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概要
リーマン多様体における Hopf–Rinow の定理は，リーマン幾何学の基本的な定理である．
一般相対性理論の舞台である時空に対しては，Beem によってその時空版が確立された．近
年，Kunzinger と Sämann により，距離空間の幾何学を時空へ導入したローレンツ長さ空間
(Lorentzian length spaces) が提唱され，盛んに研究されている．本講演では，Beem の結果を
ローレンツ長さ空間へ拡張する．また，C1 級時空における測地線の振る舞いについて紹介する．

1 準備
1.1 リーマン多様体，時空
n ∈ Nとし，M を n 次元の滑らかな多様体とする．M の各点 p ∈ M に対し，接空間 TpM 上の
正定値内積 gp : TpM × TpM → R を対応させる写像 g であって，局所座標系による成分表示が滑
らかな関数であるものを リーマン計量 といい (正確な定義については [11, Chapter 3])，組 (M, g)

をリーマン多様体という．
次に，n ≥ 2 の場合を考える．M の各点 p ∈ M に対し，接空間 TpM 上の符号数 (−,+, . . . ,+)

の内積 gp : TpM × TpM → R を対応させる写像 g であって，局所座標系による成分表示が滑らか
な関数であるものを ローレンツ計量 といい，組 (M, g) を ローレンツ多様体 という．
リーマン多様体では正定値性から，0 でない接ベクトル v に対し，常に gp(v, v) > 0 が成り立つ．
一方，ローレンツ多様体では，符号に応じて接ベクトルを次のように区別する．

定義 1.1. (M, g) をローレンツ多様体，p を M 上の点，v を p における接ベクトルとする．

• v が 時間的 であるとは，v ̸= 0 かつ gp(v, v) < 0 が成り立つときをいう．
• v が 光的 であるとは，v ̸= 0 かつ gp(v, v) = 0 が成り立つときをいう．
• v が 空間的 であるとは，v = 0 または gp(v, v) > 0 が成り立つときをいう．
• v が 因果的 であるとは，v が時間的または光的であることをいう．

定義 1.2. ローレンツ多様体 (M, g) が M 上いたるところ時間的かつ滑らかなベクトル場 X をもつ
とき，(M, g) を 時間的向き付け可能 であるといい，組 (M, g,X) を 時空 という．以降 X を省略
して，(M, g) で時空を表す．
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リーマン多様体の代表的な例としては，ユークリッド空間，球面，双曲空間，時空の例としては，
Minkowski 時空，de Sitter 時空，Anti-de Sitter 時空があげられる (cf. [11, Chapter 8])．時空は
Einstein による一般相対性理論の幾何学的仮定として用いられる．

定義 1.3. (M, g) を時空とする．曲線 γ : I → M が 因果的 であるとは，γ の速度ベクトル γ̇ が全
ての t ∈ I に対して因果的であるときをいう．また，因果的曲線 γ が 未来向き (resp. 過去向き) で
あるとは，gγ(t)(γ̇(t), X(γ(t))) < 0 (resp. gγ(t)(γ̇(t), X(γ(t))) > 0) が全ての t ∈ I に対して成り立
つときをいう．

定義 1.4. (M, g) をリーマン多様体または時空とし，∇ を g から定まる Levi-Civita 接続とする．
滑らかな曲線 γ : I → M が 測地線 であるとは，∇γ̇ γ̇ = 0 が成り立つときをいう．これは局所座標
系を用いて，γ(t) = (γ0(t), . . . , γn−1(t)) と表すとき，次の 2階の常微分方程式

d2γk

dt2
+

n−1∑
i,j=0

Γk
ij

dγi

dt

dγj

dt
= 0 (k = 0, . . . , n− 1). (1.1)

をみたすことと同値である．ここで，Γk
ij は Christoffel 記号

Γk
ij =

1

2

n−1∑
l=0

gkl
(
∂igjl + ∂jgil − ∂lgij

)
(1.2)

である．

測地線は始点 p ∈ M と接ベクトル v ∈ TpM を任意に与えるとき，一意的に存在することが知ら
れている．

事実 1.5 (測地線の局所的な存在と一意性). (M, g) をリーマン多様体または時空とするとき，任意
の点 p ∈ M と接ベクトル v ∈ TpM に対し，ある 0 を含む開区間 I ⊂ R と γ(0) = p, γ̇(0) = v を
みたす測地線 γ : I → M が一意的に存在する．

注意 1.6. 事実 1.5 の一意性が成り立つためには，g が C1,1 級であることが本質的である．g が
C1,1 級未満である場合は，一般に一意性は成り立たない．

