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概要
逆半群論と亜群論の間の深い関係の一つに、逆半群に付随する普遍亜群と呼ばれる、もとの逆
半群の性質を反映したエタール亜群の構成が知られている。本稿では、逆半群に対するこの構成
を、KS接合積と呼ばれる C*環の構成を通して、空間への逆半群作用に対して一般化する。

0 導入
著者の専門とする C*環論は、von Neumannによる量子力学の定式化や、Gelfandや Naimarkに
よる表現論の研究に端を発する、関数解析学の一分野である。「無限次元の線形代数」とも形容され
るこの分野は、非可換・無限次元といった数学的な難しさを持つ。それに対する一つのアプローチと
して、ある C*環のクラスを別の数学的対象と紐付けて、その描像で性質や構造を調べることがよく
なされる。特に、群や群作用、有向グラフなどによる C*環の構成や、その性質は長らく調べられて
きた。
このような数ある構成の中で、本稿では逆半群作用や位相亜群 (特にエタール亜群)に付随する C*

環の構成に注目する。ここで逆半群や亜群とは、群における単位元の一意性を緩めたような代数形で
あり、逆半群における “単位元”の集まりは半束をなし、位相亜群における “単位元”の集まりは位相
空間になっている。群作用が、作用する対象の大域的な対称性に注目するのに対して、逆半群作用は
作用する対象の局所的な対称性に注目する。
逆半群作用に付随する C*環の構成は、Sieben による接合積の構成 ([Sie97]) と Khoshkam-

Skandalisによる KS接合積の構成 ([KS04])の 2つが知られている。前者は命題 4.9で見るように、
亜群論と深く関係している。後者は、逆半群 C*環の構成を、逆半群の一点空間への恒等作用に対す
る KS 接合積とする形で一般化しており、逆半群論と深く関係している。一方で KS 接合積の特殊
な場合である逆半群 C*環は、逆半群に付随する普遍亜群というエタール亜群によって実現される
(Patersonの定理)ことが知られており、この事実によって広いクラスの C*環を、逆半群を通して組
み合わせ論的に扱えることが知られている ([Exe08, ES17])。著者は、一般の逆半群作用に対して、
その KS接合積を実現するエタール亜群はあるのか、あるとしたらそれはどのようなエタール亜群な
のかに興味を持ち、これに対しての結果を得た。
本稿では著者が行なった、空間への逆半群作用に対する KS接合積を実現する、具体的な亜群 (KS

亜群)の構成 (定理 5.1,定理 5.2)について説明する。この構成は、逆半群による普遍亜群の構成を自
然に拡張するものであり (定理 5.5)、Patersonの定理の逆半群作用への一般化 (系 4.11,定理 5.8)を
与える。また、KS亜群の Hausdorff性に関する部分的な結果 (定理 5.6)についても紹介する。
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1 C*環
本節では、C*環の定義や、その構成について簡単に説明する。

定義 1.1. *代数 Aとは C上の代数であり、任意の a, b ∈ Aに対して

(a∗)∗ = a, (ab)∗ = b∗a∗

を満たすような共役線形写像 ∗ : A 3 a 7→ a∗ ∈ Aを備えたものである。Aのイデアル N が*演算で
閉じているとき、N は Aの*イデアルであると言う。

定義 1.2. A,B を*代数とする。線形写像 φ : A → B が積と*演算を保つとき、φを*準同型という。

注意 1.3. N が*代数 Aの*イデアルであるとき、商 A/N は自然に*代数の構造を持つ。また、商写
像 A 3 a 7→ a+N ∈ A/N は*準同型である。

