00— MBI BT EEICOWT

R R BAERE AR o — R
G B#Z (Keita TAKAHASHI) *

=

) —< Y ZRRIRICB T % Hopf-Rinow OEMIE, V- Y RUFZOEANLZEHTH 5.
— AR MR O BB T B B RFZZICH L TIE, Beem IC &k > TZ ORFZERA T X N7z, B
4, Kunzinger ¥ Samann 12 &b, FEEZEMORMFEREANEA LR —L Y EIZEM
(Lorentzian length spaces) 2MEE XN, BAWHRINTWS. Ri#HETIE, Beem OFERE
0—L Y YEIEUAIERET 2. 7, C! HfFZIcB1T 3 AR OIR 2 FEWICOW TN T 5.

1 #EfE
1.1 U= 28K, Rz

neN¥L, M %ZnRuDEohriZikike 35, M O&R pe ML, #B2EH T,M Lo
IEEMENE g, TyM x T,M — R 23X ¥ 258 g TH o T, RFTEERIC X 2 KT RRWH
LR THZ2H0% U—IUFE LV (IEMREFRICOWVTIE [11, Chapter 3]), # (M, g)
2= UZRREL V.

R, n>2 DHFEEEZD. M OFrpe M IINL, #2EM T,M LOTFSE (=, +,...,+)
DN gp: TyM x T,M — R ZXGEE 25/ g THoT, RFTEBERIC X 2 MO RRE S D
REBTHEBOE O—LUVYEE t W0, #l (M,g) 2 O—L2YSRE 210 5.

V== Y ERRETIRIEEEED S, 0 TRWERZ ML o RL, #IT gy(v,v) > 0 25D 32D
—7, B—L YYEZRETIE, FRILGETERY PLERD X S5 ICXFIT 5.

EE 1.1 (M,9) zu—LYYERK pi2 M LOK, v % p ITBF 2RI MLET .

o v KM THZL, v#£0 2D gp(v,v) <ODEDIDLEENS.
e v KM THZ L, v£0 2D gp(v,0) =0 DD IIDE EZWNS.

o v ERMM TH2LIE, v=0 F%F gp(v,v) >0 DD IO EERWVS.
o v N ERK TH2 LXK, v PRHNELIHNTHL 2V,

E&E 1.2 u—LYYERK (M,g9) B’ M E\Wiz2 e ZARE»DWE SRR Y MV X 25D
&, (M,g) % BRANBIGIETE THr 0w, Ml (M,g,X) 2 BZE 2w, DB X 258
LT, (M,g) CHRZEERT.

* E-mail: takahashi.k.f832@m.isct.ac.jp



) —< U ZRRORERZEI LT, =2V v FZ2RE, BRE, WHhZER, RZEofle LT,
Minkowski 2%, de Sitter 2%, Anti-de Sitter FfZ223H1F 5412 (cf. [11, Chapter 8]). 2%k
Einstein 12 X 2 — AR R ORMAFREE LTHOWSHNLS.

E&E 1.3. (M,g) #RzEr 352, Mg y: I — M 2 ERM TH2 X, v OFEXRT ML 4 e
TOtel KHLTHRRNTHZZ2 WS, F, KRR v 2% KREE (resp. BERT) T
BH2BLIE, gy (Y1), X (7(t))) < 0 (resp. gy (F(t), X (7(t))) > 0) BETD ¢t € I IR LTHED L
DEEZWVD.

EE 1.4. (M,g) 2V =< YZREELERREEL, V 2 g »oEE S Levi-Civita i e 5.
WOLRMERR vy: T — M 2 MR TH221E, Viy =0 MDD TR VS, ZAUIRPTERE
ZEACT, () = (V). ... " 1(1) LETELE, KO 2 BEOBMSFHTER

A I
= =0,...,n—1). 1.1
dt2+z”dtdt (k=0,...,n=1) (1.1)
EHTT L LRAMTHS. 2T, TY 1 Christoffel 75
1 n—1
Ty = 9 ngl (9igji + D90 — Drgi) (1.2)
=0

TH5.

AR 3IGER pe M X7 Pl v e T,M Z2ERICH5EZ 5 %, —BIICHET 5 2 LM
NTVn5.

BHRX 1.5 (MBRORANREEL —BM). (M,9) 2V —< V2R ERIEIRE T2 %, TE
DipeM LHERZ ML v e T,M ML, 52 0 230HKXM I CR & y(0)=p, %(0) =v %
Bl TR v T — M DP—EBERIFEEST 5.

