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概要
343+103+673 = 341067のような例を見つけるために，3変数 3次不定方程式 x3+y3+z3 =

102nx+10ny+zの整数解を計算機実験により求め，解の系列をいくつか発見したのでそれを紹介
する．なお，2変数 2次不定方程式 x2+y2 = 10nx+yは，102n+1を素因数分解できれば解ける
ことが知られている． 本講演ではさらに，m変数m次不定方程式∑m−1

i=0 xm
i =

∑m−1
i=0 10nixi

についても言及する．

1 導入
次の等式を偶然見かけ関心を持った．

13 + 53 + 33 = 153,

163 + 503 + 333 = 165033,

1663 + 5003 + 3333 = 166500333,

...

このような式の系列を見つけるために 3変数 3次不定方程式

x3 + y3 + z3 = 102nx+ 10ny + z (1)

について考える．
数学者ハーディは [2]で以下のように述べている．

「（1より大きい）数で，各桁の 3乗の和になる数は四つしかない，それは

153 = 13 + 53 + 33, 370 = 33 + 73 + 03,

371 = 33 + 73 + 13, 407 = 43 + 03 + 73.

これらは変わった事実であり，パズル欄にはうってつけのもので，素人を喜ばせそうだ．しか
し，数学者に強く訴えるものは何もない．証明は難しくもなく，興味も引かない——ただ少々
煩わしいだけである．これらの定理は重くない．そしてその理由の一つは（それが最も重要と
いうわけではないだろうが），定理そのものも，その証明も極端に特殊なもので，何ら意味の
ある一般化の可能性を持たないことである．」
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本研究では，3変数 3次不定方程式 (1)の整数解を計算機実験により求め，そこから解の系列をい
くつか発見した．例えば，

43 + 03 + 73 = 407

343 + 03 + 673 = 340067

3343 + 03 + 6673 = 334000667

...

などを 10種類ほど見つけた．ハーディが挙げた 4例は，これらの解の系列に漏れなく含まれている．
さらに，発見した解の系列から新たな解の系列を組織的に構成することができる．例えば

343 + 003 + 673 = 34|00|67

から，
00003 + 00343 + 00673 = 0000|0034|0067

を得ることができる．
ところで，2変数 2次不定方程式

x2 + y2 = 10nx+ y

は，102n + 1を素因数分解できれば，すべての解が得られることが知られている [4]．例えば，n = 2

の場合 104 + 1 = 73 · 137と因数分解でき，(x, y) = (12, 33), (88, 33)という解が得られ

122 + 332 = 1233,

882 + 332 = 8833

となる．
本研究では，より一般にm変数m次不定方程式

m−1∑
i=0

xm
i =

m−1∑
i=0

10nixi

についても考察した．整数解を計算機実験によって求め，解の系列を発見した．また，発見した解の
系列から，新たな解の系列を組織的に構成することができた．

2 2変数 2次不定方程式
nを正の整数とし，2変数の方程式

x2 + y2 = 10nx+ y, (0 ≤ x, y < 10n) (2)

を満たすような整数の組 (x, y)を考える．[4]にしたがって解き方を紹介する．
方程式 (2)を変形すると，

(10n − 2x)2 + (2y − 1)2 = 102n + 1.



したがって，102n + 1 を 2 つの整数の平方和で表すことができれば x, y を見つけることができる．
すぐ気づくように，102n + 1 = (10n)2 + 12 と平方和で表せるが，自明な解 x = 0, y = 0, 1が出て
くるだけである．そこで，102n + 1の各素因数 pを 2つの整数の平方和で表し（このとき −1は法 p

で平方剰余であるから p ≡ 1 (mod 4)，したがって pは 2つの整数の平方和で表せる），恒等式

(a2 + b2)(c2 + d2) = (ac± bd)2 + (ad∓ bc)2 (3)

を繰り返し使うことで，102n +1を 2つの整数の平方和で表すことができる．方程式 (2)はこの方法
ですべての解を求めることができる．

例 2.1: n = 2

104 + 1 = 73 · 137と 73 = 82 + 32, 137 = 112 + 42 より，

104 + 1 = (82 + 32)(112 + 42)

= (8 · 11− 3 · 4)2 + (8 · 4 + 3 · 11)2 = 762 + 652

= (102 − 2x)2 + (2y − 1)2.

