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概要
本稿では，劣線形冪を伴う非線形 Schrödinger方程式系の初期値境界値問題を，空間 1次元ま
たは空間 2次元の有界領域上で考える．まず，Cauchy列と完備性の議論に基づき，近似方程式
に対する解の列の極限として，考えている初期値境界値問題の時間大域解を構成する．さらに，
（修正）エネルギー法によって時間大域解が有限時刻で消滅することを示す．なお，本稿は小澤徹
教授（早稲田大学）との共同研究に基づく．

1 導入
次の劣線形冪を伴う非線形 Schrödinger方程式系の初期値境界値問題を考える：

i∂tu+∆u = 2vū− ifα(u, v), (t, x) ∈ R≥0 × Ω,

i∂tv +∆v = u2 − igα(u, v), (t, x) ∈ R≥0 × Ω,

u = v = 0, (t, x) ∈ R≥0 × ∂Ω,

(u(0), v(0)) = (ϕ,ψ), x ∈ Ω.

(P)

ここで，R≥0 := [0,∞)，d ∈ {1, 2} は空間次元，Ω ⊂ Rd は十分に滑らかな境界 ∂Ω を持つ有界領
域，α ∈ (0, 1]は固定されたパラメータ，∆ =

∑d
j=1 ∂

2
xj
である．また，fα, gα : C2 → Cは

fα(ξ, η) :=


ξ

(|ξ|2 + |η|2)α
2

, (ξ, η) ̸= 0,

0, (ξ, η) = 0,

gα(ξ, η) := fα(η, ξ)

と定める．
導入として，劣線形冪を非線形項に持つ次の一階常微分方程式の初期値問題を考える：{

y′(t) = −Fα(y(t)), t ≥ 0,

y(0) = y0.
(1.1)
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ここで，y : R≥0 → Cは未知関数，y0 ∈ C \ {0}は与えられた初期値である．また，Fα : C → Cは
固定された α ∈ (0, 1]に対して

Fα(η) :=


η

|η|α
, η ̸= 0,

0, η = 0

と定義される関数である. 初期値問題 (1.1) は一意的な時間大域解 y ∈ C1(R≥0)を持ち，y は

y(t) =


y0
|y0|

α
1
α (T∗ − t)

1
α , t < T∗,

0, t ≥ T∗

と具体的に書き表されることが知られている．ただし，T∗ := |y0|α/αである．このことから，劣線
形冪は解の有限時間消滅を引き起こすことがわかる．
同様の現象は劣線形冪を伴う単独の非線形 Schrödinger 方程式にも見ることができる．実際，

Carles–Gallo [2]は初期値問題{
i∂tu+∆u = −iFα(u), (t, x) ∈ R≥0 ×M,

u(0) = u0, x ∈M

を考察し，解が有限時間で消滅することを示した．ここで，M は境界のない滑らかなコンパクト
Riemann多様体，α ∈ (0, 1]である．その後，Carles–Ozawa [3]は， [2]の結果を優線形冪と劣線形
冪の二重冪を持つ単独の非線形 Schrödinger方程式の初期値問題{

i∂tu+∆u = λ|u|2σu− iFα(u), (t, x) ∈ R≥0 ×M,

u(0) = u0, x ∈M

へ拡張した．ただし，λ ∈ R，σ > 0である．
一方，非線形 Schrödinger方程式系の場合に，劣線形冪によって解の有限時間消滅が引き起こされ
るかどうかは，我々が知る限り未解決のままである．そこで本研究では，プラズマ物理学に由来する
二次の相互作用を持つ非線形 Schrödinger方程式系 [5, 6, 10]に劣線形冪を加えた初期値境界値問題
(P)を考察し，単独方程式の場合と同様に解の有限時間消滅が起こることを明らかにする．
以下，各 p ∈ (0,∞]に対して