AR 1.6 HHE 15 O—EMELKDIIDOEDITZ, g B CVLRTH2ZeARENTDH 3. g »n
CU AR TH 25681%, —RIC—BEMHIIR D L7z 700.

I—27 1Yy FEMIZET 2HBRIIERTH D, BREICH T 2 MBI KHATH 2. £,
Minkowski FRFZ212 381 2 HIIERIZERRTH D, de Sitter RFZEI2 BT 2 HIHIERIZFE v ONEOFFE
WG TR 28 2 725 (cf. [11, Chapter 8, Exercise 8]). —f&DV —< ¥ ZHALIFZHT B
T, HHEROERIBOIFEIC R ISR 2 LR o2V, EBE, 2—2 Vv FEHE R2 225685 (1,1) 25
W EEZ D L, AR p=(0,0) 2% v = (1,1) ORMARK (—00,1) LTOAEFEZXNS.

EE L7 (M,g) 2V~ VEREEREREE T E, (M,g) 2 BMNER TH5 13, £E
DpeM EERT MV veT,M ML, MRz p, W%z v T DOHHIFRDOERES R 2T
HHI WV,

2—27 1 v 228, ERE, MHZER, Minkowski Ff2%, de Sitter FfZ%, Anti-de Sitter FFZi3w
TN AT TD 5.



1.2 Hopf-Rinow DEIE

) — < Y ERKICE T 3 & D EAN L EHD—21% Hopf-Rinow OFEHTH 5. HiERY —~<
ZER (M, g) RIQiZV —<Et& g 2oEE2 M FOERE d H°
v:[0,1] — M XX C R,
(1.3)

e 1m{/)¢%@ D ﬂ@ZPJNUZq

WEDEED, d »oEEAMHITOZEE M OfifHe —8 3 5. 2o =, HMTEHE (8
F 1.7) LD o8 £ 25 R EDFETH 2 2 & 2 FikT % DAY Hopf-Rinow DEMTH 5.

EXE 1.8 (Hopf-Rinow, cf. [6, Chapter 7, Theorem 2.8|). (M, g) &R —~< 2K T 5.
ZorE, UNPDFRMFIZEWICFETSH 5.

1. MZERa> 7 THB. THbLE, M NOTEDEAEREKZa > 7 b TH 3.
2. M IZFEREERE LCRIBETH D, Thbb, M NOEEDa— —FIIEHT 3.
3. M IFHHEETH 3.

NS [EMER S % A7 TER R ) —~ Y Z2RRX =l TH S 2w, Cartan-Hadamard O
B (cf. [11, Theorem 10.22]) % Myers D& (cf. [11, Theorem 10.24]) 2 & X {HFAXRLNT N2

—77, B2 T 272 MEEILDMMRMETD L. Qpy & p 25 ¢ NORRAHIFR K
DEELT L. EEREZE (M,g) XL, (1.3) tRKkice—-L Y YitE g o E ¥ 25/
T: M xM—[0,00] %

T(p,q) == £§’{/‘¢ g1 (¥ )d% (0 20) (1.4)
h (@ = 0)

WEDEDZ., ZOr %, TIIHEMORNEE ARV,

LL, T ZHWTKZICB T 272 HEOELBIZE2E 2 5 Z LI3rEETH 5. Busemann [4] 13,
Timelike spaces ¥ WHKZE X D AW D 7 ADZEICH L, BRI NI ME » BER Cauchy 58
fEExEEAL, BRa > 7 MEDKREM Cauchy 5EMMEEZEL v Z2RLZ. Zhoidzhzh,
V= Y ZRRNCBI 2 FRa 87 MECHREZER e L TEMTH 5 2 2 ICHUOBERTH 5.

E 512, Beem [2] 1FFFZ22120f LT Hopf-Rinow B DEMML D TDZ & 2R L 7.

EX 1.9 (Beem [2, Theorem 5)). (M, g) Z RBEEINZ2KZE 52, 2oL &, DUTOSRMFE
HWIZFET®H 5.

1. MOZHR Y A2 L THS (cf. £ 2.1).
2. M 13K Cauchy S TH 5 (cf. EFE 2.2).
3. M 3G A AT (cf EFE 24).

KETDETIE, FE 1.9 O X H — IR ZERADIRRIZOWTEHR L 5.



1.3 O—-LYYRTZEH

AHITIE, Kunzinger & Sémann [9] X DEASNTm—L >V RE2[H (Lorentzian length
spaces) DER L EARNLBMEE L E e H 5. ZIUIEHZEBORMFEOFEEZ v —L >R FEAE
AT BHHATH Y, WO RIFERZIT TR, FHROHE S 2 I BEVKZERHEEZEM 2 5 /E5 0 %
222 AN S T & ZARRICT 5.