定義 1.4. *代数 A上の (セミ)ノルム p : A → [0,∞)であって、任意の a, b ∈ Aに対して

p(ab) ≤ p(a)p(b), p(a∗a) = p(a)2

を満たすものを、A上の (セミ)C*ノルムという。完備な C*ノルムを備えた*代数を C*環という。

例 1.5. X を局所コンパクト Hausdorff空間とする。X 上の複素数値連続関数であり、任意の ε > 0

に対して集合 {x ∈ X | |f(x)| ≥ ε} が X でコンパクトになるような関数 f 全体を C0(X) と表す。
このとき、C0(X)は各点ごとの積、複素共役、そして supノルム ‖f‖∞ = supx∈X |f(x)|に関して
C*環をなす。また、Cc(X)を X 上のコンパクト台を持つ複素数値連続関数全体とする。このとき、
Cc(X)は C0(X)における稠密な*イデアルである。

この C*環 C0(X)は積に関して可換である。逆に、可換な C*環はこのような C*環と同型である
ことが知られている。

定理 1.6. (Gelfand-Naimark) Aを可換な C*環とする。このとき Aから Cへの 0でない*準同型
全体に、各点収束の位相を入れた位相空間 Sp(A) (これを Aのスペクトラムと呼ぶ)は、局所コンパ
クト Hausdorffであり A ∼= C0(Sp(A))を満たす。

注意 1.7. 局所コンパクト Hausdorff 空間 X と一点 x ∈ X に対して、写像 evx : C0(X) 3 f 7→
f(x) ∈ Cは 0でない*準同型である。さらに、この対応 X 3 x 7→ evx ∈ Sp(C0(X))は同相である。

観察 1.8. *代数 A上のセミ C*ノルム pに対して、部分集合 {a ∈ A | p(a) = 0}は Aの*イデアル
になる。このとき商 A/N において演算 ‖a +N‖ := p(a)は well-definedであり、*代数 A/N 上の
C*ノルムを定める。このとき A/N の完備化として得られる C*環を Aの Hausdorff完備化と言う。
このとき Aから Aの Hausdorff完備化に自然な*準同型がある。

何かしらの数学的対象から C*環を構成する際には、まずは代数的に*代数を構成し、その*代数に
対して以下の手順で C*環を構成するという手順がよくなされる。



命題 1.9. Aを*代数とする。任意の a ∈ Aに対してある定数 Ca > 0が存在して、任意の C*環 D

と任意の*準同型 π : A → Dに対して ‖π(a)‖ ≤ Ca を満たすとする。このとき、p(·) = sup{‖π(·)‖ |
D : C*環, π : A → D : *準同型 }は A上のセミ C*ノルムを定める。

定義 1.10. 上のような条件を満たす*代数 Aに対して、上記のセミ C*ノルムに関する Hausdorff完
備化を Aの普遍包絡 C*環と呼ぶ。

注意 1.11. 普遍包絡 C*環は次のような普遍性を持つ: Aを命題 1.9の仮定を満たす*代数とし、BA

を Aの普遍包絡 C*環とする。このとき任意の C*環 D と*準同型 π : A → D に対して、次の図式を
可換にする*準同型 π : BA → D が一意に存在する。

A BA

D

π
π

例 1.12. Aを C*環とし、A0 をその稠密な*イデアルとする。このとき A0 は命題 1.9の条件を満た
し、その普遍包絡 C*環は自然に Aと同型である。特に、局所コンパクト Hausdorff空間 X に対し
て Cc(X)の普遍包絡 C*環は C0(X)である。

2 逆半群
この節では逆半群とその作用について簡単に説明する。逆半群についての文献としては [Law98]

と、その作用や C*環との関係については [Exe08]や [Pat99]などに書かれている。

定義 2.1. S を半群とする。任意の s ∈ S に対して、条件 ss∗s = s, s∗ss∗ = s∗ を満たす元 s∗ ∈ S

が一意に存在するとき、S を逆半群と言う。この s∗ ∈ S を sの一般化逆元と呼ぶ。

記号 2.2. 逆半群に対して、冪等元全体を E(S)と表す。つまり、E(S) = {e ∈ S | ee = e}である。

例 2.3. (E,∧)を半束とする。このとき E は演算 ef := e ∧ f に関して逆半群をなす。

注意 2.4. 逆半群 S において、E(S)は可換な部分半群である。特に、E(S)は半束の構造を持つ。

例 2.5. 群は、冪等元がちょうど 1個の逆半群である。逆に、|E(S)| = 1なら S は群である。

例 2.6. X を集合とし、I(X)をX の部分集合の間の全単射全体とする。I(X)の 2元 f : U1 → V1、
g : U2 → V2 に対して、その部分合成

g ◦ f : f−1(V1 ∩ U2) 3 x 7→ g(f(x)) ∈ g(V1 ∩ U2)

