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1 序
Morse理論を端緒として発展してきた可微分写像の特異点論は，「写像の特異点の情報から，多様

体や写像の幾何がどれだけ復元できるか」という問いを中心に，トポロジー，微分幾何，代数幾何な
ど多くの分野と交わりながら発展してきた．なかでも Thom によって創始された Thom 多項式の
理論は，写像に現れる特異点の数え上げと，多様体や写像の不変量とを結びつけるための統一的枠組
みを与える [Tho55, Tho57]．例えば，トポロジーにおいて非常に古典的な Poincaré–Hopfの定理や
Riemann–Hurwitzの公式は，それぞれ実・複素のカテゴリーにおける A1 型特異点の数え上げと多
様体の Euler数とを結びつけるものである．トポロジーに留まらず，多様な数え上げ幾何学の問題が
Thom多項式の文脈で定式化され，現代的な数理物理にも繋がっている．
今世紀に入り，Thom 多項式を応用することではめ込みや埋め込みといった非特異写像の不変量

公式を得る研究手法が盛んになった [ES03, Tak07, Tak12, NP15]（[Pin18, Tan25]も参照のこと）．
これらの研究はいずれも，与えられたはめ込みを境界にもつ拡張写像の内部に現れる特異点を数え上
げと，境界上のはめ込みの不変量を結びつけるという共通のアイデアに基づいている．この拡張写像
は，結び目理論の術語に倣って特異 Seifert膜と呼ばれている．これにより，はめ込みの正則ホモト
ピーや同境に関する完全不変量の計算公式が数多く発見された．Takase, Ohmoto は，これらの結果
を「相対版 Thom多項式」と総称している [Tak07, Tak12, Ohm25]．また，その他様々な文脈にお
いても，境界条件（または部分多様体上の条件）が指定された写像に現れる特異点の数え上げ問題は
研究されてきた [Lev95, Sae20, Iwa25]．例えば，境界付き多様体上の Poincaré–Hopf の定理とは，
境界付近で非特異なMorse関数に現れる特異点の数え上げである．これら一連の結果を統一的な視
点から定式化することは，既存理論の相対化として自然なだけでなく，より広く写像のトポロジーの
研究において有用な指針を与えると期待できる．しかし，その試みはこれまで行われていなかった．
講演者は [Tan26]において，「相対版 Thom多項式」を数学的に厳密な形で定式化し，その構造定

理を証明した．また，この視点から既存の結果たちを再解釈し，一部については再証明・一般化する
ことができた．本稿では，写像の特異点論および Thom多項式理論について復習した後，[Tan26]の
内容を抜粋して紹介する．各種詳細は，節タイトル横の文献を参照されたい．
本稿では，特にことわらない限り，多様体や写像はすべて C∞ 級とし，ホモロジーは局所有限サ

イクルから成るもの（Borel–Mooreホモロジー）を考える．
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2 特異点の分類　 [AGV85, AGLV93, MN20]

本節では，可微分写像の特異点論における用語を復習する．とくに，特異点型・特異点軌跡といっ
た概念を定式化する方法を説明する．
多様体間の写像 f : M → N において，その微分の階数が退化する点を特異点という．以下では，

（非）特異点を原点に持つ写像芽も（非）特異点と呼ぶ．陰関数定理により，非特異点の振舞いはす
べて標準射影/包含と同一である．一方で，特異点の振舞いは非常に様々であり，いわゆる局所分類・
認識問題は古くから重要視されてきた．その分類理論は，今日では Thom–Mather 理論として知ら
れている．
特異点の分類基準は幾何学的状況に応じて様々あるが，以下の二種類が基本的である．写像芽

(Rm, 0) → (Rn, 0)全体が成す空間 E0(m,n)に対し，以下の群および作用を考える:

A = Diff(Rm, 0)×Diff(Rn, 0),

K = {H(x, y) = (H0(x),H1(x, y)) ∈ Diff(Rm × Rn, (0, 0)) | H1(x, 0) = 0}.

