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概要
極小曲面は、Weierstrass の表現公式と呼ばれる公式によって複素解析と密接に繋がってい
る。近年、Alarcón, Forstnerič, López によって複素解析の近似定理が極小曲面論に拡張され
た。 Weierstrass型の表現公式をもつ曲面は、極小曲面以外にも存在し、そうした曲面に対して
も近似定理を示すことができる。本講演では、極大面と呼ばれる、特異点をもつ曲面に対する近
似定理を紹介する。

1 導入
複素解析には, Rungeの近似定理といった, 関数の近似に関する定理が存在する. こうした近似定

理では, Rungeという性質を仮定する.

定義 1.1. Riemann面M の閉集合 S は, 補集合M \ S が相対コンパクトな連結成分をもたないと
き, Rungeであると言われる.

複素解析の近似定理により, 開 Riemann 面M のコンパクトかつ Runge な部分集合上の関数は,

M 全体で定義された正則関数によって一様近似できることがわかる.

事実 1.2 (Rungeの近似定理). M を開 Riemann面, S ⊂ M をコンパクトかつ Rungeな部分集合,

f を S のある開近傍上で正則な関数とする. 任意の ε > 0に対し, ある正則関数 F : M → C が存在
して, ∥F − f∥S := supp∈S |F (p)− f(p)| < εをみたす.

事実 1.3 (Mergelyanの定理). M を開 Riemann面, S ⊂ M をコンパクトかつ Rungeな部分集合,

f : S → C は連続かつ K の内部 S̊ 上で正則な関数とする. 任意の ε > 0 に対し, ある正則関数
F : M → C が存在して, ∥F − f∥S < εをみたす.

これらの近似定理は, Stein 多様体を定義域とする関数や, 岡多様体に値を取る写像へと一般化さ
れており, 岡理論とも深い関係がある ([2]). その応用の一つとして, Alarcón, Forstnerič, López は,

Weierstrassの表現公式を用いて極小曲面に対する近似定理を示した. この定理により, 開 Riemann

面M のコンパクトかつ Rungeな部分集合を定義域とする極小曲面 (一般化された極小曲面)は, M

全体で定義された極小曲面によって一様近似できることがわかる.
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事実 1.4 ([1, Proposition 3.3.2]). M を開 Riemann 面, S ⊂ M を連結な admissible set (所定の
条件をみたすコンパクト集合)で, 包含写像 S ↪→ M が同型 H1(S,Z) ∼= H1(M,Z)を誘導するもの
(特に, S は Runge)とする. このとき, S を定義域とする一般化された極小曲面 (x, fθ)と, ε > 0に
対して, 像が超平面に含まれないような極小曲面 X : M → Rn が存在して, ∥X−x∥S < εをみたす.

Alarcón らの手法は, Weierstrass の表現公式から得られる正則写像に対して複素解析の近似定理
を適用するというものである. 一方で, 極小曲面以外にも, Weierstrass型の表現公式をもつ曲面は存
在する. 本稿では, そのような曲面の中でも特に「極大面」と呼ばれる, 特異点をもつ曲面を取り挙げ
る. 極大面に対する近似定理を紹介するとともに, カスプ辺などの特異点をもつ曲面に対し, その特異
点の型を保ったままの近似が可能であることについても論じる.

2 準備
2.1 極大面
標準的な座標 (x0, x1, x2)を備えたアファイン空間R3 に計量

⟨ , ⟩ := −(dx0)2 + (dx1)2 + (dx2)2

を入れた空間を 3 次元 Minkowski 空間とよび, L3 で表す. 2 次元多様体M から L3 へのはめ込み
f : M → L3 は, 誘導計量

ds2 := f∗⟨ , ⟩ = ⟨df, df⟩

が正定値のとき, 空間的であると言われる. 以下で定義される写像H : M → L3 を, 空間的はめ込み
f の平均曲率ベクトル場と呼ぶ:

H := −1

2
∆ds2f.

ただし, ∆ds2 は ds2 に関するラプラシアンである. さらに, 平均曲率ベクトル場H が恒等的に 0と
なるとき, f を極大曲面と呼ぶ.

ユークリッド空間内の極小曲面とは異なり, 完備な極大曲面は平面に限るという, 強い結果が知ら
れている. そのため, より広いクラスの曲面を扱うために, 特異点を許容する極大曲面が定義された.