が定義できて、これは再び I(X)の元である*1。この演算に関して、I(X)は逆半群である。このと
き、I(X)の元 f : U → V に対する一般化逆元は逆写像 f−1 : V → U である。また、I(X)の冪等
元はある部分集合上の恒等写像である。つまり、E(I(X)) = { idU | U ⊂ X}である。

*1 つまり、g ◦ f は X の部分集合 f−1(V1 ∩ U2)と g(V1 ∩ U2)の間の全単射になる。



定義 2.7. X を位相空間、S を逆半群とする。このとき半群準同型 θ : S 3 s 7→ θs ∈ I(X)が

(1) 各 e ∈ E(S)に対して θe = idXe
を満たす Xe ⊂ X は開集合、

(2) 各 s ∈ S に対して写像 θs は連続、そして
(3) X =

⋃
e∈E(S) Xe

を満たすとき、θ を S の X への作用と言う。

注意 2.8. 各 s ∈ S に対して、θs∗ ◦ θs = idXs∗s
と θs ◦ θs∗ = idXss∗ が成り立つ。したがって、θs

は Xs∗s から Xss∗ への同相写像である。

例 2.9. S を逆半群とする。Ê(S)を E(S)から半束 {0, 1}への 0でない半群準同型全体のなす集合
とし、そこに各点収束の位相を考える。すると、Xu = Ê(S)は局所コンパクト Hausdorff空間にな
る。さらに、この位相空間には次のようにして S の作用 θu : S → I(Xu)が入る。

(i) 各 e ∈ E(S)に対してXu
e = {χ ∈ Ê(S) | χ(e) = 1}とすると、これはXu の (コンパクト)開

集合であり、さらに Xu =
⋃

e∈E(S) X
u
e を満たす。

(ii) 各 s ∈ S に対して θus : X
u
s∗s → Xu

ss∗ を

θus (χ)(e) = χ(s∗es)

で定めると、これは well-definedな同相写像を定める。

定義 2.10. S を逆半群、X,Y を位相空間、θ, σ を S の X,Y への作用とする。写像 f : X → Y が
以下を満たすとき、f : X → Y は S 同変であると言う。

(1) 各 e ∈ E(S)に対して f(Xe) ⊂ Ye が成り立つ。
(2) 各 s ∈ S に対して、f |Xss∗ ◦ θs = σs ◦ f |Xs∗s

が成り立つ。

例 2.11. θ を逆半群 S の局所コンパクト Hausdorff 空間への作用とする。このとき各 x ∈ X に対
して fu(x) : E(S) → {0, 1}を、x ∈ Xe なら fu(x)(e) = 1で x /∈ Xe なら fu(x)(e) = 0と定める。
すると fu(x) ∈ Ê(S)であり、さらに写像 fu : X → Ê(S)は S 同変になる。

3 エタール亜群
亜群とは、一言で言えば、全ての射が可逆な小圏である。これを明示的に表すと以下のようになる。

定義 3.1. 集合 Gが亜群であるとは、ある部分集合 G(0) ⊂ G(この集合を Gの unit spaceという)

