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概要
本研究の対象は，半空間において連続の式 ∇ · u = 0 の近似 ∇ · u = ε∆p− ε∇ · f を導入し
た Stokes 方程式のレゾルベント問題である．既存手法に基づいて近似問題の解表示を行い，従
来と同様の評価の成立を検証することを目的とする．レゾルベント解析に基づく線形理論の拡張
や近似モデルを用いた数値解析や境界層問題への応用につながると期待される．

1 導入
本講演は，久保隆徹先生（お茶の水女子大学）との共同研究に基づく．
穏やかな流体の運動を記述する Stokes方程式は流体力学および数理流体力学における基本的な方

程式である．特に Stokes方程式の解の性質を理解するためにはそのレゾルベント問題の解析が不可
欠である．Stokesレゾルベント問題に対する解の評価は，Navier-Stokes方程式の時間発展問題にお
ける解の存在・一意性，および正則性の議論の基礎を成し，重要な役割を果たしている．

半空間 Rn
+ における Stokesレゾルベント問題において，柴田・久保 [1]ではフーリエ解析を用い

た解表示の導出と解の Lq 評価が成り立つことを示している．空間変数 x = (x1, · · · , xn) ∈ Rn，時
間変数 t > 0とした半空間 Rn

+ における Stokesレゾルベント問題は，未知関数として流体の速度場
u = u(x, t)，圧力 p = p(x, t)，定数として粘性係数 ν > 0，既知関数として外力 f = f(x, t)，境界
値 g = g(x, t)を与えると以下のように表せる．

Stokes方程式の一般化されたレゾルベント問題
運動方程式： λu− ν∆u+∇p = f (x ∈ Rn

+),

連続の式： ∇ · u = 0 (x ∈ Rn
+),

境界条件： u|xn=0 = g|xn=0

レゾルベントパラメータ λ ∈ Cの領域 Σσ,γ0
は，σ ∈ (0, π/2), γ0 > 0 を定数とし，以下のように定

義している．

Σσ,γ0
:= {λ ∈ C \ {0} | |arg λ| < π − σ, |λ| ≥ γ0} .
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負の実軸近傍を除外し，λ が −ν|ξ|2 を取らないように設定している．
柴田・久保 [1]では，上記の問題が一意解をもち，さらに以下の定理を満たすことが示されている．

定理 1.1. 1 < q < ∞, 0 < σ < π
2 とする．このとき，任意の λ ∈ {λ ∈ C\{0} | |arg λ| < π − σ} ,

f ∈ Lq(Rn
+), g = (g1, · · · , gn−1, 0) ∈ W 2

q (Rn
+) に対し，一般化されたレゾルベント問題は以下の一

意解をもつ．

u(x) ∈ W 2
q (Rn

+), p ∈ Ŵ 1
q (Rn

+)

ただし Ŵ 1
q (Rn

+) は以下のようにおいた．

Ŵ 1
q (Rn

+) = {p ∈ Lq,loc(Rn
+) | ∇p ∈ Lq(Rn

+)}

このとき，n, q, σ に依存する定数 C が存在し，次のレゾルベント評価が成り立つ：∥∥∥(|λ|u, |λ| 12 ∇u,∇2u,∇p
)∥∥∥

Lq

≤ C
∥∥∥(f, |λ| g, |λ| 12 ∇g,∇2g

)∥∥∥
Lq

一方で，このような Stokes 方程式に基づく流体現象の数値計算を行う際には，非圧縮条件
∇ · u = 0 を厳密に課すことが大きな計算負荷となる．この問題を回避するため，従来よりペナル
ティ法 (∇ · u = −εp) や圧力安定化法 (∇ · u = ε∆p)などの近似手法が広く用いられてきた．近似
手法については様々なアプローチが提案されており，基礎的な理論や数値解析については大塚・高石
[2]，Prohl [3] にまとめられている．しかし，これらの近似を導入した際の数学的な誤差評価，特に
全空間 Rn や半空間 Rn

+ といった非有界領域において，一般の Lq 空間 (1 < q < ∞) の枠組みで解
析された例は極めて限られている．

例えば，航空機の翼周辺の流体運動のように，境界の影響を無視できない現象を扱う場合には，半
空間領域 Rn

+ における精密な誤差評価が不可欠である．しかし，先行研究の多くは有界領域に限定さ
れているか，あるいは q = 2 の Hilbert 空間における解析に留まっており，境界を伴う一般の Lq 空
間 (1 < q < ∞) でのフーリエ解析に基づく解構造や誤差挙動については十分に解明されていない．

そこで本研究では，新たな近似として ∇ · u = ε∆p− ε∇ · f を導入する．導出過程は以下である．

1. 両辺に発散 ∇· をかける
• λu− ν∆u+∇p = f の両辺に発散 ∇· をかけると，
λ(∇ · u)− ν∆(∇ · u) + ∆p = ∇ · f