EZE 1.10 ([9, Definition 2.1]). #£& X ¥ 2 20 JHMG < BXU < 0ol (X, <, <) »ERZE
M THrrld, < & < BHICHRBK, < BRIENTHD, o<y Bol z <y MWD
TRV, Fh r<ybortyDE, r<y &EL.

RreXITnl, BREINEREK I (x), BEMEE I (x), BRBERR J*(z), AREEE T (2)
ERDESITED S !

Mr)={yeX|r<y}, I(2)={yeX]|y<a},
JHa)={ye X[z <y}, J (2)={yeX|y<a}.

EFE 1.11 ([9, Definition 2.8]). A—L > VEIRTZEM (Lorentzian pre-length space) &1, KIHRZE
M (X, <, <), X LoilE# d, 5% 7: X x X — [0,00] Ol (X, <, <,d,7) TH>T, LLFDEM
ZHETHDTH 5.

L 713 d»oEF AL TTHHEhTH 5.

2. BEED z,y,z€e X WAL, 2 <y<zkbldr(z,2)>7(x,y)+7(y,z) BKDILD.
3. 1(z,y) >0 <= <K y.

4. 2Ly = 7(x,y) =0.

DARE, m—v > (f) RS2 EOMAR, HICHEE d 258 F 2 MHEZHWS.

E# 1.12 ([9, Definition 2.18]). I ¢ R ZX& 5 2. EHEH TR WRFT Lipschitz #i 5 5§
v I - X ﬁl**ﬁ%%ﬂ'\] (resp. H%Fﬂﬂﬁg) TH5 Zbi, E%f@ tl,tg el (tl < tz) L:;FJ'LVC
v(t1) < y(t2) (resp. Y(t1) K y(t2)) B DILDZ L Z WS, WEMEDOHFRD FERICERIN 3.

E#& 1.13 (]9, Definition 2.24]). v: [a,b] = X ZARKAZKRHIRE T5. v D —-RE L (v)
%

n—1

L.(v) ==inf {Z T(v(ti), Y(tit1))

=0

neNﬂnﬁo<h<~-<m:b} (1.5)

TEDD. v BBEMEDHEDIEFZ ATVEZ TRBKICERT 2. AKM & ERAVHHR v: [a,b] —
X B L (y) =7(y(a),y(b) 2AT & &K THD LW (cf. [9, Definition 2.33)).

0—L Y RSEMEERT 2 7-0120F, ZEPRANICRWVRS2#HWE TS (R
KIRHIPAE & B LAl RElE) Z i3 20 EH 5. R OWTEA Y O FLOER 9,
Definition 3.4] T13#i5 ¥ 37, [1, Definition 2.19] 12 & 2 SFEMEMEE V3. K3, AT
WS KR s 0 — L > RXZEMTE, 2 DOFRMIEEIETH % (cf. [1, Proposition 2.21]).



EE 1.14 ([1,9). (X, <, <, d,7) 2R —L Y VHIEIZEHE T 5.

1. X 7 ARIRKERE TH2 21k, FED 2 <y KHLT 2 205 y NOANRKN = R HHHR
DBEFEL, FED 2 <y ITHLT 2 256 y ~NORKA EKENHELTFEET 22205,
2.z € X OEFE U P BRRME THs 2, UNDES p, - pclU BEU q, 2 qeUH
2TD niZ2VWT p, <y q, (U NORRER) 2ATHROEp <y g BEDILODTEZWV
5. BEMEERENELEHEE DO &, X 13 BFASBERMNE TH2 2\,

3. X 2 BPFMLEIRE TH % Lid, SR RN EREEEC R IMEV BN LBE L BET 2
O LHEAREHERZ DO L2V (FEMlIE [9, Definition 3.16] ZZ ).

DEo#Fob e, ENRTHZ2u—L VY RERIZEHIIRD LI ITEREINS.