と、写像 d, r : G → G(0)(それぞれ domain map、range mapと呼ぶ)そして積演算

G(2) := {(γ2, γ1) ∈ G×G | d(γ2) = r(γ1)} 3 (α, β) 7→ αβ ∈ G

さらに逆元をとる演算 G 3 γ 7→ γ−1 ∈ Gを備えており、これらが以下の条件を満たすことを言う。

(1) 任意の x ∈ G(0) に対して d(x) = x = r(x)が成り立つ。
(2) 任意の γ ∈ Gに対して r(γ)γ = γ = γd(γ)が成り立つ。



(3) 任意の (γ2, γ1) ∈ G(2) に対して r(γ2γ1) = r(γ2)と d(γ2γ1) = d(γ1)が成り立つ。
(4) 任意の (γ3, γ2), (γ2, γ1) ∈ G(2) に対して (γ3γ2)γ1 = γ3(γ2γ1)が成り立つ。
(5) 任意の γ ∈ Gに対して γ−1γ = d(γ)と γγ−1 = r(γ)が成り立つ。

定義 3.2. G,H を亜群とする。写像 f : G → H が亜群準同型であるとは、f(G(2)) ⊂ H(2) であり、
任意の (α, β) ∈ G(2) に対して f(α)f(β) = f(αβ)が成り立つことである。

定義 3.3. 積演算 G×G ⊃ G(2) 3 (α, β) = αβ ∈ Gと逆元をとる演算 G 3 γ 7→ γ−1 ∈ Gがどちら
も連続になるような位相を備えた亜群を位相亜群と呼ぶ。位相亜群 Gがエタールであるとは、G(0)

が局所コンパクト Hausdorffであり*2、d, r : G → G(0) がそれぞれ局所同相*3であることである。

例 3.4. 位相群 Gは |G(0)| = 1を満たす位相亜群である。位相群 Gが亜群としてエタールであるた
めの必要十分条件は、Gが離散であることである。

例 3.5. 局所コンパクト Hausdorff空間 X は X = X(0) なるエタール亜群である。

定義 3.6. 部分集合 U ⊂ Gがエタール亜群 Gの bisectionであるとは、制限 d|U , r|U がどちらも単
射になることである。Bis(G)をエタール亜群 Gの開な bisection全体のなす集合とする。

注意 3.7. U ∈ Bis(G) なら、制限写像 d|U : U → d(U), r|U : U → r(U) はともに同相である。特
に、U は局所コンパクト Hausdorffである。実は、Bis(G)は Gの開基であることがわかる。

空間への逆半群作用から得られる変換亜群は、本稿における最も重要なエタール亜群である。

例 3.8. θを逆半群 Sの局所コンパクトHausdorff空間X への作用とする。このとき S ∗X ⊂ S×X

を x ∈ Xs∗s を満たす組 (s, x) ∈ S ×X 全体のなす集合とする。この S ∗X 上に関係 ∼を

(s, x) ∼ (t, y) ⇐⇒ x = y and ∃e ∈ E(S) x = y ∈ Xe, se = te

で定めると、これは S ∗ X 上の同値関係になる。この同値関係に関する商を S n X で表し、
(s, x) ∈ S ∗X の同値類を [s, x]と記すことにする。このとき、対応 {[e, x] | e ∈ E(S), x ∈ Xe} 3
[e, x] 7→ x ∈ X は全単射である。従って、X を S nX の部分集合と思うことにする。S nX は次の
ようにしてエタール亜群をなす。

• unit spaceに関しては (S nX)(0) = X とする。
• domain map, range mapは d([s, x]) = x, r([s, x]) = θs(x)により定める。
• 上の d, r の定義から (S n X)(2) = {([t, y], [s, x]) | y = θs(x)} である。そこで、積演算を
[t, θs(x)][s, x] = [ts, x]によって定める。

• 逆元をとる演算は S nX 3 [s, x] 7→ [s∗, θs(x)]により定める。
• 各 s ∈ S と Xs∗s の開集合 U に対する [s, U ] = {[s, x] ∈ S nX | x ∈ U}全体を開基として
S nX の位相を定める。

