
Compactness of commutators generated by VMO functions

and fractional integral operator on Morrey spaces

中央大学　理工学研究科　数学専攻
竹迫　大起 (Daiki TAKESAKO) ∗

概要
本講演では既存の VMO 関数と分数冪積分作用素が生成する多重線形な commutator の

Morrey空間上のコンパクト性を改良した結果について紹介する。具体的にはMorrey空間の閉
部分空間の分解を用いることで、このような commutatorが閉部分空間へのコンパクト作用素に
なっていることを示す。

1 導入
本講演では既存の VMO 関数と分数冪積分作用素が生成する多重線形な commutator の Morrey

空間上のコンパクト性を改良した結果について共有する．まずMorrey空間とは以下のノルムで定め
られるような空間である．

Definition 1.1 (Morrey空間). 中心 x, 半径 r > 0の開球を B(x, r)とする. また 1 ≤ q ≤ p < ∞
とする. f ∈ Lq

loc(Rn)に対してMorreyノルム ∥ · ∥Mp
q
を,

∥f∥Mp
q
:= sup

(x,r)∈Rn×R+

|B(x, r)|
1
p−

1
q

(∫
B(x,r)

|f(y)|qdy

) 1
q

と定める. Morrey空間はこのノルムが有限となる Lq
loc(Rn)関数全体の集合である.

定義において p = q とするとMp
p(Rn) = Lp(Rn) となるため Morrey 空間は Lp(Rn) の一般

化の１つとなっている．また Hölder の不等式より 1 ≤ q1 ≤ q2 ≤ p ≤ ∞ に対して, ∥f∥Mp
q1

≤
∥f∥Mp

q2
≤ ∥f∥Mp

p
= ∥f∥Lp が得られる．しかし p ̸= q のときMp

q(Rn)は Lp(Rn)より広い. 実際,

f(x) = |x|−
n
p とすると f ∈ Mp

q(Rn)であるが f /∈ Lp(Rn)である．
また分数冪積分作用素とは以下の定義によって与えられる作用素である．

Definition 1.2 (分数冪積分作用素). L0(Rn) は Rn 上の可測関数全体の集合とする．0 < α < n

とする．このとき右辺が意味を持つ限り分数冪積分作用素 Iα を以下のように定める．

Iαf(x) :=

∫
Rn

f(y)

|x− y|n−α
dy, (f ∈ L0(Rn)).
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1975年の D. R. Adamsの結果 [1]により，分数冪積分作用素はMorrey空間から別のMorrey空
間へ有界な作用素になることが知られている．

Proposition 1.3 (D. R. Adams[1]). 1 < q ≤ p < ∞，1 < t ≤ s < ∞，0 < α < nとする．また
s, tは

q

p
=

t

s
,

1

p
− α

n
=

1

s
.

を満たすとする．このとき任意の f ∈ Mp
q(Rn)に対して Iαf(x) の定義内の積分はほとんどいたる

ところの x ∈ Rn で絶対収束し以下の評価が得られる．ただし定数 cは関数 f に依存しない:

∥Iαf∥Ms
t
≤ c∥f∥Mp

q
.

次に VMO関数を定義するためにまず BMO(Rn)を定義する．

Definition 1.4 (BMO(Rn)). a ∈ L1
loc(Rn)が BMO(Rn)の元であるとは

∥a∥∗ := sup
(x,r)∈Rn×R+

1

|B(x, r)|

∫
B(x,r)

|a(y)−mB(x,r)(a)|dy < ∞

を満たすことをいう．ただしmB(x,r)(a)は関数 aの B(x, r)上の積分平均を表す.

上記の ∥ · ∥∗ はノルムではないが定数関数で割ることでノルムとなる．定義よりすぐに C∞
c (Rn) ⊂

L∞(Rn) ⊂ BMO(Rn)という包含関係がわかる．この事実のもとで VMO関数を以下のように定義
する．

Definition 1.5 (VMO(Rn)). a ∈ BMO(Rn)が a ∈ VMO(Rn)であるとは，{aj}∞j=1 ⊂ C∞
c (Rn)