定義 2.1 ([5, Definitions 2.1]). M を向きづけられた 2次元多様体, f : M → L3 をなめらかな写像
とする. 稠密な開集合Wf ⊂ M が存在して, f |Wf

が極大曲面となるとき, f を極大写像と呼ぶ. ま
た, ds2 = f∗⟨ , ⟩が退化する点 p ∈ M \Wf を f の特異点と呼ぶ.

定義 2.2 ([5, Definitions 2.2]). M を向きづけられた 2次元多様体とし, f : M → L3 を極大写像と
する. 以下をみたす特異点 p ∈ M \Wf を許容的な特異点と呼ぶ.

(1) pの開近傍 U と C1 級関数 β : U ∩Wf → (0,∞)を適切に選べば, U ∩Wf 上のリーマン計量
βds2 は, U 上の C1 級リーマン計量に拡張できる.

(2) df(p) ̸= 0.

全ての特異点が許容的である極大写像 f を極大面と呼ぶ.



極大面 f : M → L3 に対し, ds2|Wf
が共形計量となるようなM の複素構造の存在が知られている

([5, Proposition 2.3]). そこで以下では, この複素構造により, M を Riemann 面とみなす. ユーク
リッド空間内の極小曲面と同様に, 極大面も Riemann面上の有理型関数と正則 1-形式による表現公
式をもつ.

事実 2.3 (Weierstrass型の表現公式, [5, Theorem 2.6]). M を連結なRiemann面とし, f : M → L3

を極大面とする. このとき, 以下をみたす有理型関数 g と正則 1-形式 ω が存在する:

f(z) = f(z0) + Re

∫ z

z0

(
−2g, 1 + g2, i(1− g2)

)
ω.

ただし, z0 ∈ M である.

逆に, 有利型関数 g と正則 1-形式 ω を, (1 + |g|2)2ωω がM 上のリーマン計量となるように取り,

1− |g|2 は恒等的に 0とならないとする. もし, 全ての閉曲線 C ⊂ M に対して

Re

∫
C

(
−2g, 1 + g2, i(1− g2)

)
ω = 0

が成り立つなら, 以下で定義される f : M → L3 は極大面である:

f(z) := Re

∫ z

z0

(
−2g, 1 + g2, i(1− g2)

)
ω.

ただし, z0 ∈ M である. f の特異点集合は {p ∈ M : |g(p)| = 1}で与えられる.

定義 2.4. 事実 2.3によって得られる組 (g, ω)を極大面 f のWeierstrassデータと呼ぶ.

曲面の特異点は A-同値性に基づいて分類されており, 極大面に現れる特異点の種類はWeierstrass

データによって判定することができる.

定義 2.5 ([4, Examples 2.5.2, 2.5.3, and 2.5.5]). j = 1, 2に対し, fj : Uj → R3 を pj ∈ R2 の開
近傍 Uj 上で定義された滑らかな写像とする. 十分小さく取り直した U1 と U2 の間の微分同相写像
ϕ : U2 → U1 で ϕ(p2) = p1 をみたすものと, fj(pj) ∈ R3 の十分小さな開近傍 Ωj (j = 1, 2) の間の
微分同相写像 Φ : Ω2 → Ω1 が存在して,

Φ ◦ f2 = f1 ◦ ϕ

が成り立つとき, f2 は p2 において f1 に A-同値であるという.

• p1 = (0, 0)かつ f1(u, v) = fC(u, v) := (u2, u3, v)とする (図 1). f2 が p2 においてこの f1 と
A-同値であるとき, f2 は p2 においてカスプ辺をもつという.

• p1 = (0, 0)かつ f1(u, v) = fS(u, v) := (u,−4v3 − 2uv, 3v4 + uv2)とする (図 2). f2 が p2 に
おいてこの f1 と A-同値であるとき, f2 は p2 においてツバメの尾をもつという.

• p1 = (0, 0)かつ f1(u, v) = fCR := (u, uv3, v2)とする (図 3). f2 が p2 においてこの f1 と A-

同値であるとき, f2 は p2 においてカスプ状交叉帽子をもつという.



図 1 fC の像 図 2 fS の像 図 3 fCR の像

事実 2.6 ([3, Theorem 2.4], [5, Theorem 3.1]). U を複素平面 C の領域, z を C の標準座標,

f : U → L3 をWeierstrassデータが (g, ω = ω̂dz)である極大面とする. このとき, 以下が成立する.