*2 この条件は亜群論において一般的ではないが、C*環との関係においては必要となる。
*3 ここで位相空間の間の写像 f : X → Y が局所同相であるとは、各点 x ∈ X に対して開近傍 U ⊂ X が存在して、

f(U)は Y で開集合かつ制限 f |U : U → f(U)が同相写像になること言う。



気持ち的には、元 [s, x] ∈ S nX を xから θs(x)への矢印だと思うと良い。

·
x

·
θs(x)

[s,x]

X

図 1:変換亜群のイメージ図
例 2.9から構成される変換亜群 S n Ê(S)は、S の普遍亜群と呼ばれている。

注意 3.9. X,Y を S 作用付き局所コンパクト Hausdorff空間とし、f : X → Y を S 同変な写像と
する。このとき対応 f̃ : S nX 3 [s, x] 7→ [s, f(x)] ∈ S n Y は well-definedな亜群準同型である。

Gをエタール亜群とする。エタール亜群からは次のようにして C*環を構成することができる。詳
細は [Exe08]や [Pat99]などに書いてある。

観察 3.10. 各 U ∈ Bis(G) に対して、Cc(U) の元を、U の外の元に対しては 0 を返す関数と考
えることで、G 上の複素数値関数と考えることにする。つまり、Cc(U) ⊂ CG とする。そこで、
C(G) = span

⋃
U∈Bis(G) Cc(U) ⊂ CG とすると、これは以下の演算に関して*代数になる。

f ∗ g(γ) =
∑

β∈Gd(γ)

f(γβ−1)g(β), f∗(γ) = f(γ−1) (f, g ∈ C(G)).

さらに、この*代数は命題 1.9の仮定を満たすことが示せる。

定義 3.11. C(G)の普遍包絡 C*環を C∗(G)と表し、これを Gの充足亜群 C*環などと呼ぶ。

4 C*環への逆半群作用とその (KS)接合積
C*環への逆半群作用は、1997年に Siebenにより導入された [Sie97]。

定義 4.1. S を逆半群とし、Aを C*環とする。半群準同型 α : S 3 s 7→ αs ∈ I(A)が以下を満たす
とき、αを S の C*環 Aへの作用という。

(1) 各 e ∈ E(S)に対して αe = idAe
なる部分集合 Ae ⊂ Aは Aの閉な*イデアルである。

(2) 各 s ∈ S に対して写像 θs は*準同型。
(3) A = span

⋃
e∈E(S) Ae が成り立つ。

注意 4.2. 各 s ∈ S に対して、αs∗ ◦ αs = idAs∗s
, αs ◦ αs∗ = idAss∗ が成り立つ。従って αs は As∗s

から Ass∗ への同型写像である。

例 4.3. S を逆半群、X を局所コンパクト Hausdorff空間とする。θ が S の空間 X への作用である
とき、次のようにして C*環 C0(X)に S からの作用が入る。

• 各 e ∈ E(S)に対して C0(X)e = {f ∈ C0(X) | f |X\Xe
= 0}とする。

• 各 s ∈ S に対して αs : C0(Xs∗s) → C0(Xss∗)を

αs(f)(x) = f(θs∗(x)) (f ∈ C0(Xs∗s))

によって定める。これは well-definedな同型写像である。



逆に、スペクトラムを考えることにより、C0(X)への S の作用はこの形で書ける。

逆半群作用に対する C*環の構成について説明する。αを逆半群 S の C*環 Aへの作用とする。

観察 4.4. 　
S

KS
n
alg

A =
⊕
s∈S

As∗s (ベクトル空間としての直和)

とする。このベクトル空間の元として、s ∈ S に対しては成分 x ∈ As∗s を持ち、それ以外の S の元
に対しては 0を成分とするような元を δs xと表すことにする。すると、S

KS
n
alg

Aの任意の元 T はある
s1, . . . , sn と xi ∈ As∗i si

(i = 1, . . . , n)を用いて T =
∑n

i=1 δsi xi と表せる。各 s, t ∈ S と x ∈ As∗s

及び y ∈ At∗t に対して
(δs x) · (δt y) = δst αt∗(xαt(y)), (δs x)

