2p

2
2)

+ {−2h+ (t+ 1)η + (1− t)α0 + α1 − tα3 + (1− t)α4 + (1− t)α5}q1p1
+ α1q1p2 + α5tq2p1 + {−2h+ (t+ 1)η − α3t+ (1− t)α4 + α5}q2p2
+ (h− η)(α1q1 + α5q2)− (h− α3)t(p1 + p2). (25)

但し，κ = t(t− 1)(2h− α0 − α1 − α2 − α3 − α4 − α5)とする．

5 今後の課題

今後の課題としては，以下の 2つが挙げられる．

1. KZ方程式との比較

共形場理論の観点から，Knizhnik-Zamolodchikov 方程式 =量子 Garnier系と考えられてい

る．今回の結果との比較は興味深い問題である．

2. q-差分系

q-差分系や楕円差分系についても良い量子化が期待される．
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systems, Funkcial. Ekvac., 53 (2010), 143-167.

[2] K. Fuji and T. Suzuki, Higher order Painlevé systems of type A, Drinfeld-Sokolov hierarchies
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