ただし，Diff(Rm, 0)は (Rm, 0)上の微分同相芽全体が成す群;

(σ, τ) · f = τ ◦ f ◦ σ−1 ((σ, τ) ∈ A, f ∈ E0(m,n)),

H · f = H1 ◦ (id(Rm,0), f) ◦ (H0)
−1 (H = (H0,H1) ∈ K, f ∈ E0(m,n)).

A ⊂ K に注意する．以降，G で Aまたは K を表す．二つの写像芽が同じ G-軌道を定めるとき，そ
れらは G-同値であるという*1．

例 2.1. 写像芽 fk : (R, 0) → (R, 0); f(x) = xk (k ∈ N) は，どの二つも A-同値でない．

この群作用は無限次元であり扱いが難しいので，以下の概念を用いる．

定義 2.2. k ⩾ 1を整数とする．E0(m,n)上の同値関係を以下で定める: f, g ∈ E0(m,n)が同値であ
るとは，それらの原点における k階までの偏微分係数がすべて等しいことをいう．また，この同値関
係による f の同値類を jkf(0)と書き，f の k-ジェットという．

この同値関係による商空間 Jk(m,n)を k-ジェット空間と呼ぶ（k としては充分大きな整数を想定
する）．群 G についても同様にジェットをとったものを Gk と表す．これにより，有限次元 Lie群の
作用 Gk ↷ Jk(m,n)が得られる．Jk(m,n)をアフィン空間と同一視すれば，実代数群の作用といっ
てもいい．Jk(m,n) の Gk-軌道またはその合併のことを (G-) 特異点型と呼ぶ．（次節でコホモロジ
カルな条件を課す．）

例 2.3. Σi = {jkf(0) ∈ Jk(m,n) | dimKer df0 = i} は特異点型を定める．m ⩽ n のとき，
Σi ⊂ Jk(m,n)の余次元は i(n−m+ i)である．

*1 A-同値を右左同値，K-同値を接触同値ともいう．というのも，Kの作用はグラフ写像と “横軸”Rm × {0}の接触の仕
方を保つ（つまり共通零点集合 {f1 = · · · = fn = 0} ⊂ (Rm, 0)を成分の重み込みで保つ）からである．より正確に
は以下の通り: 写像芽 f = (f1, . . . , fn) ∈ E0(m,n) に対し，その局所代数を座標環 Qf = Em/(f1, . . . , fn) で定義
する．ただし，E は (Rm, 0)上の関数芽全体が成す R-代数．このとき，写像芽 f, g ∈ E0(m,n)が共に “K-有限確定”

ならば，f, g が K-同値であることと，Qf , Qg が R-代数として同型であることが同値になる．



定義 2.4. M,N をそれぞれ m,n次元の多様体とする．このとき，M ×N を底空間，Jk(m,n)を
ファイバー，Ak を構造群とするファイバー束が定まる（貼り合わせは省略するが，写像の局所表示
の変換則に由来する自然なもの）．これを Jk(M,N)と書き，k-ジェット束と呼ぶ．

定義 2.5. 多様体間の写像 f : M → N に対し，局所表示のジェットをとることで定まる写像
jkf : M → Jk(M,N) を f の (k-)ジェット拡張と呼ぶ．

定義 2.6. 特異点型 η に対し，Jk(M,N)の部分束であって，η をファイバーとするものを η(M,N)

と表す．さらに多様体間の写像 f : M → N に対し，逆像 η(f) = (jkf)−1(η(M,N)) ⊂ M またはそ
の閉包 η(f)を f の η 型特異点軌跡と呼ぶ．

3 Thom多項式　 [Kaz06, Ohm09, Rim24, Ohm25]

本節では，従来の Thom多項式（絶対版 Thom多項式）について復習する．
Thom多項式は，特異点の数え上げと多様体のトポロジーを，特性類というコホモロジー不変量に

よって結びつけるツールである．以降，特異点型 η ⊂ Jk(m,n)といったら，その閉包 η が Z2-係数
サイクルを成すものを指す．

定理–定義 3.1 ([Tho55, HK56]*2). η ⊂ Jk(m,n) を余次元 q の特異点型とする．このとき，普遍
Stiefel–Whitney類から成る Z2-係数多項式