Lp(Ω) := {f : Ω → C; ∥f∥p <∞},

∥f∥p = ∥f∥Lp(Ω) :=


(∫

Ω

|f(x)|pdx
) 1

p

, p <∞,

ess sup
x∈Ω

|f(x)|, p = ∞,

(f | g) :=
∫
Ω

f(x)g(x)dx

と定義する．さらに，各 k ∈ Nに対して，Hk(Ω)を k階までの弱導関数が全て L2(Ω)に属する関数
の成す空間，H1

0 (Ω)を C∞
0 (Ω)の H1(Ω)における閉包とする．ただし，C∞

0 (Ω)はコンパクトな台
を持つ Ω上の滑らかな関数の成す空間である．ラプラシアン ∆は L2(Ω)上の作用素として

D(∆) := H2(Ω) ∩H1
0 (Ω),



∆u :=

d∑
j=1

∂2xj
u, u ∈ D(∆)

と定義される．また，D′((0,∞)×Ω)を C∞
0 ((0,∞)×Ω)の双対，すなわち (0,∞)×Ω上の超関数

全体の集合とする．
主定理を述べる前に，(P)の解を次のように定義する．

定義 1.1 α ∈ (0, 1]，(ϕ,ψ) ∈ H1
0 (Ω)⊕H1

0 (Ω)とする．関数の組 (u, v)が (P)の時間大域解である
とは，次の三つの条件を満たすことと定義する：

(1) (u, v) ∈ C(R≥0;L
2(Ω)⊕ L2(Ω)) ∩ L∞(R≥0;H

1
0 (Ω)⊕H1

0 (Ω)).

(2) (2-i) α ̸= 1の場合，

i∂tu+∆u = 2vū− ifα(u, v) in D′((0,∞)× Ω),

i∂tv +∆v = u2 − igα(u, v) in D′((0,∞)× Ω).

(2-ii) α = 1の場合，ある F,G ∈ L∞(R≥0 × Ω)が存在し，

∥(F,G)∥L∞(R≥0×Ω;C2) ≤ 1,

F (t, x) = f1(u(t, x), v(t, x)) if (u(t, x), v(t, x)) ̸= (0, 0),

G(t, x) = g1(u(t, x), v(t, x)) if (u(t, x), v(t, x)) ̸= (0, 0)

および

i∂tu+∆u = 2vū− iF in D′((0,∞)× Ω),

i∂tv +∆v = u2 − iG in D′((0,∞)× Ω).

(3) (u(0), v(0)) = (ϕ,ψ).

まず，(P)に対する時間大域解の一意存在に関して次の定理が得られた．

定理 1.2 d ∈ {1, 2}，α ∈ (0, 1]とする．このとき，任意の (ϕ,ψ) ∈ H1
0 (Ω)⊕H1

0 (Ω)に対して (P)

の時間大域解 (u, v) がただ一つ存在する．さらに，

(u, v) ∈ Cw(R≥0;H
1
0 (Ω)⊕H1

0 (Ω))

が成り立つ．

次に，(P)に対する解の有限時間消滅に関して次の二つの定理が成り立つ．

定理 1.3 d = 1，α ∈ (0, 1]，(ϕ,ψ) ∈ H1
0 (Ω) ⊕H1

0 (Ω)，(u, v)を 定理 1.2で与えられる (P)の時
間大域解とする．このとき，ある T ∗ > 0が存在し，任意の t ≥ T ∗ に対して

∥u(t)∥22 + 2∥v(t)∥22 = 0

が成り立つ．さらに，T ∗ は

T ∗ ≤

(
CQ

α
4
0

(
K0 +Q

5
4
0K

1
4
0 +Q

5
3
0 +Q

5−α
3+α

0

)α
4

+ 1

)1+α
3

− 1



と評価される．ただし，

Q0 := ∥ϕ∥22 + 2 ∥ψ∥22 , K0 := ∥∇ϕ∥22 + ∥∇ψ∥22 .

定理 1.4 d = 2，α ∈ (0, 1]，(ϕ,ψ) ∈ D(∆)⊕D(∆)，(u, v)を定理 1.2で与えられる (P)の時間大
域解とする．このとき，次の二つの主張が成り立つ：

(1) (u, v) ∈ C(R≥0;H
1
0 (Ω)⊕H1

0 (Ω)) ∩ Cw(R≥0;D(∆)⊕D(∆)) であり，任意の t > 0に対して

∥u(t)∥2H2 + ∥v(t)∥2H2 ≤ C2e
C1t

が成り立つ．ここで，各 j ∈ {1, 2} に対し，Cj > 0 は α,Ω, ∥ϕ∥Hj , ∥ψ∥Hj に依存する定数で
ある．

(2) 任意の R > 0 に対して次の主張を満たす ρR > 0 が存在する：∥ϕ∥2H2 + ∥ψ∥2H2 ≤ R かつ
∥ϕ∥22 + 2 ∥ψ∥22 ≤ ρR ならばある T ∗ > 0が存在し，任意の t ≥ T ∗ に対して