よって，先述の解 x = 12, 88，y = 33が得られる．

一般の整数を 2つの整数の平方和で表すために次のアルゴリズムを紹介する．

補題 2.2: Cornacchia’s algorithm[3]

dとmを互いに素な整数とする．2次方程式 x2 + dy2 = mの整数解 (x, y)は次の手順で
求められる．

1O まず，合同式 r20 ≡ −d (mod m)を満たす正の整数 r0 ≤ m

2
を探す．r0 >

m

2
の場合

はm− r0 に置き換える．もしそのような r0 が存在しない場合，整数解は存在しない．
2O ユークリッドの互除法を繰り返し適用することで，剰余列 r1 ≡ m (mod r0)，r2 ≡ r0

(mod r1), . . .を生成する．
3O rk <

√
mかつ s =

√
m− r2k

d
が整数なら，x = rk, y = sが解となる．

次の例では，Cornacchia’s algorithmで d = 1とする．102n + 1の素因数をmとし，r0 の取り方
として r0 ≡ 10n (mod m)とすると r20 ≡ −1 (mod m)を満たす．

例 2.3: n = 5

n = 5の場合の方程式 (2)を解く．右辺は 1010 + 1 = 101 · 3541 · 27961と素因数分解でき
るが，これらの素因数を Cornacchia’s algorithmによって 2つの整数の平方和で表す．なお
101については，101 = 102 + 12 とすぐに分かる．

3541 について，105 ≡ 852 = r0 (mod 3541)，3541 ≡ 133 = r1 (mod 852)，852 ≡
54 = r2 (mod 133)．ここで，54 <

√
3541 かつ，s =

√
3541− 542 = 25 が整数だから，



3541 = 542 + 252 と分解できる．
同様に 27961 については，27961 = 1442 + 852 と分解できる．したがって，101 · 3541 ·

27961 = (102 + 12)(542 + 252)(1442 + 852)であり，恒等式 (3)より，

(102 + 12)(542 + 252)(1442 + 852) = {(10 · 54 + 1 · 25)2 + (10 · 25− 1 · 54)2}(1442 + 852)

= (5652 + 1962)(1442 + 852)

= (565 · 144 + 196 · 85)2 + (565 · 85− 196 · 144)2

= 980202 + 198012,

(102 + 12)(542 + 252)(1442 + 852) = (5652 + 1962)(1442 + 852)

= (565 · 144− 196 · 85)2 + (565 · 85 + 196 · 144)2

= 647002 + 762492,

(102 + 12)(542 + 252)(1442 + 852) = {(10 · 54− 1 · 25)2 + (10 · 25 + 1 · 54)2}(1442 + 852)

= (5152 + 3042)(1442 + 852)

= (515 · 144 + 304 · 85)2 + (515 · 85− 304 · 144)2

= 1000002 + 12,

(102 + 12)(542 + 252)(1442 + 852) = (5152 + 3042)(1442 + 852)

= (515 · 144− 304 · 85)2 + (515 · 85 + 304 · 144)2

= 483202 + 875512

と変形できる．
(105 − 2x)2 + (2y − 1)2 = 1010 + 1

= 980202 + 198012

= 647002 + 762492

= 1000002 + 12

= 483202 + 875512

から 0 ≤ x, y < 105 の範囲で非自明な解 x, y を求めると
(x, y) = (990, 9901), (99010, 9901), (17650, 38125),

(82350, 38125), (25840, 43776), (74160, 43776).

よって，n = 5の場合の問題 (2)の解

9902 + 99012 = 99009901

990102 + 99012 = 9901009901

176502 + 381252 = 1765038125

823502 + 381252 = 8235038125

258402 + 437762 = 2584043776

741602 + 437762 = 7416043776

が求まった．



102n + 1 の素因数分解さえできてしまえば，この方法によって問題 (2) の解を見つけることがで
きるが，一般に桁数が大きくなると整数の素因数分解は困難になる．Cunningham Project[1]では，
bn ± 1 (b = 2, 3, 5, 6, 7, 10, 11, 12)の素因数分解の結果が記されており，次にそれを利用した例を示
す．