Tp(η)(wi, w
′
j) (i = 1, . . . ,m, j = 1, . . . , n)

であって，以下の普遍性を満たすものが唯一つ存在する: 任意の閉m次元多様体M，n次元多様体
N，“generic” *3 な写像 f : M → N に対して，

Dual[η(f)] = Tp(η)(wi(M), f∗wj(N)) ∈ H∗(M ;Z2)

が成り立つ．ただし，左辺は η(f) の Poincaré 双対．この多項式 Tp(η) を，特異点型 η の Thom

多項式と呼ぶ．

証明の前に数点補足する．

■ Thom多項式のバリエーション
• η が K-特異点型ならば，Tp(η)は以下で定義される i次式 w̃i から成る多項式として表せる:

1 + w̃1 + w̃2 + · · · = 1 + w′
1 + w′

2 + · · ·
1 + w1 + w2 + · · ·

.

w̃i に代入されるのは，差束 f∗TN − TM の第 i次 Stiefel–Whitney類 wi(f
∗TN − TM)で

ある．詳細は [Ohm94, FR04]等を参照．

*2 この定理は一般に，位相群 G の作用を受けるアフィン空間 V の G-不変サイクル η ⊂ V が定める G-同変類
Dual[Bη] ∈ H∗

G(V ) ∼= H∗(BG)に対して成り立つ．
*3 ここでは，ジェット拡張 jkf が η(M,N) のすべての strata に横断的であるという意味．この条件によって，特異点
軌跡 η(f)も Z2-係数サイクルを成し，（コ）ホモロジー理論の中できちんと意味を持つ．



• 定理 3.1および以上の事実は Z-, Q-係数コホモロジーでも，適切に形を変えて成り立つ．例え
ば，特異点型 η が Jk(m,n)の Q-係数サイクルでもあるならば，普遍 Pontryagin類から成る
Q-係数多項式が得られ，有向多様体間の写像に対して然るべき普遍性条件を満たす．

• カテゴリーを実 C∞ から複素解析的なものに取り替えても同様である（分類空間は BUに取
り替える）*4．このとき多項式の係数は Zに，変数は普遍 Chern類に置き換わる．特異点型 η

の複素余次元が q のとき，Thom多項式が棲むコホモロジーは 2q 次であることに注意する．

■ Thom多項式の決定方法
• Z2-係数サイクルを成す実特異点型 η について，複素化 ηC の実形式がまた η であるとき，

Tp(η)(wi, w
′
j) = Tp(ηC)(ci, c

′
j)|ci=wi,c′j=w′

j
(mod 2).

• Thom多項式の係数決定には，現代ではRimányiによる「未定係数法」が有効である [Rim01]．
この方法に基づく膨大な計算結果がウェブサイト [TPP]で確認できる．

定理 3.1の証明に入る．これは，後述する相対版 Thom多項式の定式化のためにも重要である．ま
ず，次のことを思い出す: 一般に位相群Gに対して，分類空間を BG，その上の主G束を EG → BG

と書く．さらに，G-空間 X に対して，直積 EG ×X の対角作用による商を BX = EG ×G X と書
く（Borel構成）．このとき，X をファイバー，Gを構造群とする任意のファイバー束は，Borel構
成 BX → BGのある引き戻しに同型なのだった．

定理 3.1の証明の概略. 群 Gk の V = Jk(m,n)および η への作用から Bη ⊂ BV を得る．η の Z2-

係数サイクル性は Bη に引き継がれるから，Poincaré双対

Dual[Bη] ∈ H∗(BV ;Z2)

を得る．ここで，V ≃ {∗}および Gk ≃ G1 = GL(m)×GL(n) ≃ O(m)×O(n)が誘導する同型

H∗(BV ;Z2) ∼= H∗(BGk;Z2) ∼= Z2[w1, . . . , wm, w′
1, . . . , w

′
n]

を通じると，Dual[Bη] はある多項式を定める．実は，その多項式こそが Tp(η) の実体である．実
際，genericな写像 f : M → N を任意にとって以下の可換図式を追跡すればよい．図式の上側から
Thom多項式の幾何学的実体が，下側から多項式としての代数的働きが見える．