が存在して lim
j→∞

∥a− aj∥∗ = 0を満たすことをいう．

この定義と同値なものとして以下も挙げておく．VMO(Rn) の定義としてこちらを採用すること
もある．

Lemma 1.6. a ∈ BMO(Rn)に対して，a ∈ VMO(Rn)と

lim
r→0+

sup
x∈Rn

1

|B(x, r)|

∫
B(x,r)

|a(y)−mB(x,r)(a)|dy = 0

は同値である．

BMO関数，VMO関数の例として log | · |，(log | · |)1/2+ = (χ[1,∞)(·) log | · |)
1
2 がそれぞれ挙げら

れる．この例と Lemma から BMO(Rn) は L∞(Rn) と一致しないこと，VMO(Rn) と L∞(Rn) は
互いに包含関係がないことがわかる．
本講演で対象とするのは上記の分数冪積分作用素と VMO 関数の生成する多重線形な com-

mutator である．まず関数 a1 を各点でかける作用素 a1 と分数冪積分作用素 Iα で生成される
commutator[a{1}, Iα] を f ∈ L0(Rn) に対して右辺が意味を持つ限り [a{1}, Iα]f := a1Iα(f) −
Iα(a1f) と定める．これをもとに多重線形な commutator[a{1,...,l}, Iα] を commutator たちの入れ
子として定義する: [a{1,...,l}, Iα] := [a1, [a{2,...,l}, Iα]]．本講演では関数 aj たちを BMO関数として
とることにする．つまり対象とする多重線形な commutator[a{1,...,l}, Iα]を以下のように定める．



Definition 1.7. l ∈ Nとする．aj ∈ BMO(Rn)（j = 1, ..., l）とし 0 < α < nとする．f ∈ L0(Rn)

に対して多重線形な commutator [a{1,...,l}, Iα]を

[a{1,...,l}, Iα]f(x) :=

∫
Rn

l∏
j=1

(aj(x)− aj(y))
f(y)

|x− y|n−α
dy

と右辺が意味を持つ限り定める．

作用素 [a{1,...,l}, Iα]がMorrey空間上有界であることは Dongyong Yang，Yan Meng らによって
2005年に示されている．[2]

Proposition 1.8 ([2]). l ∈ N，aj ∈ BMO(Rn)（j = 1, ..., l），1 < q ≤ p < ∞，0 < α < n，
1

s
=

1

p
− α

n
，p

q
=

s

t
とする．このとき

∥[a{1,...,l}, Iα]∥Mp
q(Rn)→Ms

t (Rn) ≤ C

l∏
j=1

∥aj∥∗

が成り立つ．ただし定数 C は {aj}lj=1 に依存しないものである．

また 2008年には澤野，白井が作用素 [a{1,...,l}, Iα]が a1 ∈ VMO(Rn)のときにコンパクトになる
ことを示した．[5]

Proposition 1.9 ([5]). 1 < q ≤ p < ∞，l ∈ N，a1 ∈ VMO(Rn)，aj ∈ BMO(Rn)（j = 2, ..., l）
とする．また s, tを以下を満たすようにとる．

p

q
=

s

t
and

1

s
=

1

p
− α

n
> 0.

このとき作用素 [a{1,...,l}, Iα]はMp
q(Rn)からMs

t (Rn)へのコンパクト作用素となる．

さらには 2025年に澤野，D. Hakim，竹迫が作用素 [a{1}, Iα]が Proposition 1.9の l = 1のケー
スにおいて作用素の値域を狭めた．[4]

Proposition 1.10 ([4]). l = 1，0 < α < n，1 < q ≤ p < ∞，a1 ∈ VMO(Rn) とする．
1 < t ≤ s < ∞が以下を満たすとする

1

s
=

1

p
− α

n
and

q

p
=

t

s
.

このとき commutator [a{1}, Iα] はMp
q(Rn) から M̃s

t (Rn) へのコンパクト作用素となる．ただし
M̃s

t (Rn)は ∥ · ∥Ms
t (Rn) における C∞

c (Rn)の閉包である．

2 準備
このセクションでは主定理の記述やその証明の概略を追うのに必要なMorrey空間の閉部分空間に
ついての定義や性質について記す．まず初めにMorrey空間の閉部分空間について定義をする．



Definition 2.1 (Closed subspaces of Morrey spaces). コンパクト台を持つ可測関数全体を L0
c(Rn)