(1) f が p ∈ U においてカスプ辺をもつための必要十分条件は,

Re

(
g′

g2ω̂

)
p

̸= 0 かつ Im

(
g′

g2ω̂

)
p

̸= 0.

ただし, ′ で z に関する微分を表す.

(2) f が p ∈ U においてツバメの尾をもつための必要十分条件は,(
g′

g2ω̂

)
p

∈ R \ {0} かつ Re

{
g

g′

(
g′

g2ω̂

)′
}

p

̸= 0

(3) f が p ∈ U においてカスプ状交叉帽子をもつための必要十分条件は,(
g′

g2ω̂

)
p

∈ iR \ {0} かつ Im

{
g

g′

(
g′

g2ω̂

)′
}

p

̸= 0

2.2 一般化された極大面
Alarcón, Forstnerič, López は, 所定の条件をみたすコンパクト集合上で定義された極小曲面を

「一般化された極小曲面」と呼び, これに対して近似定理を示した (事実 1.4). これにならい, 極大面
の近似定理を示すための準備として, 一般化された極大面を定義する. そのためにまず, 定義域として
許容されるコンパクト集合について述べる.

定義 2.7 ([1, Definition 1.12.9]). M を Riemann面とする. コンパクト集合 S = K ∪E ⊂ M が以
下をみたすとき, admissible setと呼ぶ (図 4):

• K は区分的に C1 級の境界を持つ有限個のコンパクト領域の非交和,

• E は有限個の滑らかな弧と単純閉曲線の非交和,

• E に含まれる弧がK と交わるならば, 交点は弧の端点であり, 横断的に交わる.

事実 2.3により, 極大面の各成分は調和関数となる. したがって, コンパクト Riemann面を定義域
とする極大面は存在しない. そこで以下では, 極大面の定義域として開 Riemann面のみを考える. 開
Riemann面上には, 至る所で 0にならない正則 1-形式 θ が存在することが知られている. θ と複素 2



図 4 admissible set

次元多様体
B2

∗ := {(z0, z2, z3) ∈ C3 \ {0} : −(z0)2 + (z1)2 + (z2)2 = 0}

を用いて, 極大面のWeierstrass型表現公式 (事実 2.3)を書き換えることができる.

命題 2.8 (Weierstrass型表現公式の書き換え). M を開リーマン面, θ を至る所で 0にならない正則
1-形式, f : M → L3 を滑らかな写像とする. このとき, f が極大面であるための必要十分条件は, 以
下をみたす正則写像 ϕ = (ϕ0, ϕ1, ϕ2) : M → B2

∗ ⊂ C3 が存在することである.

• −|ϕ0|2 + |ϕ1|2 + |ϕ2|2 は恒等的に 0でない.

• 全ての閉曲線 C ⊂ M に対し
Re

∫
C

ϕθ = 0.

• p0 ∈ M を任意に固定すると, p0 を含むM の連結成分上で

f(p) = f(p0) + Re

∫ p

p0

ϕθ.

命題 2.8を踏まえ, 一般化された極大面を以下のように定義する.

定義 2.9. M を開 Riemann 面, θ を至る所で 0 にならない正則 1-形式, S = K ∪ E ⊂ M を
admissible set とし, r ∈ Z>0 ∪ {∞} とする. Cr 級写像 f : S → L3 と, S の内部 S̊ = K̊ への制
限が正則な Cr−1 級写像 ϕ : S → B2

∗ が以下をみたすとき, (f, ϕθ) を Cr 級一般化された極大面と
呼ぶ.

• 全ての閉曲線 C ⊂ S に対し
Re

∫
C

ϕθ = 0.

• p0 ∈ S を任意に固定すると, p0 を含む S の連結成分上で

f(p) = f(p0) + Re

∫ p

p0

ϕθ.

注意 2.10. (f, ϕθ) を Cr 級一般化された極大面とし, ϕ = (ϕ0, ϕ1, ϕ2) とおく. もし −|ϕ0(p)|2 +
|ϕ1(p)|2 + |ϕ2(p)|2 ̸= 0をみたす p ∈ S̊ が存在するなら, 命題 2.8により, f の S̊ への制限 f |S̊ は極
大面である.