∥u(t)∥22 + 2∥v(t)∥22 = 0

が成り立つ．

単独方程式の場合，[2, 3] による時間大域解の存在の証明はコンパクト性の議論に基づいている．
一方，定理 1.2の証明では，Cauchy列と関数空間の完備性の議論に基づき，近似方程式に対する解
の列の極限として (P)の時間大域解を構成する．これにより，解の存在と一意性を同一の枠組みで示
すことが可能となる．この方法論は，Fujiwara–Machihara–Ozawa [7] や Hayashi–Ozawa [9] の議
論に基づき Hayashi [8]により単独方程式かつ α ̸= 1の場合に確立されていたが，本研究の新規性は
これを連立系や α = 1の場合にまで拡張した点にある．定理 1.3と定理 1.4の証明は [3]に倣った修
正エネルギー法に基づく．いずれの証明においても，次の Nash型の不等式が重要な役割を果たす：

∥g∥αd+2(2−α)

L2(Rd)
≤ C∥g∥2(2−α)

L2−α(Rd)
∥g∥αdH1(Rd), (1.2)

∥g∥αd+4(2−α)

L2(Rd)
≤ C∥g∥4(2−α)

L2−α(Rd)
∥g∥αdH2(Rd). (1.3)

2 証明の概略
2.1 近似解の一様評価
劣線形冪は局所 Lipschitz連続ではないため，発展方程式の一般論を直接適用することは困難であ
る．そこで，δ ∈ (0, 1)を固定されたパラメータとし，次の近似方程式を考える：

i∂tuδ +∆uδ = 2vδuδ − ifα,δ(uδ, vδ), (t, x) ∈ R≥0 × Ω,

i∂tvδ +∆vδ = u2δ − igα,δ(uδ, vδ), (t, x) ∈ R≥0 × Ω,

uδ = vδ = 0, (t, x) ∈ R≥0 × ∂Ω,

(uδ(0), vδ(0)) = (Jδϕ, Jδψ), x ∈ Ω.

(Pδ)

ここで，Jδ = (I − δ∆)−1 は ∆のレゾルベントであり，fα,δ, gα,δ : C2 → C は

fα,δ(ξ, η) :=
ξ

(|ξ|2 + |η|2 + δ)
α
2
, gα,δ(ξ, η) :=

η

(|ξ|2 + |η|2 + δ)
α
2



と定義される関数である．このとき (fα,δ, gα,δ)は D(∆) ⊕D(∆)の各有界集合上で Lipschitz連続
であるため，発展方程式の一般論 [4, 1]より次の命題が成り立つ．

命題 2.1 d ∈ {1, 2}，α ∈ (0, 1]，(ϕ,ψ) ∈ H1
0 (Ω) ⊕ H1

0 (Ω) とする．このとき，各 δ ∈ (0, 1)

に対してある Tδ ∈ (0,∞] が存在し，(Pδ) は一意的な解 (uδ, vδ) ∈ C([0, Tδ);D(∆) ⊕ D(∆)) ∩
C1([0, Tδ);L

2(Ω)⊕ L2(Ω)) を持つ．さらに，任意の t ∈ [0, Tδ)に対して

d
dt
Qδ(t) = −2

∫
Ω

|uδ|2 + 2|vδ|2

(|uδ|2 + |vδ|2 + δ)
α
2

dx, (2.1)

d
dt
Eδ(t) ≤ 6Re

∫
Ω

u2δvδ
(|uδ|2 + |vδ|2 + δ)

α
2

dx (2.2)

が成立する．ここで，

Qδ(t) := ∥uδ(t)∥22 + 2 ∥vδ(t)∥22 ,

Eδ(t) := ∥∇uδ(t)∥22 + ∥∇vδ(t)∥22 + 2Re
(
vδ(t)