∗ = δs∗ αs(x
∗)

で定まる演算により、S
KS
n
alg

A は*代数の構造を持つことが計算できる。さらに、この*代数は命
題 1.9 の条件を満たすことが分かる。そこで、単にこの*代数の普遍包絡 C*環を考えたものが
Khoshkam-Skandalisによる接合積の構成である。

定義 4.5. ([KS04]) 上の*代数 S
KS
n
alg

Aの普遍包絡 C*環を S
KS
n Aで表し、これを Aの逆半群作用 α

に関する KS接合積と呼ぶ。

例 4.6. C*環 Cに逆半群 S からの恒等作用を考えた際、KS接合積 S
KS
n Cは逆半群 C*環 C∗(S)と

自然に同型である。ここで、逆半群 C*環については [Pat99]などを参照して欲しい。

上記の例のように、KS接合積は逆半群 C*環の構成を一般化したものである。一方で S
KS
n
alg

Aの構
成は、s∗s = t∗tなる元 s, t ∈ S がある度に全く同じイデアルを足しており、その意味でとても重複
を孕んでいる。このような重複を同一視するような構成を Siebenは考えた。

観察 4.7. 逆半群 S において関係 s ≤ tを s = ts∗sなることとして定義すると、これは S の自然な
順序を定める。この順序に関して

NA = span{δt x− δs x | s, t ∈ S, t ≥ s, x ∈ As∗s}

とすると、これは S
KS
n
alg

Aにおける*イデアルである。*代数 S
KS
n
alg

Aが命題 1.9の仮定を満たすため、

商
(
S

KS
n
alg

A
)
/NA も同様の仮定を満たす。

定義 4.8. ([Sie97, Exe08]) *代数
(
S

KS
n
alg

A
)
/NA の普遍包絡 C*環を S n Aで表し、これを Aの逆

半群作用 αに関する接合積と呼ぶ。

可換な C*環の接合積は、次のようにして計算できる。これは最初 Exel([Exe08])によって色々な
可算性の条件のもとで示され、後に BussとMeyer([BM17])によって一般に示された。

命題 4.9. X を局所コンパクト Hausdorff空間とし、θ を逆半群 S の空間 X への作用とする。この
とき C0(X)に誘導される S の C*環 C0(X)への作用 (例 4.3)に関する接合積 S n C0(X)は、変換
亜群 S nX に対する亜群 C*環 C∗(S nX)と自然に同型である。



そこで、可換な C*環に対する KS接合積 S
KS
n C0(X)がどのようなエタール亜群で実現されるか

が気になる*4。次の KS接合積と接合積の関係を与える定理は、これに対する手がかりになる。

定理 4.10. ([KS04]) αを C*環 Aへの逆半群 S の作用とする。このとき E(S)
KS
n Aは自然に S か

らの作用を持ち、それに関する接合積 S n (E(S)
KS
n A)は自然に S

KS
n Aと同型である。

従って、S
KS
n C0(X)は S n (E(S)

KS
n C0(X))と同型である。ここで、C*環 E(S)

KS
n C0(X)は、

KS接合積の構成から可換な C*環であることが分かる。つまり、定理 1.6より次が言える。XKS を
可換 C*環 Sp(E(S)

KS
n C0(X))のスペクトラムとすると、次が成り立つ。

系 4.11. 　 S
KS
n C0(X) ∼= C∗(S nXKS)

そこで、このスペクトラムXKS の具体的な計算と、変換亜群 S nXKS に関する著者の結果を、次
に紹介する。

5 主定理
本節では θを逆半群 S の局所コンパクト Hausdorff空間X への作用とする。このとき例 4.3のよ
うにして、C*環 C0(X)に S からの作用が入る。このとき、KS接合積 E(S)