ユークリッド空間における測地線は直線であり，球面における測地線は大円である．また，
Minkowski 時空における測地線は直線であり，de Sitter 時空における測地線は初速 v の内積の符号
に応じて異なる曲線となる (cf. [11, Chapter 8, Exercise 8])．一般のリーマン多様体や時空におい
て，測地線の定義域が常に R になるとは限らない．実際，ユークリッド平面 R2 から点 (1, 1) を除
いた領域を考えると，始点 p = (0, 0) かつ初速 v = (1, 1) の測地線は (−∞, 1) 上でのみ定義される．

定義 1.7. (M, g) をリーマン多様体または時空とするとき，(M, g) が 測地的完備 であるとは，任意
の p ∈ M と接ベクトル v ∈ TpM に対し，始点を p，初速を v にもつ測地線の定義域が R 全体で
あることをいう．

ユークリッド空間，球面，双曲空間，Minkowski 時空，de Sitter 時空，Anti-de Sitter 時空はい
ずれも測地的完備である．



1.2 Hopf–Rinow の定理
リーマン多様体に関する最も基本的な定理の一つは Hopf–Rinow の定理である．連結なリーマン
多様体 (M, g) 上にはリーマン計量 g から定まる M 上の距離 d が

d(p, q) := inf

{∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt

∣∣∣∣∣ γ : [0, 1] → M は区分的に C1 級，
γ(0) = p, γ(1) = q

}
(1.3)

により定まり，d から定まる位相は元の多様体 M の位相と一致する．このとき，測地的完備性 (定
義 1.7) と距離から定まる完備性が同値であることを主張するのが Hopf–Rinow の定理である．

事実 1.8 (Hopf–Rinow, cf. [6, Chapter 7, Theorem 2.8]). (M, g) を連結なリーマン多様体とする．
このとき，以下の条件は互いに同値である．

1. M は有界コンパクトである．すなわち，M 内の任意の閉距離球はコンパクトである．
2. M は距離空間として完備である．すなわち，M 内の任意のコーシー列は収束する．
3. M は測地的完備である．

これら同値な条件をみたす連結なリーマン多様体は 完備 であるといい，Cartan–Hadamard の定
理 (cf. [11, Theorem 10.22]) やMyers の定理 (cf. [11, Theorem 10.24]) などよく調べられている．
一方，時空に対する完備性はより繊細な問題である．Ωp,q を p から q への因果的曲線全体
の集合とする．連結な時空 (M, g) に対し，(1.3) と同様にローレンツ計量 g から定まる写像
T : M ×M → [0,∞] を

T (p, q) :=

 sup
γ∈Ωp,q

{∫ 1

0

√
−gγ(t)(γ̇(t), γ̇(t)) dt

}
(Ωp,q ̸= ∅)

0 (Ωp,q = ∅)
(1.4)

により定める．このとき，T は距離の公理をみたさない．
しかし，T を用いて時空における完備性の類似概念を考えることは可能である．Busemann [4] は，

Timelike spaces という時空より広いクラスの空間に対し，有限コンパクト性 と 時間的 Cauchy 完
備性を導入し，有限コンパクト性が時間的 Cauchy 完備性を導くことを示した．これらはそれぞれ，
リーマン多様体における有界コンパクト性と距離空間として完備であることに類似の概念である．
さらに，Beem [2] は時空に対して Hopf–Rinow 型の定理が成り立つことを示した．

事実 1.9 (Beem [2, Theorem 5]). (M, g) を大域的双曲的な時空とする．このとき，以下の条件は
互いに同値である．

1. M は有限コンパクトである (cf. 定義 2.1)．
2. M は時間的 Cauchy 完備である (cf. 定義 2.2)．
3. M は条件 A をみたす (cf. 定義 2.4)．

次節以降では，事実 1.9 のより一般的な空間への拡張について論じる．



1.3 ローレンツ長さ空間
本節では，Kunzinger と Sämann [9] により導入されたローレンツ長さ空間 (Lorentzian length

spaces) の定義と基本的な性質をまとめる．これは距離空間の幾何学の手法をローレンツ幾何学へ導
入する枠組みであり，滑らかな時空だけでなく，計量の滑らかさが低い時空や距離空間から作られる
空間を統一的に扱うことを可能にする．

定義 1.10 ([9, Definition 2.1]). 集合 X と 2つの二項関係 ≪ および ≤ の組 (X,≪,≤) が因果空
間 であるとは，≪ と ≤ が共に推移的，≤ が反射的であり，かつ x ≪ y ならば x ≤ y が成り立つ
ことをいう．また，x ≤ y かつ x ̸= y のとき，x < y と書く．

点 x ∈ X に対し，時間的未来 I+(x)，時間的過去 I−(x)，因果的未来 J+(x)，因果的過去 J−(x)

を次のように定める：
I+(x) := {y ∈ X | x ≪ y}, I−(x) := {y ∈ X | y ≪ x},
J+(x) := {y ∈ X | x ≤ y}, J−(x) := {y ∈ X | y ≤ x}.