∣∣u2δ(t)) .
さらに，Tδ <∞ならば

lim
t→Tδ

(∥uδ(t)∥H2 + ∥vδ(t)∥H2) = ∞

が成り立つ．

Gagliardo–Nirenbergの不等式と Youngの不等式より

∥∇uδ(t)∥22 + ∥∇vδ(t)∥22 ≤ 2Eδ(t) + CQ
6−d
4−d

0

と評価される．また，式 (2.1)と式 (2.2)より以下の不等式が得られる：

d
dt
Qδ(t) ≤ −C

(
∥uδ(t)∥2−α

2−α + ∥uδ(t)∥2−α
2−α

)
,

d
dt
Eδ(t) ≤ CQδ(t)

3−α
2 − d(1−α)

4

(
Eδ(t) + CQ

6−d
4−d

0

) d(1−α)
4

.

これらの不等式と Gagliardo–Nirenbergの不等式を用いて次の命題が示される．

命題 2.2 d ∈ {1, 2}，α ∈ (0, 1]，(ϕ,ψ) ∈ H1
0 (Ω)⊕H1

0 (Ω)とする．さらに，各 δ ∈ (0, 1)に対し，
(uδ, vδ)を命題 2.1で与えられる (Pδ)の解とする. このとき，ある C1 = C1(d, α, ∥ϕ∥H1 , ∥ψ∥H1) >

0が存在し，任意の δ ∈ (0, 1)と任意の t ∈ (0, Tδ)に対して(
∥∇uδ(t)∥22 + ∥∇vδ(t)∥22

)
≤ C1

(
1 + t2β

)
(2.3)

が成り立つ．ここで， β := 2/(4− d(1− α))である.

d = 2 のとき，式 (2.1) と Nash 型の不等式 (1.2) を用いると，解の H1-ノルムの評価が改善さ
れる．



命題 2.3 d = 2，α ∈ (0, 1]，(ϕ,ψ) ∈ H1
0 (Ω) ⊕ H1

0 (Ω) とする．さらに，各 δ ∈ (0, 1) に対し，
(uδ, vδ) を 命題 2.1で与えられる (Pδ) の解とする. このとき，ある C ′

1 = C ′
1(α, ∥ϕ∥H1 , ∥ψ∥H1) > 0

が存在し， 任意の δ ∈ (0, 1)と任意の t ∈ (0, Tδ)に対して

∥∇uδ(t)∥22 + ∥∇vδ(t)∥22 ≤ C ′
1

が成り立つ．

次に d = 2かつ (ϕ,ψ) ∈ D(∆) ⊕D(∆)の場合を考える．空間についての 2階微分の L2-ノルム
を評価するために，次の不等式を用いる：

d
dt

(
∥∂tuδ(t)∥22 + ∥∂tvδ(t)∥22

)
≤ 4 Im

(
vδ
∣∣ (∂tuδ)2) . (2.4)

ここで，右辺は

4 Im
(
vδ
∣∣ (∂tuδ)2) = 2

d
dt

Re (vδ |∇uδ · ∇uδ) + 2 Im (∆vδ |∇uδ · ∇uδ)− 4 Im (∆uδ |∇vδ · ∇uδ)

− 2 Im
(
u2δ
∣∣∇uδ · ∇uδ)+ 8 Im (vδuδ |∇vδ · ∇uδ)

+ 2Re (gα,δ |∇uδ · ∇uδ)− 4Re (fα,δ |∇vδ · ∇uδ)
+ 8 Im

(
|vδ|2uδ

∣∣∆uδ)− 16 Im
(
|vδ|2uδ

∣∣ vδuδ)
− 8Re

(
|vδ|2uδ

∣∣ fα,δ)− 4 Im (vδ | fα,δ)

と変形できる．右辺第 1項を (2.4)の左辺に繰り込み，修正エネルギー Fδ を

Fδ(t) := ∥∂tuδ(t)∥22 + ∥∂tvδ(t)∥22 − 2Re (vδ(t) |∇uδ(t) · ∇uδ(t))

と定義すると，
F ′
δ(t) ≤ 2 Im (∆vδ |∇uδ · ∇uδ)− 4 Im (∆uδ |∇vδ · ∇uδ)

− 2 Im
(
u2δ
∣∣∇uδ · ∇uδ)+ 8 Im (vδuδ |∇vδ · ∇uδ)