と表す．1 ≤ q ≤ p < ∞として以下のように閉部分空間を定める．

(1) C∞
c (Rn)のMp

q(Rn)ノルムでの閉包を M̃p
q(Rn)とする．

(2) L∞(Rn) ∩Mp
q(Rn)のMp

q(Rn)ノルムでの閉包をMp
q(Rn)とかく．

(3) L0
c(Rn) ∩Mp

q(Rn)のMp
q(Rn)ノルムでの閉包を

∗
Mp

q(Rn)とする．

また M̃p
q(Rn)，Mp

q(Rn)，
∗
Mp

q(Rn)には特徴付けがあり [3]にまとめられている．

Lemma 2.2 ([3]). 1 ≤ q ≤ p < ∞とする．このとき以下が成り立つ．

M̃p
q(Rn) = {f ∈ Mp

q(Rn) : lim
R→∞

∥fχ{|f |>R}∪(Rn\B(R))∥Mp
q
= 0},

Mp
q(Rn) = {f ∈ Mp

q(Rn) : lim
R→∞

∥fχ[R,∞)(|f |)∥Mp
q
= 0},

∗
Mp

q(Rn) = {f ∈ Mp
q(Rn) : lim

R→∞
∥fχRn\B(R)∥Mp

q
= 0}.

この Lemmaより M̃p
q(Rn)に対して以下の分解が得られる．

Lemma 2.3 ([3]).

M̃p
q(Rn) = Mp

q(Rn) ∩
∗
Mp

q(Rn).

Lemma 2.2とこの分解を見れば f ∈ M̃p
q(Rn)を示す際の１つの難所は f ∈ Mp

q(Rn)を示すこと
のように見える．そこで以下の命題を用いて少し扱いやすくしておく．

Proposition 2.4 ([4], Lemma 6).

1 < q ≤ p < ∞, 1 < t ≤ s < ∞, p < s, and
q

p
=

t

s
,

とする．このとき
Mp

q(Rn) ∩Ms
t (Rn) ⊂ Mp

q(Rn)

が成り立つ．

3 主定理
ここでは講演者が明らかにした新規の結果について記す．具体的には以下の定理を明らかにした．

Theorem 3.1 ([6], Preprint, arXiv:2601.09175). 1 < q ≤ p < ∞，l ∈ N，a1 ∈ VMO(Rn)，
aj ∈ BMO(Rn)（j = 2, ..., l）とする．また s, tを以下を満たすようにとる．

p

q
=

s

t
and

1

s
=

1

p
− α

n
> 0.

このとき作用素 [a{1,...,l}, Iα]はMp
q(Rn)から M̃s

t (Rn)へのコンパクト作用素となる．



先行研究との違いは作用素がMs
t (Rn)ではなく M̃s

t (Rn)への写像になっているという点である．
この定理によって [a{1,...,l}, Iα]f がMp

q(Rn)内で C∞
c (Rn)で近似できることがわかった．またこの

定理において l = 1としたものが Proposition 1.10である．

4 証明の概略
ここでは主定理の証明の概略を紹介する．
“A ≲ B” と書いた際には A,B に関係のない定数 C > 0が存在して A ≤ CB を満たすことを示
す．また A ∼ B は A ≲ B と B ≲ Aがどちらも成り立つことを意味する．さらに定数 C が D に依
存するとき A ≲D B とかく．
証明では以下の Lemmaを用いる．

Lemma 4.1. l ∈ N，j = 1, ..., lに対し aj ∈ BMO(Rn)，1 < q ≤ p < ∞，0 < α < n，1

s
=

1

p
− α

n

and
p

q
=

s

t
とする．このとき

∀a1 ∈ C∞
c (Rn), [a{1,...,l}, Iα] : Mp

q(Rn) → M̃s
t (Rn) : bounded

が成り立つならば

∀a1 ∈ VMO(Rn), [a{1,...,l}, Iα] : Mp
q(Rn) → M̃s

t (Rn) : compact

である．

この Lemma と Lemma 2.3 により任意の f ∈ Mp
q(Rn) と a1 ∈ C∞

c (Rn) に対して
[a{1,...,l}, Iα]f ∈

∗
Ms

t (Rn)と [a{1,...,l}, Iα]f ∈ Ms
t (Rn)を示せば良い．

また複数回使う評価についてここで先に述べておく．

Lemma 4.2. 1 ≤ q ≤ p < ∞, g ∈ BMO(Rn), k ∈ N ∪ {0}, α ≥ β > 0, y ∈ B(0, β) とす
る．このとき以下の評価が成り立つ．

∥χB(0,2k+1α)\B(0,2kα)|g − g(y)|∥Mp
q(Rn)

≲ (2kα)
n
p

{
∥g∥∗ log2

(
2k+1α

β

)
+ |g(y)−mB(0,β)(g)|

}
.