KS
n C0(X)のスペクト

ラム XKS は次のように計算できる。

定理 5.1. (S.) 直積位相空間∏
e∈E(S) X̃e の元 τ で、次の条件を満たすもの全体を XKS とする。

(i) ある冪等元 e ∈ E(S)に対して τ(e) 6= ∞e が成り立つ*5。
(ii) e1 ≤ e2 かつ τ(e1) 6= ∞e1 なる冪等元 e1, e2 に対して τ(e2) = τ(e1)が成り立つ。
(iii) τ(e1) 6= ∞e1 かつ τ(e2) 6= ∞e2 を満たす冪等元 e1, e2 に対して τ(e1e2) 6= ∞e1e2 が成り立つ。

このとき、XKS に直積位相空間からの相対位相を入れた空間は、KS接合積 E(S)
KS
n C0(X)のスペ

クトラムと同相である。

証明 : 証明の簡単な方針を説明する。
0 でない*準同型 χ : E(S)

KS
n C0(X) → C を固定する。各 e ∈ E(S) に対して対応

χ|C0(Xe) : C0(Xe) 3 f 7→ χ(δe f) ∈ C が C0(Xe) 上の*準同型を定める。これが 0 なら
τχ(e) = ∞e とし、0でないなら注意 1.7よりただ一つの x ∈ Xe により χ|C0(Xe) = evx と書けるの
で、τχ(e) = xとする。このとき、τχ ∈

∏
e∈E(S) X̃e は上の 3つの条件を満たす。つまり、τχ ∈ XKS

である。
逆に、τ ∈ XKS に対しては、χτ (δe f) = f(τ(e))を満たす写像 χτ : E(S)

KS
n C0(X) → Cが一意

に存在し、これが 0でない*準同型を与える。このとき対応

Sp(E(S)
KS
n C0(X)) 3 χ 7→ τχ ∈ XKS, XKS 3 τ 7→ χτ ∈ Sp(E(S)

KS
n C0(X))

はそれぞれ連続であり、互いに逆写像をなす。

*4 X が一点の場合は S
KS
n C0(X) = C∗(S)であり、この問題は Patersonの定理 C∗(S) ∼= C∗(S n Ê(S))に当たる。

*5 ここで、冪等元 e ∈ E(S)に対応する一点コンパクト化 X̃e の無限遠点を∞e としている。



また、定理 4.10より、C*環 E(S)
KS
n C0(X) ∼= C0(X

KS)に自然な S の作用が入るが、例 4.3か
ら誘導される XKS への S の作用は次のようにして具体的に表せる。

定理 5.2. (S.) 各 e ∈ E(S)に対してXKS
e = {τ ∈ XKS | τ(e) 6= ∞e}とすると、これはXKS の開

集合である。各 s ∈ S に対して写像 θKS
s : XKS

s∗s → XKS
ss∗ を

θKS
s (τ)(e) =

{
θes(τ(s

∗es)) if τ(s∗es) 6= ∞s∗es

∞e otherwise

で定めると、これは well-definedな同相写像である。これらの対応により S は XKS に作用する。

注意 5.3. X の各元 x ∈ X に対して、τx ∈
∏

e∈E(S) X̃e を、x ∈ Xe なら τx(e) = xとし x /∈ Xe な
ら τx(e) = ∞e とする。すると、τx ∈ XKS であり、ιX : X 3 x 7→ τx ∈ XKS は S 同変な像への同
相写像になる。特に、XKS への S の作用は、X への作用を拡張する形になっている。

このようにして、KS接合積 S
KS
n C0(X)を実現する変換亜群 S nXKS(これを KS亜群と呼ぶこ

とにする)が計算できた訳であるが、この KS亜群の構成は、逆半群 S に対する普遍亜群 S n Ê(S)

の構成を、逆半群作用へと一般化するものである。

観察 5.4. もしX が一点空間であり、そこに逆半群 S からの恒等作用を考えた場合、上の構成XKS

は例 2.9の Ê(S)と自然に同相である。さらにこの同相のもとで、上の定理から XKS に入る S 作用
と例 2.9で説明した Ê(S)への S 作用は一致する。よって特に、S nXKS ∼= S n Ê(S)である。