Jk(M,N) BV

M M ×N BGk
(id,f)

jkf

Hq(Jk(M,N);Z2) Hq(BV ;Z2)

Hq(M ;Z2) Hq(M ×N ;Z2) Hq(BGk;Z2)

(jkf)∗

(id,f)∗

*4 むしろ，複素の場合は軌道がつねに Z-係数サイクルを成すなど議論が簡単になる．実の場合はどういった特異点型が
サイクルを成すか・向きづけられるか自体が重要な問題である．この問題は，特異点分類における型たちの隣接関係に
深く関係しており，Vassiliev複体と呼ばれる鎖複体によって記述される [AGLV93, Vas88, Ohm94]．



ただし，右の四角形は束の引き戻し．

定義 3.2. 特異点型 η と genericな写像 f : M → N に対して，

Tp(η)(f) := Dual[η(f)] = Tp(η)(wi(M), f∗wj(N)) ∈ H∗(M ;Z2)

と置く（定理 3.1の両辺）．

Thom多項式の計算例を少しだけ紹介する．m = n = 4とする．

例 3.3 ([Tho55, Ron71]). Σ1 ⊂ Jk(4, 4)は余次元 1の Z2-係数サイクルを成し，

Tp(Σ1) = w̃1.

Σ2 ⊂ Jk(4, 4)は余次元 4の Q-係数サイクルを成し，

Tp(Σ2) = w̃2
2 + w̃1w̃3, TpQ(Σ

2) = p̃1.

特に，閉 4次元多様体M に対してが向き付けられることは，ある（したがって任意の）genericな
写像 f : M → R4 について，Tp(Σ1)(f)が消滅することと同値である．
また，有向閉 4次元多様体M とその上の genericな写像 f : M → R4 に対して，軌跡 Σ2(f)は有
限個の点から成り，その代数的数え上げは

⟨Σ2(f), [M ]⟩ = −⟨p1(M), [M ]⟩ = −3σ(M)

を与える．ただし，σ(M)はM の符号数．

4 相対版 Thom多項式　 [Tan26]

本節では，[Tan26]の主結果である，相対版 Thom多項式の数学的定式化および応用を紹介する．

4.1 定義
相対版 Thom 多項式を，以下が与えられたもとで定義する．アイデアは Steenrod の障害理論

[Ste51]に基づく．簡単のため実 C∞ カテゴリー・Z2-係数で述べるが，他の状況でも全く同様に定義
できる．

• 余次元 q の特異点型 η ⊂ Jk(m,n);

• m次元多様体M，n次元多様体 N ;

• M の部分複体 S であって ∂M を含むもの，およびその正則近傍 ν(S);

• η 型特異点をもたない写像 φ : ν(S) → N .

このとき，前節と同様に，以下の図式が得られる．

Jk(M,N) BV

ν(S) M ×N BG
(id,f)

jkf



必要なら分類写像を埋め込みとなるようにとっておくことで，ν(S) を BG の部分集合と見做し，
ジェット拡張 jkφも BV → BG の局所切断と見做す．仮定から，像 jkφ(ν(S))は Bηと交わらない．
すなわち，jkφは B(V − η) → BG の局所切断でもある．さて，特異点型 η の部分写像 φに相対的
な Thom多項式とは，Alexander双対

Dual[Bη] ∈ Hq(BV, jkφ(ν(S));Z2)

が同型 Hq(BV, jkφ(ν(S));Z2) ∼= Hq(BG, S;Z2) を通じて定めるコホモロジー類

Tp(η|φ) ∈ Hq(BG, S;Z2)

のことをいう．
以上の定義は絶対版 Thom多項式の幾何学的実体を尊重したものであり，Tp(η|φ)をHq(BG;Z2)

に制限すれば絶対版 Thom多項式 Tp(η)が得られる．

定義 4.1. φの拡張 f : M → N に対して，Tp(η|φ)の分類写像・グラフ写像による引き戻しを

Tp(η|φ)(f) ∈ Hq(M,S;Z2)

と表す．

定理 3.1の証明中に出てきた図式を用いれば，以下が分かる．

命題 4.2. φの任意の genericな拡張 f : M → N に対して，

Dual[η(f)] = Tp(η|φ)(f) ∈ Hq(M,S;Z2).