4.1 Proof of [a{1,...,l}, Iα]f ∈
∗
Ms

t(Rn)

supp(a1) =: K，R ≫ 1とする．Minkowskiの不等式より

∥χB(0,R)c [a{1,...,l}, Iα]f∥Ms
t (Rn)

=

∥∥∥∥∥∥χB(0,R)c

∫
Rn

l∏
j=2

(aj(·)− aj(y))
a1(y)f(y)

| · −y|n−α
dy

∥∥∥∥∥∥
Ms

t (Rn)

≤
∫
Rn

∥∥∥∥∥χB(0,R)c

∏l
j=2 (aj(·)− aj(y))

| · −y|n−α

∥∥∥∥∥
Ms

t (Rn)

|a1(y)f(y)|dy



≤
∞∑
k=1

∫
K

∥∥∥∥∥χ{2k−1R<|·|<2kR}

∏l
j=2 (aj(·)− aj(y))

| · −y|n−α

∥∥∥∥∥
Ms

t (Rn)

|a1(y)f(y)|dy

≲a1

∞∑
k=1

1

(2kR)n−α

∫
K

∥∥∥∥∥∥χ{2k−1R<|·|<2kR}

l∏
j=2

|aj(·)− aj(y)|

∥∥∥∥∥∥
Ms

t (Rn)

|f(y)|dy.

ここで 1
s = l−1

u とする．Lemma 4.2と Hölderの不等式を用いて

∥χB(0,R)c [a{1,...,l}, Iα]f∥Ms
t (Rn)

≲
∞∑
k=1

1

(2kR)n−α

∫
K

l∏
j=2

∥∥χ{2k−1R<|·|<2kR}|aj − aj(y)|
∥∥
Lu(Rn)

|f(y)|dy

≲
∞∑
k=1

1

(2kR)n−α

∫
K

(2kR)
n(l−1)

u

l∏
j=2

{
∥aj∥∗ log2

(
2kR

β

)
+ |aj(y)−mK(aj)|

}
|f(y)|dy

≤
∞∑
k=1

(2kR)
n
s

(2kR)n−α

∫
K

{
log2

(
2kR

β

)}l−1 l∏
j=2

{
∥aj∥∗ + |aj(y)−mK(aj)|

}
|f(y)|dy

≤
∞∑
k=1

(2kR)
n
s

(2kR)n−α

{
log2

(
2kR

β

)}l−1

∥f∥Lq(K)

∥∥∥∥∥∥
l∏

j=2

{∥aj∥∗ + |aj(y)−mK(aj)|}

∥∥∥∥∥∥
L

q
q−1 (K)

≲{aj},f

∞∑
k=1

(2kR)
n
s −n+α

{
log2

(
2kR

β

)}l−1

を得る．ρ > 0を以下を満たすようにとる．

−n

s
+ n− α > ρ > 0.

このとき対数関数に注意すれば

∥χB(0,R)c [a{1,...,l}, Iα]f∥Ms
t (Rn)

≲
∞∑
k=1

(2kR)
n
s −n+α

{(
2kR

β

) ρ
l−1

}l−1

∼ R
n
s −n+α+ρ

→ 0 (R → ∞)

が得られる．
∗
Ms

t (Rn)の特徴付け（Lemma 2.2）により，任意の f ∈ Mp
q(Rn)に対して

[a{1,...,l}, Iα]f ∈
∗
Ms

t (Rn)

とわかる．



4.2 Proof of [a{1,...,l}, Iα]f ∈ Ms
t(Rn)

この証明にあたっては以下の Lemma 2.4 を用いる．そのためパラメーターを以下のように用意
する．

ϵ ∈ (0, 1),
1

a
=

1

p
− α+ ϵ

n
> 0,

1

a′
=

1

p
−

α+ ϵ
3

n
, and

p

q
=

a

b
=

a′

b′
.