Cunningham Projectより，10314 + 1の素因数分解は，素因数が 4つで
101 · 28415783195151364586816438858689 ·
266488455430283106331412078955889415011373032402631355734921 ·
13074966836663120162722709105541123648726298723670646687814307407224950010

18180216778815507880392549954497547773871479441360810765355506828775300078

80771154323329365744604970190894619006639304519735250462582580835231610629

である．したがって，n = 157の場合の (2)の解の例を一つ挙げると，
x =2480979093248471461616787137729396787731060155999262683580823712474249

1708194623982562209262341342999997188836202160833902059614323424417410

05345291678640780,

y =4319089449334049965520607836514822805806474154623416580267521517493279

4750328769983688452931024127797079798315359691487330249138027257991456

12761091042431601.

3 3変数 3次不定方程式
nを正の整数とし，3変数の方程式

x3 + y3 + z3 = 102nx+ 10ny + z, (0 ≤ x, y, z < 10n)

を満たすような整数の組 (x, y, z)を考える．例えば (1, 5, 3)は n = 1の場合の解であり，
13 + 53 + 33 = 153

となる．計算機によって実験的に求めた解の中で系列になっているものをいくつか発見したため紹介
する．それらは一般の桁数 nでも有効であることが分かる．

定理 3.1

13 + 53 + 33 = 153

163 + 503 + 333 = 165033

1663 + 5003 + 3333 = 166500333

16663 + 50003 + 33333 = 166650003333

...

16 · · · 63 + 50 · · · 03 + 3 · · · 33 = 16 · · · 650 · · · 03 · · · 3 (4)



証明は，N = 10n とし，

x = 16 · · · 6 =
N − 4

6
,

y = 50 · · · 0 =
N

2
,

z = 33 · · · 3 =
N − 1

3

とおくとことで，x3 + y3 + z3 = N2x+Ny + z が確かめられる．
以下まとめて紹介する．

定理 3.2

3 · · · 3︸ ︷︷ ︸
n

3 + 6 · · · 67︸ ︷︷ ︸
n

3 + 03 = 3 · · · 3︸ ︷︷ ︸
n

6 · · · 67︸ ︷︷ ︸
n

0 · · · 0︸ ︷︷ ︸
n

(5)

3 · · · 3︸ ︷︷ ︸
n

3 + 6 · · · 67︸ ︷︷ ︸
n

3 + 13 = 3 · · · 3︸ ︷︷ ︸
n

6 · · · 67︸ ︷︷ ︸
n

0 · · · 01︸ ︷︷ ︸
n

(6)

3 · · · 34︸ ︷︷ ︸
n

3 + 03 + 6 · · · 67︸ ︷︷ ︸
n

3 = 3 · · · 34︸ ︷︷ ︸
n

0 · · · 0︸ ︷︷ ︸
n

6 · · · 67︸ ︷︷ ︸
n

(7)

3 · · · 34︸ ︷︷ ︸
n

3 + 10 · · · 0︸ ︷︷ ︸
n/2

3 + 6 · · · 67︸ ︷︷ ︸
n

3 = 3 · · · 34︸ ︷︷ ︸
n

0 · · · 01︸ ︷︷ ︸
n/2

0 · · · 0︸ ︷︷ ︸
n/2

6 · · · 67︸ ︷︷ ︸
n

(n : 偶数) (8)

3 · · · 34︸ ︷︷ ︸
n/2

0 · · · 0︸ ︷︷ ︸
n/2

3 + 6 · · · 67︸ ︷︷ ︸
n/2

0 · · · 0︸ ︷︷ ︸
n/2

3 + 03 = 3 · · · 34︸ ︷︷ ︸
n/2

0 · · · 0︸ ︷︷ ︸
n/2

6 · · · 67︸ ︷︷ ︸
n/2

0 · · · 0︸ ︷︷ ︸
3n/2

(n : 偶数) (9)

3 · · · 34︸ ︷︷ ︸
n/2

0 · · · 0︸ ︷︷ ︸
n/2

3 + 6 · · · 67︸ ︷︷ ︸
n/2

0 · · · 0︸ ︷︷ ︸
n/2

3 + 13 = 3 · · · 34︸ ︷︷ ︸
n/2

0 · · · 0︸ ︷︷ ︸
n/2

6 · · · 67︸ ︷︷ ︸
n/2

0 · · · 01︸ ︷︷ ︸
3n/2

(n : 偶数) (10)