よって，Tp(η|φ)は「部分集合上で条件のついた写像の特異点を数え上げる」という働きをする．

4.2 具体的表示に向かって
相対版 Thom 多項式に関して次に問題となるのは，その具体的表示である．絶対版 Thom 多項

式理論においては，その多項式としての姿が様々な位相不変量の計算公式を与える．一方で，相対
版 Thom多項式は相対コホモロジー H∗(BG, S;Z2)に棲んでいて，これは一般には全然多項式環で
ない*5．しかし，以下の観察ができる．まず，絶対版 Thom 多項式の変数にはベクトル束の特性類
（Stiefel–Whitney 類，Chern類等）が代入されるのだった．トポロジーの観点からは，これらは多
様体上に大域的な枠（線形独立なベクトル場の組）を立てるための障害である．もし多様体M の部
分集合 S 上で局所枠 θ が与えられているならば，それを大域的に拡張するための障害を考えること
ができる．例えば i次 Stiefel–Whitney類の相対版を

wi(E|θ) ∈ Hi(M,S;Z2)

と表そう．このような，特性類の相対版は Kervaire [Ker57]によって導入された．さて，先行研究の
事例において相対版 Thom多項式に相当する公式を見てみると，実はどれも

*5 このため，多項式という名前をつけているのはミスリーディングかもしれない．



(⋆) : 絶対版 Thom多項式の変数に「Kervaireの相対特性類」を代入したもの + 何らかの補正項

という形に書き直せる．このことを Ekholm–Szűcs [ES03] から見てみよう．彼らは，球面のはめ込
みに対する Smale不変量と呼ばれる完全不変量を研究し，複数の計算公式を与えた．次はその中の
一つである．

定理 4.3 ([ES03]). ι : S3 → R5 をはめ込み，M を有向コンパクト 4次元多様体であって S3 を境界
に持つもの，f : M → R5 を ιの genericな拡張であって，境界付近には特異点をもたないものとす
る．このとき，ιの Smale不変量 Ω(ι) ∈ Zについて

Ω(ι) =
1

2
(⟨p1(M |θ), [M,∂M ]⟩+#Σ1,1(f))

が成り立つ．ただし，θは ιおよび R5 の標準枠が誘導する ε1 ⊕ TM |∂M 上の枠，p1(M |θ)はそれに
相対的な第 1次 Pontryagin類，#Σ1,1(f)は f の Σ1,1 型特異点の代数的数え上げ．

Smale不変量 Ω(ι)は，自然な方法でH3(S3;Z) = H3(∂M ;Z)の元と見做すことができる．また，
ιの法束はつねに自明であってその方法もホモトピーの違いを除いて一意であることから，はめ込み

φ : ∂M × [0, ε) → R5

であって境界上に ιをもつものが，ホモトピーの違いを除いて一意に選べる．以上のもとで，上記の
公式を特異点型 Σ1,1 のはめ込み φに相対的な Thom多項式として読み換えると

Tp(Σ1,1|φ) = −p1(M |θ) + 2∆∗Ω(ι) ∈ H4(M,∂M ;Z)

が成り立つ．ただし，∆∗ : Hq−1(S;Z2) → Hq(M,S;Z2)は連結準同型．実は，Σ1,1 ⊂ Jk(4, 5)は
Z-係数 Thom多項式

TpZ(Σ
1,1) = p̃1 + 2-torsion

をもつ．そして，上記右辺の第 1項において，p1(M)が代入される場所に p1(M |θ)を，f∗p1(N)が
代入される場所に 0を代入する（N = R5 に注意）と −p1(M |θ)となる．これが (⋆)の意味であり，
他多数の不変量公式において同様の構造が見られるのである．

4.3 具体的表示
講演者は，節冒頭の設定に加えて以下の仮定が充たされれば，相対版 Thom多項式が (⋆)という

形の構造を持つことを証明した．

• N（より一般に平行化可能多様体でもよい）;

• φ : ν(S) → Rn は法束が自明なはめ込み*6.