+ 2Re (gα,δ |∇uδ · ∇uδ)− 4Re (fα,δ |∇vδ · ∇uδ)
+ 8 Im

(
|vδ|2uδ

∣∣∆uδ)− 16 Im
(
|vδ|2uδ

∣∣ vδuδ)
− 8Re

(
|vδ|2uδ

∣∣ fα,δ)− 4 Im (vδ | fα,δ∆uδ)

と評価される．さらに Hölderの不等式，Gagliardo–Nirenbergの不等式，Youngの不等式より
1

4
Fδ(t) ≤ ∥∆uδ∥22 + ∥∆vδ∥22 + C0 ≤ 2 (Fδ(t) + C0) ,

F ′
δ(t) ≤ C ′′

1 (Fδ(t) + C0)

が成り立つ．ここで，C0 > 0は α, ∥ϕ∥2, ∥ψ∥2 に依存する定数，C ′′
1 > 0は α,Ω, ∥ϕ∥H1 , ∥ψ∥H1 に

依存する定数である．これらの評価と Gronwallの補題より次の命題が得られる．

命題 2.4 d = 2，α ∈ (0, 1]，(ϕ,ψ) ∈ D(∆)⊕D(∆)とする．さらに各 δ ∈ (0, 1)に対し，(uδ, vδ)

を命題 2.1で与えられる (Pδ)の解とする．このとき，各 δ ∈ (0, 1)に対して Tδ = ∞である．さら
に，ある C ′′

1 = C ′′
1 (α,Ω, ∥ϕ∥H1 , ∥ψ∥H1) > 0, C2 = C2(α,Ω, ∥ϕ∥H2 , ∥ψ∥H2) > 0 が存在し，任意

の δ ∈ (0, 1)と任意の t > 0に対して次の評価が成り立つ：

∥uδ(t)∥2H2 + ∥vδ(t)∥2H2 ≤ C2e
C′′

1 t. (2.5)



注意 2.5 d = 1または (ϕ,ψ) ∈ H1
0 (Ω)⊕H1

0 (Ω)のときも Tδ = ∞が成り立つ．

(Pδ)の解の有限時間消滅に関して次の二つの命題が成り立つ．

命題 2.6 d = 1，α ∈ (0, 1]，(ϕ,ψ) ∈ H1
0 (Ω) ⊕ H1

0 (Ω) とする．さらに，各 δ ∈ (0, 1) に対し，
(uδ, vδ) を 命題 2.1 で与えられる (Pδ) の解とする. このとき，ある T ∗ > 0 が存在して任意の
δ ∈ (0, 1)と任意の t ≥ T ∗ に対して

∥uδ(t)∥22 + 2∥vδ(t)∥22 = 0

が成り立つ．さらに T ∗ は

T ∗ ≤

(
CQ

α
4
0

(
K0 +Q

5
4
0K

1
4
0 +Q

5
3
0 +Q

5−α
3+α

0

)α
4

+ 1

)1+α
3

− 1

と評価される．

命題 2.7 d = 2，α ∈ (0, 1]，(ϕ,ψ) ∈ D(∆)⊕D(∆)とする．さらに，各 δ ∈ (0, 1)に対し，(uδ, vδ)
を 命題 2.1で与えられる (Pδ) の解とする. このとき，任意の R > 0に対して，次の主張を満たす
ρR > 0が存在する：∥ϕ∥2H2 + ∥ψ∥2H2 ≤ Rかつ ∥ϕ∥22 + 2∥ψ∥22 ≤ ρR ならばある T ∗ > 0が存在し，
任意の δ ∈ (0, 1)と任意の t ≥ T ∗ に対して ∥uδ(t)∥22 + 2∥vδ(t)∥22 = 0が成り立つ．

証明. まず，T ∗
δ := sup{s > 0;Qδ(s) ̸= 0} と定める．式 (2.5) と Nash の不等式 (1.3) より任意の

t ∈ (0, T ∗
δ )に対して

d
dt
Qδ(t) ≤ −C

(
∥uδ(t)∥2−α

2−α + ∥vδ(t)∥2−α
2−α

)
≤ −CC− 1

2
2 Qδ(t)

4−α
4 e−CC′′

1 t.