まずは作用素 [a{1,...,l}, Iα]を A，A+，A− に分解する．つまり

[a{1,...,l}, Iα]f = Af +A+f +A−f,

であって各々は

Af(x) := χB(0,L)c(x)[a{1,...,l}, Iα]f(x),

A+f(x) := χ2K(x)[a{1,...,l}, Iα]f(x),

A−f(x) := χ(2K)c(x)χB(0,L)(x)[a{1,...,l}, Iα]f(x).

とする．ただし Lは Af ∈ Ms
t (Rn)となるような十分大きな実数である．

d′, δ, θ, γ を 1
a = l−1

d′ ，δ = max( q
1+qn−α, 0)，θ = q+1

2 > 1，γ = n− θ(n−α− δ)を満たすよう
にとる．このとき |f |θ ∈ M

p
θ
q
θ
(Rn)である．ξ ∈ Rn を |ξ| ≪ 1，Iγ(|f |θ)(ξ) < ∞を満たすようにと

る．Lemma 4.2とMinkowskiの不等式より

∥A−f∥Ma
b (Rn)

=

∥∥∥∥∥χ{2β≤|·|≤L}

∫
K

∏l
j=1(aj − aj(y))

| · −y|n−α
f(y)dy

∥∥∥∥∥
Ma

b (Rn)

≲a1

∫
K

∥∥∥∥∥χ{2β≤|·|≤L}

∏l
j=2 |aj − aj(y)|
| · −y|n−α

∥∥∥∥∥
Ma

b (Rn)

|f(y)|dy

≤
[log2

L
β ]+1∑

k=1

∫
K

∥∥∥∥∥χ2k+1K\2kK

∏l
j=2 |aj − aj(y)|
| · −y|n−α

∥∥∥∥∥
Ma

b (Rn)

|f(y)|dy.

積分範囲内では 1 ≲ | · −y|δ であるので

∥A−f∥Ma
b (Rn)

≲
[log2

L
β ]+1∑

k=1

∫
K

∥∥∥∥∥χ2k+1K\2kK

∏l
j=2 |aj − aj(y)|
| · −y|n−α−δ

∥∥∥∥∥
Ma

b (Rn)

|f(y)|dy

≲
[log2

L
β ]+1∑

k=1

∫
K

l∏
j=2

∥∥χ2k+1K\2kK |aj − aj(y)|
∥∥
Ld′ (Rn)

|f(y)|
|ξ − y|n−α−δ

dy

≲
[log2

L
β ]+1∑

k=1

∫
K

l∏
j=2

{
2

(k+1)n

d′ ∥aj∥∗ + |aj(y)−mK(aj)|
} |f(y)|
|ξ − y|n−α−δ

dy



を得る．被積分関数を展開して

∥A−f∥Ma
b (Rn)

≲{aj}

[log2
L
β ]+1∑

k=1

∑
B⊂{2,...,l}

∫
K

∏
j∈B

|aj(y)−mK(aj)|
|f(y)|

|ξ − y|n−α−δ
dy

≲
∑

B⊂{2,...,l}

∥∥∥∥∥∥
∏
j∈B

|aj −mK(aj)|

∥∥∥∥∥∥
L

θ
θ−1 (K)

×
(∫

K

|f(y)|θ

|ξ − y|θ(n−α−δ)
dy

) 1
θ

≲{aj}
(
Iγ(|f |θ)(ξ)

) 1
θ

< ∞

である．したがって

A−f ∈ Ms
t (Rn)

を得る．
A+f については

I : = χ2K(x)

∫
y∈2K

l∏
j=1

(aj(x)− aj(y))
f(y)

|x− y|n−α
dy,

II : = χ2K(x)