確認している先行研究はすべてこの仮定を充たしており，この仮定があると，次の方法で相対特性類
を考えることができる: N = Rn の標準的な枠を φで引き戻すことで

εn−m ⊕ TM |φ(S)
∼= φ∗TN

*6 二つ目の仮定からm ⩽ nである．m ⩾ nとしても同様の結果が得られるが，ここでは割愛する．



の枠 θ = θφ が得られる．この枠に相対的な特性類が，すべての次数で定義される．

定理 4.4 (相対版 Thom多項式の構造定理). コホモロジー類 α = α(η|φ) ∈ Hq−1(S;Z2)であって，
以下の普遍性を充たすものが存在する: φの任意の genericな拡張 f : M → N に対して，

Tp(η|φ)(f) = Tp(η)(wi(ε
n−m ⊕ TM |θ), 0) + ∆∗α ∈ Hq(M,S;Z2)

が成り立つ．ただし，wi(ε
n−m ⊕ TM |θ) ∈ Hi(M,S;Z2)は θ に相対的な i次 Stiefel–Whitney類，

∆∗ : Hq−1(S;Z2) → Hq(M,S;Z2)は連結準同型．さらに，αは Ker∆∗ を法として一意である．

注意 4.5. η が Z-係数サイクルを定めるならば相対版 Pontryagin類を，複素解析的カテゴリーで考
えるならば相対版 Chern類を用いることで，全く同様の結果が得られる．

[α] ∈ Hq−1(S;Z2)/Ker∆∗，あるいは ∆∗α ∈ Hq(M,S;Z2)は拡張写像 f の取り方によらないか
ら，枠付きはめ込み (φ, θ) のホモトピー不変量である．つまり，特異点型 η を様々取り替えるごと
に，境界写像の不変量が得られる．
右辺の第 1項は，絶対版 Thom多項式の変数に相対特性類を代入しただけのものである．絶対版

Thom多項式の形は，実用的な特異点型に対しては既に決定されているから，相対版 Thom多項式
の決定問題は第 2項である αの決定に帰着する．

4.4 応用: 既存研究の再解釈・一般化
境界や部分多様体上で条件が指定された写像に現れる特異点，またその数え上げ問題は，次のよう

に様々な文脈で研究されてきた．

• 閉多様体上の写像を用いた不変量公式の純粋な一般化（Poincaré–Hopf, H. Levine [Lev95]）
• 写像の拡張可能性問題（Saeki [Sae20], Iwakura）
• はめ込み・埋め込みといった非特異写像の不変量公式（Ekholm, Szűcs, Takase, Némethi,

Pintér, ... [ES03, SST02, Tak07, ET11, Tak12, NP15]）

構造定理 4.4 を通じれば，これらに現れる種々の特異点の数え上げ公式を再解釈することができ
る．その際，補正項は表 1 に記されるような古典的不変量として現れることが分かった．さらに，
Némethi–Pintér [NP15]の公式に対しては，再解釈するだけでなく再証明・一般化を与えることに成
功した．証明には，異なる写像の補正項同士の比較定理を用いる．その手法が他の特異点型に対して
も適用可能かどうかは，現時点では分かっていない．



表 1 特異点型と対応する補正項（m, nはそれぞれ定義域，終域多様体の次元）

特異点型 次元対 補正項 先行研究
Σ1 m ⩽ n ? Thom [Tho55]

m ⩾ n 0 Thom [Tho55], Saeki [Sae20]

m ⩾ n = 1 0 Poincaré–Hopf

m = 2, n = 3 （複素解析的） Smale不変量 Némethi–Pintér [NP15]

Σ1,1 m = n = 2 0 Levine [Lev95]

m > 2は偶数，n = 2 射影化回転数 Levine [Lev95]

m = 4k, n = 6k − 1 Smale不変量 Ekholm–Szűcs [ES03]

Σ2 m = n = 4 Smale不変量 Takase [Tak07], Ekholm–Takase [ET11]

m = n = 8 ? Takase [Tak12]

ΣFR m = n = 8 0 Takase [Tak12]
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