逆半群に付随する普遍亜群に対しては、その普遍性がよく調べられている (例えば、[Pat99, Ste10,
ES17]などを参照)。ここで構成した、逆半群作用に付随する KS亜群は、次のような普遍性を持つ。

定理 5.5. (S.) θ, σ を逆半群 S の局所コンパクト Hausdorff空間 X,Y への作用とし、f : Y → X

を S 同変な写像とする。このとき fKS : Y KS → XKS を fKS(τ)(e) = f̃ |Ye(τ(e))で定めると、これ
は well-defined かつ S 同変な写像である。さらに、合成 ρ := fKS ◦ ιY は d-bijective*6な亜群準同
型 ρ̃ : S n Y → S nXKS を誘導する。この写像について、次が成り立つ。

• f が連続で各 Ye が閉ならば、ρ̃は連続である。
• f が Borelで、S が可算かつ X が第 2可算ならば、ρ̃は Borelである。

逆半群の性質が、付随する普遍亜群 S n Ê(S)にどう影響するのかという問題は、逆半群論におけ
る主要なテーマの一つである。一例として、逆半群に付随する普遍亜群の Hausdorff性に関しては、
Steinbergが特徴づけを行なった ([Ste10])。次の定理は、その KS亜群への部分的な一般化である。

定理 5.6. (S.) θ を逆半群 S の局所コンパクト Hausdorff空間 X への作用で、各 e ∈ E(S)に対し
て Xe が X でコンパクトになるようなものとする。このとき S nXKS が Hausdorffになるための
必要十分条件は、{s ∈ S | Xs∗s 6= ∅}が S の自然な順序に関して弱半束*7になることである。

*6 d-bijectiveな亜群準同型 f : H → Gが与えられると、Gの性質が H に遺伝することがあり、その意味でこの概念は
重要である。例えば、f が d-bijectiveかつ Borelな亜群準同型なら、Gの従順性は H の従順性を導く ([ES17])。

*7 順序集合 (P,≤)が弱半束であるとは、任意の a, b ∈ P に対して有限集合 F ⊂ {a}↓∩{b}↓ が存在して、{a}↓∩{b}↓ ⊂
F ↓ を満たすことである。ここで部分集合 H ⊂ P に対して、H↓ = {d ∈ P | ∃c ∈ H d ≤ c}である。



注意 5.7. 一般の逆半群作用に付随する KS亜群の Hausdorff性に対しては、弱半束に関する上の条
件は必要条件でも十分条件でもなく、特徴づけを探すのは難しそうである。

本稿では紙面の都合上、普遍性により抽象的に定義された C*環のみ扱ったが、具体的な表現から
作られる被約亜群 C*環 C∗

r (G)と被約 (KS)接合積 S n
r
A (S

KS
n
r
A)も重要である*8。可換な C*環の

被約接合積に関しても、命題 4.9の類似 S n
r
C0(X) ∼= C∗

r (S nX)が知られている ([BE12])。
すると、KS接合積 S

KS
n
r
C0(X)についても気になるのだが、著者は次の同型を得た。

定理 5.8. (S.) S
KS
n
r
C0(X) ∼= C∗

r (S nXKS)

系 4.11とこの同型は、逆半群・亜群・C*環の深い関係を示す Patersonの定理

C∗(S) ∼= C∗(S n Ê(S)), C∗
r (S)

∼= C∗
r (S n Ê(S))

の、逆半群作用への一般化を与えている。
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*8 例えば、*代数 Aとその普遍包絡 C*環 BA に対して、Aから BA への自然な*準同型が単射かどうかが気になる。こ
れには、具体的な Aの忠実表現を見つけることが必要十分であり (注意 1.11)、左正則表現と呼ばれる自然な忠実表現
から作られる C*環が上の被約版の C*環である。
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