10 · · · 0︸ ︷︷ ︸
n/4

3 + 03 + 10 · · · 0︸ ︷︷ ︸
3n/4

3 = 10 · · · 01︸ ︷︷ ︸
6n/4

0 · · · 0︸ ︷︷ ︸
3n/4

(n : 4の倍数) (11)

10 · · · 0︸ ︷︷ ︸
n/4

3 + 10 · · · 0︸ ︷︷ ︸
2n/4

3 + 10 · · · 0︸ ︷︷ ︸
3n/4

3 = 10 · · · 01︸ ︷︷ ︸
3n/4

0 · · · 01︸ ︷︷ ︸
3n/4

0 · · · 0︸ ︷︷ ︸
3n/4

(n : 4の倍数) (12)

03 + 10 · · · 0︸ ︷︷ ︸
n/2

3 + 03 = 10 · · · 0︸ ︷︷ ︸
3n/2

(n : 偶数) (13)

03 + 10 · · · 0︸ ︷︷ ︸
n/2

3 + 13 = 10 · · · 01︸ ︷︷ ︸
3n/2

(n : 偶数) (14)



03 + 3 · · · 34︸ ︷︷ ︸
n/2

3 + 6 · · · 67︸ ︷︷ ︸
n/2

3 = 3 · · · 34︸ ︷︷ ︸
n/2

0 · · · 0︸ ︷︷ ︸
n/2

6 · · · 67︸ ︷︷ ︸
n/2

(n : 偶数) (15)

式 (15)については，少しわかりにくいが次のようなイメージである．

0 · · · 0︸ ︷︷ ︸
n

3 + 0 · · · 0︸ ︷︷ ︸
n/2

3 · · · 34︸ ︷︷ ︸
n/2

3 + 0 · · · 0︸ ︷︷ ︸
n/2

6 · · · 67︸ ︷︷ ︸
n/2

3 = 0 · · · 0︸ ︷︷ ︸
3n/2

3 · · · 34︸ ︷︷ ︸
n/2

0 · · · 0︸ ︷︷ ︸
n/2

6 · · · 67︸ ︷︷ ︸
n/2

以下の集合を定義する．

T (3, n) =
{
(x, y, z) ∈ Z3|x3 + y3 + z3 = 102nx+ 10ny + z, (0 ≤ x, y, z < 10n)

}
上で列挙した系列を T (3, n)の要素として N = 10n を使ってまとめる．

T (3, n) 3
(
N − 4

6
,
N

2
,
N − 1

3

)
,

(
N − 1

3
,
2N + 1

3
, 0

)
,

(
N − 1

3
,
2N + 1

3
, 1

)
,(

N + 2

3
, 0,

2N + 1

3

)
,

(
N + 2

3
, N

1
2 ,

2N + 1

3

)
(n : 偶数),(

N
1
2
N

1
2 + 2

3
, N

1
2
2N

1
2 + 1

3
, 0

)
(n : 偶数),

(
N

1
2
N

1
2 + 2

3
, N

1
2
2N

1
2 + 1

3
, 1

)
(n : 偶数),(

N
1
4 , 0, N

3
4

)
(n : 4の倍数),

(
N

1
4 , N

2
4 , N

3
4

)
(n : 4の倍数),

(
0, N

1
2 , 0
)

(n : 偶数),(
0, N

1
2 , 1
)

(n : 偶数),

(
0,

N
1
2 + 2

3
,
2N

1
2 + 1

3

)
(n : 偶数),

次の写像を考える．

ϕY X : T (3, n) 3 (x, 0, z) 7→ (0, x, z) ∈ Z3

ϕY Z : T (3, n) 3 (x, 0, z) 7→ (Nx,Nz, 0) ∈ Z3

定理 3.3: 写像によって得られる解

(x, 0, z) ∈ T (3, n)に対して，ϕY X(x, 0, z) = (0, x, z) ∈ T (3, 2n)．
(x, 0, z) ∈ T (3, n)に対して，ϕY Z(x, 0, z) = (Nx,Nz, 0) ∈ T (3, 2n)．