E# 1.15 (]9, Definition 3.22]). O—L >V REZEM (Lorentzian length space) i, KRAYIIIR
EAL BTSRRI, 2o RAHEATREZ 0 — L Y Y RTR S22 (X, <, <,d,7) TH->T, [FED
z,y € X ITXLT

VEQ,y (16)

{ sup Lo(7) (R #0),
T(:Uay) =
0 (Qm,y = @)

FRETHLDEVS. 2T W, 1 2 y ~OAKMEERIHHEAOEETH S,

0—L YV ESEMOREAN I, BoMREE M LHELASOEun—L Y ViR g %
bOWERLMENS. CF ROFHRE bOMZ%EE CF REFZ 215,

OO 7 (M, g) WL, d" RILEO5MY —< Vit h »oFE N2 L, T % (1.4)
TEDZ. COLE, KM IO,

EX 1.16 (]9, Proposition 5.12]). (M,g) Z5RERMH (cf. [11, Definition 14.11]) 22D causally
plain (cf. [5, Definition 1.16]) 7 C° #kRfZEr T2 &, (M, <, <,d", T) Zun—L vV REIXZEHT
H3. Fz, (M,g) PERRERZ OO FRZETHZ L &, (M, <, <,d"T) iZn—1L >y EXZEH
Th5.

RIRIZ, W B Z RS 2 7D DRMFZEAT 5. 2513 Beem OEHDILRICBNTHL
A7t 2 R

E& 1.17 ([9, Definition 2.35]). (X, <, <,d,7) ZU—L VY RIZEML T 5.

1. X PEARY TH2E, TED 2,y c X ITHL, 2 <ybroy<zkhdlz=y KD
DI RV,

2. X % KIRIINBRAY TH % L 1F, non-totally imprisoning (cf. [9, Definition 2.35 (iii)]) %D
EED 2,y € X IZH LT causal diamond J(z,y) == JT(x)NJ (y) BXar 7 +THsZ
LW,



2 EHER
21 O—L>Y>YRIERMICH|IT 3mSR

AHITIE, Beem [2] 2518 B2 72220 L TERIL L 72 3 DO 5%ElESM, ARa > <7 M,
KR Cauchy Sefitt, BLUSEMH A 20 —L Y BXEMALRL, 205 OMOREZFHRS.
3, V=< UZRRICBI2ERa 7 M ME (EROBRBAEER a7 M) ou—1L Y
fite LT, UTFOMRNERINS.

E&E 2.1 (4]). v—L Y UHiRIZEH (X, <, <,d,7) 2 BRAVNI L TH2 2, FED B >0
¥ pge X BRUEH ()0 L, p<qg< 20 22 7(py1,) < B (¥ 2, <qg<p 2D
7(xp,p) < B) DD IDOKOIE, (vp)n 2 X WICEBERZD DI EEZ V.

RiZ, PEBEZERNC BT 25t ((EE D Cauchy FIHICRT %) OFLMBERZEAT 5.

E&E 2.2 ([4]). v—L Yy URIRIZEM (X, <, <, d,7) K8 Cauchy 52fE TH 2 &1k, EEDOA
N (20)n EIEEEE (By)n 73 2 < Tpg1 DD T(Tpy Toam) < B, (F7201F < & 7 OHFHEMIC
L7e5tE) AL, 2 B, >0 (n—00) ER2LE, (z,), 25 X ATHERT 22205,

BRI, AHAISEhTEC IR TH D254 A ZEAT L. TSR ET, -1 Y REZEH
2B 2 HIIR C ERAREE O ERPDETDH 5.

E& 2.3 ([3,9]). v—LryVHIERIZEN (X, <, <,d,7) FoARKmAEEREEHH v: [a,0) > X
DRREESERTTEE TH 2 LiF, H2ARKAEZERWEIR 7: [a0,0] = X BEFEELT Fljap) =7 &
BBEZLEVS. RRAMELEREAETRVE &, v X RRAZERFTE THZ VS, £, K
SR ERRAEER v: [ — X 23 AR TH2 23, EED t € 1 IXBVT, BB [a,b) C I D
FIELT, Yoy PERETHLILEVS.

E&E 2.4 (2). v—LyUREIZEM (X, <, <,d,7) D EHFAR2ARLTLIE, FEO 2y A
d r,ye X &, y BEBRETIERE (0, c) DIEREDOARRKM = LERARE R AR = KA HI AR
FYE) WXL, t—=c DL E 7(2,7(t) = 00 DD ILD GHEMEZDGEDFEER) 2205,

KRN0 — L Yy REZEFIIHR L TE, Zhs 3 DDOEMFORIZROBERD D 32D,

EE 2.5 ([12, Proposition 4.9]). (X, <, <,d,7) Z KRNz -1 oY RIZEMET5.
DEE, RDZELHHILT 5.