3 主定理
極大面の近似定理を示すためには, 複素解析におけるいくつかの定理が必要となる. これらの定理

を用いて, 一般化された極大面 (f, ϕθ)の ϕを近似することで, 所望の結果が導かれる.

まずは, 以下の通り記号を設定する.

記号 3.1. M を Riemann 面, U ⊂ M を開集合, S ⊂ M を部分集合, X を複素多様体とし,

r ∈ Z≥0 ∪ {∞}とする.

O(U,X) := {f : U → X : 正則写像 },
Ar(S,X) := {f : S → X : f は Cr 級写像で, f |S̊ は正則写像 }.

前ページで定義した複素 2次元多様体B2
∗ に値を取る写像に関して, 以下が成り立つ.

定理 3.2. M を開 Riemann面, S ⊂ M をコンパクトかつ Rungeな部分集合とし, r ∈ Z≥0 ∪ {∞}
とする. このとき, 全ての ϕ ∈ Ar(S,B2

∗)は, M 上連続に拡張することができる. つまり, ある連続
関数 ϕ̃ : M → B2

∗ が存在して, ϕ̃|S = ϕが成り立つ.

[1, Example 1.13.8] や [2, Proposition 5.6.22] などから, B2
∗ は岡多様体であることが示される.

この事実に加え, Rungeの近似定理 (事実 1.2)の岡多様体に値を取る写像への一般化 ([1, Theorem

1.13.3])や定理 3.2などを用いることで, 以下の近似定理を得る.

定理 3.3. M を開 Riemann面, θを至る所で 0にならないM 上の正則 1-形式, S ⊂ M を Rungeな
admissible set, A ⊂ S を有限集合とし, s ∈ Z>0, r ∈ Z≥0 ∪ {∞}とする. さらに, C = {C1, ..., Cl}
を S 内の区分的に滑らかな単純閉曲線と弧からなる集合とし, 各 Ci ∈ C は ∪

j ̸=i Cj と交わらない弧
Ii を含み,

∪l
i=1 Ci はM の Rungeな部分集合であるとする. このとき, 任意の ϕ ∈ Ar(S,B2

∗)と任
意の ε > 0に対し, 以下をみたす ϕ̃ ∈ O(M,B2

∗)が存在する.

(1) ∥ϕ̃− ϕ∥S < ε.

(2) 各 Ci ∈ C に対し, ∫
Ci

ϕ̃θ =

∫
Ci

ϕθ.

(3) ϕ̃(M) ⊂ C3 によって生成される複素線型空間は C3 に等しい.

(4) ϕ̃|A = ϕ|A であり, ϕ̃− ϕは各点 p ∈ A ∩ S̊ で s次の零点をもつ.

定理 3.3と特異点の判定条件 (事実 2.6)を用いると, 極大面の近似定理が得られる.

定理 3.4. M を開 Riemann面, θ を至る所で 0にならないM 上の正則 1-形式, A ⊂ S を有限集合
とし, s ∈ Z>0 とする. さらに, S ⊂ M を連結かつ Rungeな admissible setで包含写像 S ↪→ M が
同型 H1(S,Z) ∼= H1(M,Z)を誘導するもの (特に, S は Runge)とする. このとき, S を定義域とす
る一般化された極大面 (f, ϕθ)と, ε > 0に対して, 以下をみたす極大面 f̃ : M → L3 が存在する.

(1) ∥f̃ − f∥ < ε.



(2) 全ての閉曲線 C ⊂ S に対し,

Im

∫
C

df̃ = Im

∫
C

df

が成り立つ (つまり, f̃ の fluxは f の fluxと等しい).

(3) f̃ |A = f |A であり, f̃ と f は各点 p ∈ A ∩ S̊ で s次の接触をする.

さらに, もし f |S̊ が p ∈ S̊ において, カスプ辺 (resp. ツバメの尾, カスプ状交叉帽子)をもつならば,

f̃ も pにおいてカスプ辺 (resp. ツバメの尾, カスプ状交叉帽子)をもつように選ぶことができる.

Mergelyanの定理 (事実 1.3)が A0(S,C)に属する関数に対する近似定理であったことから, 定理
3.4 は Mergelyan 型の近似定理であると言える. また, 極小曲面は特異点をもたないため, Alarcón,

Forstnerič, Lópezによる近似定理には特異点に関する記述は含まれない. この意味で, 定理 3.4は極
大面に特有の結果を含んだものである.
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