定理 3.4

N = 10n，nは 8の倍数とする．(
0, N

1
8 , N

3
8

)
,
(
N

5
8 , N

7
8 , 0
)
∈ T (3, n)

写像を利用することで，nが 8の倍数における新たな系列を発見することができた．



4 m変数m次不定方程式
この章ではより一般に，m変数m次不定方程式の解の集合

T (m,n) =

{
(xm−1, . . . , x0) ∈ Zm

∣∣∣∣∣
m−1∑
i=0

xm
i =

m−1∑
i=0

10nixi, (0 ≤ x0, . . . , xm−1 < 10n)

}

について考える．
式 (12)の一般化として次の定理が見つかった．

定理 4.1

N = 10n，nはm+ 1の倍数とする．(
N

1
m+1 , N

2
m+1 , . . . , N

m
m+1

)
∈ T (m,n)

系 4.2

N = 10n，nはm+ 1の倍数とし，δi ∈ {0, 1} (i = 1, 2, . . . dm/2e)とする．(
δ1N

1
m+1 , δ2N

2
m+1 , . . . , δ2N

m−1
m+1 , δ1N

m
m+1

)
∈ T (m,n)

定義 4.3

m− 1 ≥ i1 > i2 > · · · > ik ≥ 0に対し，

Ti1,i2,...,ik(m,n) = {(xm−1, . . . , x0) ∈ T (m,n) |xj = 0, ∀j /∈ {i1, i2, . . . , ik}}

と定義する．言いかえると，各成分 xl が 0でない添え字 lの全体が集合 {i1, i2, . . . , ik}に含
まれるということである．

ここで，写像を定義する．

定義 4.4

正の整数 dがm ≡ 1 (mod d)を満たすとき，(xm−1, . . . , x0) ∈ Tm−1,m−1−d,...,d,0(m,n)

（添え字が公差 dの等差数列）に対して，以下のような写像を定義する．

ϕR
m,d(xm−1, . . . , x0) = ( 0, . . . , 0︸ ︷︷ ︸

m−1
d (d−1)

, xm−1, xm−1−d, . . . , x0︸ ︷︷ ︸
m−1

d +1

) ∈ Zm,

ϕL
m,d(xm−1, . . . , x0) = (Nd−1xm−1, N

d−1xm−1−d, . . . , N
d−1x0︸ ︷︷ ︸

m−1
d +1

, 0, . . . , 0︸ ︷︷ ︸
m−1

d (d−1)

) ∈ Zm

これらの写像を利用することで定理 3.3を拡張することができる．



定理 4.5: 写像によって得られる解

正の整数 dがm ≡ 1 (mod d)を満たすとき，(xm−1, . . . , x0) ∈ Tm−1,m−1−d,...,d,0(m,n)

に対して，

ϕR
d,m(xm−1, . . . , x0) ∈ Tm−1

d ,m−1
d −1,...,1,0(m, dn),

ϕL
d,m(xm−1, . . . , x0) ∈ Tm−1,m−2,...,m−1−m−1

d
(m, dn).

例 4.6

n が 8 の倍数のとき，
(
N

1
8 , 0, N

3
8 , 0, N

5
8 , 0, N

7
8

)
∈ T6,4,2,0(7, n) に対して，定理 4.5 の

d = 2より， (
0, 0, 0, N

1
8 , N

3
8 , N

5
8 , N

7
8

)
∈ T3,2,1,0(7, 2n),(

N
9
8 , N

11
8 , N

13
8 , N

15
8 , 0, 0, 0

)
∈ T6,5,4,3(7, 2n)

という新しい解の系列を見つけることができる．また，
(
N

1
8 , 0, 0, N

4
8 , 0, 0, N

7
8

)
∈ T6,3,0(7, n)に対して，定理 4.5の d = 3より，(

0, 0, 0, 0, N
1
8 , N

4
8 , N

7
8

)
∈ T2,1,0(7, 3n),(

N
17
8 , N

20
8 , N

23
8 , 0, 0, 0, 0

)
∈ T6,5,4,(7, 3n)

という新しい解の系列を見つけることができる．
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