定義 1.11 ([9, Definition 2.8]). ローレンツ前長さ空間 (Lorentzian pre-length space) とは，因果空
間 (X,≪,≤)，X 上の距離 d，写像 τ : X ×X → [0,∞] の組 (X,≪,≤, d, τ) であって，以下の条件
をみたすものである．

1. τ は d から定まる位相に関して下半連続である．
2. 任意の x, y, z ∈ X に対し，x ≤ y ≤ z ならば τ(x, z) ≥ τ(x, y) + τ(y, z) が成り立つ．
3. τ(x, y) > 0 ⇐⇒ x ≪ y．
4. x ̸≤ y =⇒ τ(x, y) = 0．

以降，ローレンツ (前)長さ空間上の位相は，常に距離 d から定まる位相を用いる．

定義 1.12 ([9, Definition 2.18]). I ⊂ R を区間とする．定数写像でない局所 Lipschitz 連続写像
γ : I → X が未来向き因果的 (resp. 時間的) であるとは，任意の t1, t2 ∈ I (t1 < t2) に対して
γ(t1) ≤ γ(t2) (resp. γ(t1) ≪ γ(t2)) が成り立つことをいう．過去向きの曲線も同様に定義される．

定義 1.13 ([9, Definition 2.24]). γ : [a, b] → X を未来向き因果的曲線とする．γ の τ -長さ Lτ (γ)

を
Lτ (γ) := inf

{
n−1∑
i=0

τ(γ(ti), γ(ti+1))

∣∣∣∣∣ n ∈ N, a = t0 < t1 < · · · < tn = b

}
(1.5)

で定める．γ が過去向きの場合も順序を入れ替えて同様に定義する．未来向き因果的曲線 γ : [a, b] →
X が Lτ (γ) = τ(γ(a), γ(b)) をみたすとき 最長 であるという (cf. [9, Definition 2.33])．

ローレンツ長さ空間を定義するためには，空間が局所的に良い振る舞いをすること（局所的な
因果的閉性と局所化可能性）を要請する必要がある．因果的閉性についてはオリジナルの定義 [9,

Definition 3.4] では強すぎるため，[1, Definition 2.19] による弱因果的閉性を用いる．なお，本稿で
扱う大域的双曲的なローレンツ長さ空間では，2つの条件は同値である (cf. [1, Proposition 2.21])．



定義 1.14 ([1, 9]). (X,≪,≤, d, τ) をローレンツ前長さ空間とする．

1. X が 因果的弧状連結 であるとは，任意の x ≪ y に対して x から y への未来向き時間的曲線
が存在し，任意の x < y に対して x から y への未来向き因果的曲線が存在することをいう．

2. x ∈ X の近傍 U が 弱因果的閉 であるとは，U 内の点列 pn → p ∈ U および qn → q ∈ U が
全ての n について pn ≤U qn（U 内の因果関係）をみたすならば p ≤U q が成り立つことをい
う．各点が弱因果的閉近傍をもつとき，X は 局所弱因果的閉 であるという．

3. X が 局所化可能 であるとは，各点が局所的な因果構造や長さ構造が大域的な構造と整合する
ような基本近傍系をもつことをいう (詳細は [9, Definition 3.16] を参照)．

以上の準備のもと，主対象であるローレンツ長さ空間は次のように定義される．

定義 1.15 ([9, Definition 3.22]). ローレンツ長さ空間 (Lorentzian length space) とは，因果的弧状
連結，局所弱因果的閉，かつ局所化可能なローレンツ前長さ空間 (X,≪,≤, d, τ) であって，任意の
x, y ∈ X に対して

τ(x, y) =

 sup
γ∈Ωx,y

Lτ (γ) (Ωx,y ̸= ∅),

0 (Ωx,y = ∅)
(1.6)

をみたすものをいう．ここで Ωx,y は x から y への未来向き因果的曲線全体の集合である．

ローレンツ長さ空間の最も基本的な例は，滑らかな時空 M と滑らかさの低いローレンツ計量 g を
もつ時空から構成される．Ck 級の計量をもつ時空を Ck 級時空 という．
C0 級時空 (M, g) に対し，dh を任意の完備リーマン計量 h から誘導される距離とし，T を (1.4)