したがって，

Qδ(t)
α
4 ≤ Qδ(0)

α
4 − CC

− 1
2

2

∫ t

0

e−CC′′
1 sds

≤ Q
α
4
0 − CC ′′−1

1 C
− 1

2
2

(
1− e−CC′′

1 t
)

が成り立つ．ここで Q
α/4
0 C ′′

1C
1/2
2 < C ならば，T ∗

δ = ∞ と仮定すると，ある T ′ > 0が存在して T ′

における最右辺の値が負となり矛盾する．したがって，Qα/4
0 C ′′

1C
1/2
2 < C ならば T ∗

δ <∞が成り立
つ．最右辺は δ によらないので，Tδ := supδ∈(0,1) T

∗
δ は有限である．

2.2 主定理の証明
前節で得た近似解の一様評価を基に主定理を証明する．以下では C0 > 0を d, α,Ω, ∥ϕ∥2, ∥ψ∥2 に

依存する定数，C1 > 0を d, α,Ω, ∥ϕ∥H1 , ∥ψ∥H1 に依存する定数とし，いずれも行ごとに異なる値を
取りうるものとする．はじめに，(Pδ)の解の列が Cauchy列であることを示す．



命題 2.8 d ∈ {1, 2}，α ∈ (0, 1]，(ϕ,ψ) ∈ H1
0 (Ω)⊕H1

0 (Ω)とする．さらに，各 δ ∈ (0, 1)に対し，
(uδ, vδ) を命題 2.1 で与えられる (Pδ) の解とする．このとき，各 T > 0 に対して ((uδ, vδ); δ > 0)

は C([0, T ];L2(Ω)⊕ L2(Ω))における Cauchy列である．

証明. ここでは 1次元の場合のみを示す．以下，δ ∈ (0, 1)に対して rδ := (|uδ|2 + |vδ|2)1/2 と置き，
δ, µ ∈ (0, 1)に対して

wδ,µ(t) := ∥(uδ − uµ)(t)∥22 + ∥(vδ − vµ)(t)∥22

と定める．このとき，
d
dt
wδ,µ(t) ≤ 4 Im (vδuδ − vµuµ |uδ − uµ) + 2 Im

(
u2δ − u2µ

∣∣ vδ − vµ
)
dx

− 2Re

∫
rδ≤rµ

(rδ − rµ) rµ

((
r2µ + δ

)−α
2 −

(
r2µ + µ

)−α
2

)
dx

− 2Re

∫
rµ<rδ

(rµ − rδ) rδ

((
r2δ + µ

)−α
2 −

(
r2δ + δ

)−α
2

)
dx

=: I1 + I2 + I3 + I4

が成り立つ．第 3項は，α ∈ (0, 1)ならば

|I3| ≤
∫
rδ≤rµ

2r2µ

((
r2µ + δ

)−α
2 −

(
r2µ + µ

)−α
2

)
dx

≤
∫
rδ≤rµ

2r2µ

∣∣∣(r2µ + δ
)α

2 −
(
r2µ + µ

)α
2

∣∣∣ (r2µ + δ
)−α

2
(
r2µ + µ

)−α
2 dx

≤
∫
rδ≤rµ

2r2−2α
µ

∣∣∣(r2µ + δ
)α

2 −
(
r2µ + µ

)α
2

∣∣∣ dx
≤
∫
rδ≤rµ

Cr2−2α
µ

∣∣(r2µ + δ
)
−
(
r2µ + µ

)∣∣α2 dx

≤ C |δ − µ|
α
2

∫
rδ≤rµ

r2(1−α)
µ dx

≤ C |δ − µ|
α
2 ∥rµ∥2−2α

2−2α

≤ C |δ − µ|
α
2 (∥uµ∥2 + ∥vµ∥2)

2−2α

≤ C0|δ − µ|α2

と評価される． α = 1のときは

|I3| ≤ C|Ω||δ − µ| 12

が成り立つ．第 4項も同様に評価される．次に第 1項と第 2項を評価する．d = 1ならば，Sobolev

の埋め込み H1(Ω) ↪→ L∞(Ω)より

I1 + I2 ≤ 4 ∥vδ − vµ∥2 ∥uδ∥∞ ∥uδ − uµ∥2 + 4 ∥vµ∥∞ ∥uδ − uµ∥22
+ 2 ∥uδ − uµ∥2 ∥uδ + uµ∥∞ ∥vδ − vµ∥2