∫
y/∈2K

l∏
j=1

(aj(x)− aj(y))
f(y)

|x− y|n−α
dy

として

A+f(x) = I + II

と分解する．
Iについては分数冪積分作用素の有界性を用いて示す．パラメーター a′, a′′, b′ を

1

a′
=

1

p
−

α+ ϵ
3

n
,

1

a′′
=

1

p
−

α+ ϵ
2

n
, and

p

q
=

a′

b′

で定義する．このとき a′, a′′, aは
a′ < a′′ < a

を満たす．ã ∈ (a′, a′′) を 0 < 1
ã +

α+ ϵ
2

n < 1 を満たすように任意にとる．パラメーター p̃，q̃，b̃，
r，w を

1

ã
=

1

p̃
−

α+ ϵ
2

n
,

p

q
=

ã

b̃
=

p̃

q̃
,

1

a′
=

m− 1

r
+

1

ã
, and

1

p̃
=

l −m

w
+

1

p

で定める．このとき p̃ < pである．これらのパラメーターを用いて



∥I∥Ma′
b′ (R

n) =

∥∥∥∥∥∥χ2K(·)
m∏
j=2

|aj(·)|
∫
y∈2K

l∏
j=m+1

|aj(y)|
|f(y)|

| · −y|n−α− ϵ
2
dy

∥∥∥∥∥∥
Ma′

b′ (R
n)

≤
m∏
j=2

∥χ2K(·)aj∥Lr(Rn)

∥∥∥∥∥∥χ2K(·)
∫
y∈Rn

χ2K(y)

l∏
j=m+1

|aj(y)|
|f(y)|

| · −y|n−α− ϵ
2
dy

∥∥∥∥∥∥
Mã

b̃
(Rn)

≲{aj}

∥∥∥∥∥∥Iα+ ϵ
2

χ2K(

l∏
j=m+1

|aj |)|f |

∥∥∥∥∥∥
Mã

b̃
(Rn)

≲

∥∥∥∥∥∥χ2K

 l∏
j=m+1

|aj |

 |f |

∥∥∥∥∥∥
Mp̃

q̃(Rn)

≤
l∏

j=m+1

∥aj∥Lw(2K)∥f∥Mp
q(Rn).

を得る．
IIについてはMinkowskiの不等式と Hölderの不等式を用いる．

∥II∥Ma′
b′ (R

n)

=

∥∥∥∥∥∥χ2K(·)a1(·)
∫
y/∈2K

l∏
j=2

(aj(·)− aj(y))
f(y)

| · −y|n−α
dy

∥∥∥∥∥∥
Ma′

b′ (R
n)

=

∥∥∥∥∥∥χK(·)a1(·)
∞∑
k=1

∫
2k+1K\2kK

l∏
j=2

(aj(·)− aj(y))
f(y)

| · −y|n−α
dy

∥∥∥∥∥∥
Ma′

b′ (R
n)

≲a1

∞∑
k=1

∫
2k+1K\2kK

∥∥∥∥∥χK(·)
∏l

j=2(aj(·)− aj(y))

| · −y|n−α

∥∥∥∥∥
Ma′

b′ (R
n)

|f(y)|dy

≲
∞∑
k=1

∫
2k+1K\2kK

l∏
j=2

{
k∥aj∥∗ + |m2k+1K(aj)− aj(y)|

} |f(y)|
(2kβ)n−α

dy.

1 = 1
q + l−1

µ とし Hölderの不等式を用いる．

∥II∥Ma′
b′ (R

n)

≲
∞∑
k=1

1

2k(n−α)
∥f∥Lq(2k+1K\2kK)

l∏
j=2

∥∥∥k∥aj∥∗ + |m2k+1K(aj)− aj |
∥∥∥
Lµ(2k+1K\2kK)

≲
∞∑
k=1

1

2k(n−α)
∥f∥Lη(2k+1K\2kK)

l∏
j=2

{∥aj∥∗k2
kn
µ }



∼{aj}

∞∑
k=1

1

2k(n−α)
∥f∥Lη(2k+1K\2kK)k

l−12
(l−1)kn

µ

≲
∞∑
k=1

|2k+1K|
1
p−

1
η ∥f∥Lη(2k+1K)

1

2k(n−α)
kl−12

(l−1)kn
µ (2kn)

1
η− 1

p

≤
∞∑
k=1

∥f∥Mp
η(Rn)k

l−12k(α−
n
p )

≲ ∥f∥Mp
η(Rn)

≤ ∥f∥Mp
q(Rn).

したがって I, II ∈ Ma′

b′ (Rn)より A+f ∈ Ms
t (Rn)が得られた．

よって [a{1,...,l}, Iα]f ∈ Ms
t (Rn)が得られたので

[a{1,...,l}, Iα]f ∈ M̃s
t (Rn)

が得られる．
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