で定める．このとき，次が成り立つ．

事実 1.16 ([9, Proposition 5.12]). (M, g) を強因果的 (cf. [11, Definition 14.11]) かつ causally

plain (cf. [5, Definition 1.16]) な C0 級時空とするとき，(M,≪,≤, dh, T ) はローレンツ長さ空間で
ある．特に，(M, g) が強因果的な C0,1 級時空であるとき，(M,≪,≤, dh, T ) はローレンツ長さ空間
である．

最後に，病的な例を排除するための条件を導入する．これらは Beem の定理の拡張において中心
的な役割を果たす．

定義 1.17 ([9, Definition 2.35]). (X,≪,≤, d, τ) をローレンツ長さ空間とする．

1. X が 因果的 であるとは，任意の x, y ∈ X に対し，x ≤ y かつ y ≤ x ならば x = y が成り
立つことをいう．

2. X が 大域的双曲的 であるとは，non-totally imprisoning (cf. [9, Definition 2.35 (iii)]) かつ
任意の x, y ∈ X に対して causal diamond J(x, y) := J+(x) ∩ J−(y) がコンパクトであるこ
とをいう．



2 主結果
2.1 ローレンツ長さ空間における完備性条件
本節では，Beem [2] が滑らかな時空に対して定式化した 3 つの完備性条件，有限コンパクト性，
時間的 Cauchy 完備性，および条件 A をローレンツ長さ空間へ拡張し，それらの間の関係を調べる．
まず，リーマン多様体における有界コンパクト性（任意の有界閉集合がコンパクト）のローレンツ
版として，以下の概念が定義される．

定義 2.1 ([4]). ローレンツ前長さ空間 (X,≪,≤, d, τ) が 有限コンパクト であるとは，任意の B > 0

と p, q ∈ X および点列 (xn)n に対し，p ≪ q ≤ xn かつ τ(p, xn) ≤ B（または xn ≤ q ≪ p かつ
τ(xn, p) ≤ B）が成り立つならば，(xn)n が X 内に集積点をもつことをいう．

次に，距離空間における完備性（任意の Cauchy 列が収束する）の類似概念を導入する．

定義 2.2 ([4]). ローレンツ前長さ空間 (X,≪,≤, d, τ) が時間的 Cauchy 完備 であるとは，任意の点
列 (xn)n と非負数列 (Bn)n が xn ≪ xn+1 かつ τ(xn, xn+m) ≤ Bn（または ≪ と τ の中身を逆に
した条件）をみたし，かつ Bn → 0 (n → ∞) となるとき，(xn)n が X 内で収束することをいう．

最後に，測地的完備性に似た条件である条件 A を導入する．これにはまず，ローレンツ長さ空間
における測地線と延長不能性の定義が必要である．

定義 2.3 ([3, 9]). ローレンツ前長さ空間 (X,≪,≤, d, τ) 上の未来向き因果的曲線 γ : [a, b) → X

が未来向き延長可能 であるとは，ある未来向き因果的曲線 γ̃ : [a, b] → X が存在して γ̃|[a,b) = γ と
なることをいう．未来向き延長可能でないとき，γ は 未来向き延長不可能 であるという．また，未
来向き因果的曲線 γ : I → X が 測地線 であるとは，任意の t ∈ I において，ある近傍 [a, b] ⊂ I が
存在して，γ|[a,b] が最長であることをいう．

定義 2.4 ([2]). ローレンツ前長さ空間 (X,≪,≤, d, τ) が 条件 A をみたすとは，任意の x ≪ y をみ
たす x, y ∈ X と，y を始点とする定義域 [0, c) の任意の未来向き延長不能な未来向き因果的測地線
γ(t) に対し，t → c のとき τ(x, γ(t)) → ∞ が成り立つ（過去向きの場合も同様）ことをいう．

大域的双曲的なローレンツ長さ空間に対しては，これら 3つの条件の間に次の関係が成り立つ．

定理 2.5 ([12, Proposition 4.9]). (X,≪,≤, d, τ) を大域的双曲的なローレンツ長さ空間とする．こ
のとき，次のことが成立する．

1. 有限コンパクトならば，時間的 Cauchy 完備である．
2. 時間的 Cauchy 完備ならば，条件 A をみたす．

一般のローレンツ長さ空間においては，条件 A から有限コンパクト性を導くためには，測地線の
振る舞いをより詳細に解析する必要がある．特に，ローレンツ長さ空間の重要なクラスである C1 級
時空においてさえ，測地線の一意性が一般に成立しないため (cf. [8, Example 3.2])，単純な拡張は