≤ C1wδ,µ(t)



と評価される．したがって
d
dt
wδ,µ(t) ≤ C1

(
wδ,µ(t) + C|δ − µ|α2

)
を得る．Gronwallの補題より

sup
t∈[0,T ]

(
wδ,µ(t) + C|δ − µ|α2

)
≤
(
wδ,µ(0) + C|δ − µ|α2

)
eC1T

→ 0 (δ, µ→ 0)

が成り立つ．

d = 2 の場合は，H1 から L∞ への埋め込みが成立しないが，ある C > 0 が存在して任意の
p ∈ [2,∞) と u ∈ H1

0 (Ω)に対して

∥u∥p ≤ C
√
p ∥u∥H1

が成立する [11, 12]．この事実を用いて ((uδ, vδ); δ > 0) が C([0, T ];L2(Ω) ⊕ L2(Ω)) における
Cauchy列であることが示される．
各 T > 0 に対し，関数空間 C([0, T ];L2(Ω) ⊕ L2(Ω)) の完備性より Cauchy 列 ((uδ, vδ); δ >

0) は収束列であり，極限 (u, v) ∈ C([0, T ];L2(Ω) ⊕ L2(Ω)) が存在する．したがって (u, v) ∈
C(R≥0;L

2(Ω) ⊕ L2(Ω))が得られる．さらに (u, v)が (P)の時間大域解であることが示せる．ここ
ではその証明の詳細を省略するが，α ∈ (0, 1)ならば，各 T > 0に対して

(fα,δ(uδ, vδ), gα,δ(uδ, vδ)) → (fα(u, v), gα(u, v)) in C([0, T ];L2(Ω)⊕ L2(Ω))

が成り立つこと，α = 1ならば，N := {(t, x) ∈ R≥0 ×Ω ; u(t, x) = v(t, x) = 0} とおくと，ある部
分列 (δn)が存在して

lim
n→∞

f1,δn(uδn , vδn)(t, x) = f1(u, v)(t, x) a.e.(t, x) ∈ (R≥0 × Ω) \N,

lim
n→∞

g1,δn(uδn , vδn)(t, x) = g1(u, v)(t, x) a.e.(t, x) ∈ (R≥0 × Ω) \N

が成り立つことを用いて示される．次に，(P)の時間大域解の一意性について，次の命題が成り立つ．

命題 2.9 d ∈ {1, 2}，α ∈ (0, 1]，(ϕ,ψ) ∈ H1
0 (Ω) ⊕ H1

0 (Ω) とする．(u1, v1), (u2, v2) ∈
C(R≥0;L

2(Ω)⊕L2(Ω))∩L∞(R≥0;H
1
0 (Ω)⊕H1

0 (Ω))が (P)の時間大域解ならば，(u1, v1) = (u2, v2)

が成り立つ．

時間大域解の一意性を証明するために次の 2つの補題を用意する．

補題 2.10 α ∈ (0, 1]とする.任意の ξ1, ξ2, η1, η2 ∈ Cに対して

Re
(
(fα (ξ1, η1)− fα (ξ2, η2))

(
ξ1 − ξ2

))
+Re

(
(gα (ξ1, η1)− gα (ξ2, η2)) (η1 − η2)

)
≥ 0.

補題 2.11 各 j ∈ {1, 2}に対して (uj , vj) ∈ L2(Ω)⊕ L2(Ω), (Fj , Gj) ∈ L∞(Ω ; C2) は

∥(Fj , Gj)∥L∞(Ω ;C2) ≤ 1,

Fj(x) = f1(uj(x), vj(x)) if (uj(x), vj(x)) ̸= (0, 0),



Gj(x) = g1(uj(x), vj(x)) if (uj(x), vj(x)) ̸= (0, 0)

を満たすとする．このとき，

Re (F1 − F2 |u1 − u2) + Re (G1 −G2 | v1 − v2) ≥ 0.

これらの補題を用いると，近似列が Cauchy列であることの証明と同様の議論により (P)の時間大
域解の一意性が示される．
最後に，(P)の時間大域解の有限時間消滅は命題 2.6，命題 2.7と命題 2.8 より従う．
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