1. ARz > 7 v 251X, KPR Cauchy 5EHTH 5.
2. FffERY Cauchy 727 61X, &1 A AT,

—fFor—L Y REIEMIBVTIE, &4 A »SERa Y7 MEREL 202X, HERD
RAEHNE L DTS 20BN D 2. i, n—L UV EIEHOEER Y S A TH5 Ct
RFZHCBVWTX R, RO —EES— IS L7207z ® (cf. [8, Example 3.2]), HfliRyiiRI%



TERWV. XETIE, O IZICERZYT, &MFA2oARa 7 MEZEON D DITLE
RIBMGFEFITOVWTERT S

22 C! #REFTICH T B AHR

AREITIE, n—vyv%éﬁﬁ®%%a75XT@éClmﬁ%mﬁﬁ%ﬁf,%#Aﬂ@ﬁ@
ay Ry MEREL 72D HIEFITONWTER S

Ct FFEZRIC B VTR, @m%ﬁdﬁ?#@h%ﬁkﬁét B, RIS & 2 RIGE L FRICE
W R0 L TEFRTE S (cf. [7, Definition 2.1]).

EE 2.6. (M,g) % n Xt Ct k=52, C? Wbk v: T — M 25 AR TH % i,
Vi =0, 2FhXDJER
B2k 2 e dr Ay
= =0,...,n—1 2.1
72 +Z e (k=0,...,n—1) (2.1)

Z]_

BT IERVD. JITIY &g Olns C fiThH s e hoifir 25,

BOMRRREL TR D, O 22 TR AR O RED—MRIC Lipschitz @it & 3R & 7«
Wz, RO — B REES S, EEHHRO 22 4ET 5 % (cf. [8, Example 3.2]). 22
T, WO —BMHERAET 572012, TN ORRIIETISEM & I M2 EA T 5.

EE 2.7 (cf. [8, Definition 3.1]). (M, g) & C* H§22r 5 2. HHER v: [a,b] — M 2%ty € (a,b)
THIKTD L1, D e>0 LR 0: (to—€,to+€) = M BFEIELT, Y|g—eto] = O(to—eto]
DD, v((to,to +€)) Na((to,to+€) =0 TH2Z ez, EEOKRMMMARI T L L WvE
%, (M,g) 13 BRIIENE TH2 L.

E& 2.8 ([12, Definition 4.6]). (M,g) & C' M2 L, pe M 3%, (M,g9) 2% p IZBW
THRE THZLE, p DH2EH U BPFEL, EED >0, p RBARE TR LHHEE DD
EE DR REHHHAR v1,72: [0,e] > U L, £TD t € [0,e] Ty(t) = 1(t) THS, ik
11 ((0,€]) N2((0,€]) EMESEE B RN LR WS, RTOH pe M THELTH 2L %, (M,g)
X IEREE THIZ VI,

RIRAIIED I AOIEZ$ 72 CF #RINFZECLR, WIHE LS 03 2 RURATHIER O — M AL S % ([12
Lemma 4.7]). ZAUTX D, FEREIRZ SATHT 2 15 EBROER DI ATEEICL 5.

T 2.9 ([12, Definition 4.8]). (M, g) & EBMIEME OIS GER O @IFEL L, pe M L5
5. pcBld s ERMISSBEROESR &, £

Ey ={veT,M]|gy,(v,v) <0, v, XM [0,1] ZEATERIND } (2.2)
L, ARHEBER exp,: &, - M %
exp, (v) = 7,(1) (2.3)

CEDEDD. 22T 4 IZIHIEM 1(0) = p,5(0) = v & b7 F —FIRFHRIAMG TS 2.



CH RIFZIC BV T, FEREARE RTINS -Lipschitz FMHT® 2 Z e B3I STV S (cf. [10,
Theorem 2.1]). ZAUIKIGT 2558 LT, C! MlFZRIc B\ TUIEFED LT 5.

8 2.10 ([12, Proposition 4.9)). (M, g) % RRMIEDIE»DOIER R C fl§Ee T2, ot
&, EED pe M 1L, RRIEHEER exp,: & — M 1ZEKTDH 2.

e 2.10 ZARERNCHWS 2T, & A 2ofRar 7 MERERNS.

FI2 2.11 ([12, Theorem 4.12)). (M, g) %3, JIRAMERY, BRI, IS5 O Gk
T3, (M,g) DA A BAETREE, (M, g) $HRIY <Y 1 Th3.

EH 2.5 LEH 2112 85bE3 T, C! HiFZ22cat 3 % Hopf Rinow BIDEHAE SN S.

EI 2.12 ([12, Theorem 4.13)]). (M, g) %k, KIBUIAT, RRMAIEDEE, JELEEL O B
2rF3. ZOrE, RO 3 DODEMIZEWICFEIETDH .

1. M IZBERay 7 v TH5.
2. M 1FFFERY Cauchy 7EHTH 5.
3. M 35N A AT

BE
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