できない．次節では，C1 級時空に焦点を当て，条件 A から有限コンパクト性を得られるために必要
な追加条件について考察する．

2.2 C1 級時空における測地線
本節では，ローレンツ長さ空間の特別なクラスである C1 級時空に焦点を当て，条件 A から有限
コンパクト性を導くための十分条件について考察する．
C1 級時空においては，Christoffel 記号が連続関数となるため，測地線は滑らかな場合と同様に常
微分方程式の解として定義できる (cf. [7, Definition 2.1])．

定義 2.6. (M, g) を n 次元 C1 級時空とする．C2 級曲線 γ : I → M が 測地線 であるとは，
∇γ̇ γ̇ = 0，つまり次の方程式

d2γk

dt2
+

n−1∑
i,j=0

Γk
ij

dγi

dt

dγj

dt
= 0 (k = 0, . . . , n− 1) (2.1)

をみたすことをいう．ここで Γk
ij は g の成分が C1 級であることから連続となる．

滑らかな時空とは異なり，C1 級時空では測地線方程式の係数が一般に Lipschitz 連続とは限らな
いため，測地線の一意性は保証されず，実際測地線の分岐が生じうる (cf. [8, Example 3.2])．そこ
で，測地線の一意性を保証するために，以下の因果的非分岐条件と非交錯性を導入する．

定義 2.7 (cf. [8, Definition 3.1]). (M, g) を C1 級時空とする．測地線 γ : [a, b] → M が t0 ∈ (a, b)

で 分岐する とは，ある ϵ > 0 と測地線 σ : (t0 − ϵ, t0 + ϵ) → M が存在して，γ|(t0−ϵ,t0] = σ|(t0−ϵ,t0]

かつ，γ((t0, t0 + ϵ)) ∩ σ((t0, t0 + ϵ)) = ∅ であることをいう．任意の因果的測地線が分岐しないと
き，(M, g) は 因果的非分岐 であるという．

定義 2.8 ([12, Definition 4.6]). (M, g) を C1 級時空とし，p ∈ M とする．(M, g) が p におい
て 非交錯 であるとは，p のある近傍 U が存在し，任意の ε > 0，p を始点とする同じ初速をもつ
任意の因果的測地線 γ1, γ2 : [0, ε] → U に対し，全ての t ∈ [0, ε] で γ1(t) = γ2(t) である，または
γ1((0, ε])∩γ2((0, ε]) が集積点をもたないことをいう．全ての点 p ∈ M で非交錯であるとき，(M, g)

は 非交錯 であるという．

因果的非分岐かつ非交錯な C1 級時空では，初期値に対する因果的測地線の一意性が成立する ([12,

Lemma 4.7])．これにより，因果的ベクトルに対する指数写像の定義が可能になる．

定義 2.9 ([12, Definition 4.8]). (M, g) を因果的非分岐かつ非交錯な C1 級時空とし，p ∈ M とす
る．p における 因果的指数写像の定義域 Ep を

Ep := {v ∈ TpM | gp(v, v) ≤ 0, γv が区間 [0, 1] を含んで定義される } (2.2)

とし，因果的指数写像 expp : Ep → M を

expp(v) := γv(1) (2.3)

により定める．ここで γv は初期条件 γ(0) = p, γ̇(0) = v をみたす一意的な因果的測地線である．



C1,1 級時空においては，指数写像は局所的に双-Lipschitz同相であることが知られている (cf. [10,

Theorem 2.1])．これに対応する結果として，C1 級時空においては連続性が成立する．

命題 2.10 ([12, Proposition 4.9]). (M, g) を因果的非分岐かつ非交錯な C1 級時空とする．このと
き，任意の p ∈ M に対し，因果的指数写像 expp : Ep → M は連続である．

命題 2.10 を本質的に用いることで，条件 A から有限コンパクト性が導かれる．

定理 2.11 ([12, Theorem 4.12]). (M, g) を連結，大域的双曲的，因果的非分岐，非交錯な C1 級時
空とする．(M, g) が条件 A をみたすならば，(M, g) は有限コンパクトである．

定理 2.5 と定理 2.11を合わせることで，C1 級時空に対する Hopf–Rinow 型の定理が得られる．

定理 2.12 ([12, Theorem 4.13]). (M, g) を連結，大域的双曲的，因果的非分岐，非交錯な C1 級時
空とする．このとき，以下の 3つの条件は互いに同値である．

1. M は有限コンパクトである．
2. M は時間的 Cauchy 完備である．
3. M は条件 A をみたす．
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[5] P. T. Chruściel and J. D. E. Grant. On Lorentzian causality with continuous metrics.

Classical Quantum Gravity, 29(14):145001, 32, 2012.

[6] M. P. a. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser
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