2. ∇ · u = 0 を代入
• 非圧縮条件である連続の式 ∇ · u = 0 を上記の式に代入して ∆p = ∇ · f が成立．

3. 新たな近似法 ∇ · u = ε∆p− ε∇ · f の生成
• ∆p−∇ · f = 0 を連続の式 ∇ · u = 0 に利用．
• ε を使用して数値計算上での誤差を許容．

本研究の目的は，この近似条件の下で定式化される近似レゾルベント問題に対して，柴田・久保 [1]

の手法を基礎として解表示を構成し，その解が Stokesレゾルベント問題と同様に解の Lq 評価を満



たすかを明らかにすることである．さらに，Stokes レゾルベント問題の解と近似レゾルベント問題
の解の差を解析し，ε → 0の極限においてその差が適切な意味で 0 に収束することを示すことを最
終的な目標とする．すなわち以下の命題を示すことである．

命題 1.2. 柴田・久保 [1]と同じ仮定をする．このとき，一般化された Stokesレゾルベント問題の解
(u, p)と新たに導入した近似レゾルベント問題の解 (u⋆, p⋆)に対して，n, q, ε に依存しない定数 C が
存在して以下が成り立つ．

‖u− u⋆‖Lq
≤ Ch1(ε) ‖f‖Lq

, ‖p− p⋆‖Lq
≤ Ch2(ε) ‖f‖Lq

ただし，関数 h1(ε), h2(ε)は，ε → 0 の時に 0に収束する．

この命題を示すため，まずは近似レゾルベント問題の解表示が，Stokesレゾルベント問題の解と同
じように柴田・久保 [1]のレゾルベント評価を満たすことを証明しなければならない．本論文では，
誤差評価の理論的保証の前提である近似レゾルベント問題の解表示が柴田・久保 [1]のレゾルベント
評価の条件を満たすことの明示を目指す．

本研究の成果はレゾルベント解析に基づく線形理論の拡張に寄与するとともに，将来的にこの近似
モデルを用いた数値解析や境界層問題への応用にもつながると期待される．

2 主定理
本研究の目標は，以下の近似レゾルベント問題において既存の Stokesレゾルベント問題が満たす

評価と同様の Lq 評価が成立することを示すことである．

近似レゾルベント問題
運動方程式： λu− ν∆u+∇p = f (x ∈ Rn

+),

連続の式： ∇ · u = ε∆p− ε∇ · f (x ∈ Rn
+),

境界条件： uj |xn=0 = gj |xn=0 (j = 1, . . . , n− 1), un|xn=0 = 0.

本研究では，フーリエ解析を用いて，近似レゾルベント問題に対する解の表示を求め，その解の
表示を基に，近似レゾルベント問題の解が柴田・久保 [1] と同様の次の Lq 評価を証明することを目
指す．

定理 2.1. 柴田・久保 [1]と同じ仮定をする．このとき，一般化されたレゾルベント問題の解 (u, p)

に対して，n, q, σ に依存する定数 C が存在して，次のレゾルベント評価が成り立つ：∥∥∥(|λ|u, |λ| 12 ∇u,∇2u
)∥∥∥

Lq

≤ C
∥∥∥(f, |λ| g, |λ| 12 ∇g,∇2g

)∥∥∥
Lq

証明は柴田・久保 [1] によって与えられた半空間における Stokesレゾルベント問題の解析手法に
基づいて行う．まず， x′ = (x1, . . . , xn−1) に関してフーリエ変換を施し，近似レゾルベント問題を
xn に関する常微分方程式系へと帰着させる．次に，得られた方程式系を解くことにより，近似レゾ
ルベント問題の解表示を明示する．



半空間 Rn
+ での Stokesレゾルベント問題の解表示の手順は以下である：

1. 全空間問題の導入
• f を全空間に拡張した F を用いて λU − ν∆U +∇Θ = F, ∇ · U = 0 (in Rn)を計算．
• フーリエ変換・逆変換により解表示 (U,Θ)を得る．

2. 補正方程式の導入
• 半空間の解 (u, p) と全空間の解 (U,Θ) の差を v = u−U, θ = p−Θ

(
in Rn

+

) とおき，
補正方程式の解表示 (v, θ) を導く．

ステップ 1の全空間問題に関して，Stokesレゾルベント問題においては，柴田・久保 [1]で導出し
ている．f : x ∈ Rn 7→ f(x) ∈ X に対しそのフーリエ変換・逆変換の定義は以下に示す．

定義 2.2. x = (x1, · · · , xn) ∈ Rn, ξ = (ξ1, · · · , ξn) ∈ Rn, x · ξ =
∑n

j=1 xjξj とする．このとき，
フーリエ変換・フーリエ逆変換は以下のように定義される．

フーリエ変換： F [f ](ξ) =

∫
Rn

e−ix·ξf(x) dx

フーリエ逆変換： F−1[f ](ξ) =
1

(2π)n

∫
Rn

eix·ξf(x) dx

これにより全空間問題の解 (U,Θ) は以下のように表示できる：

Uj =

n∑
k=1

F−1
[
(λ+ νr2)−1Pj,k(ξ)F [Fk(ξ)]

]
, Un|xn=0 = 0,

Θ = QRnF = −i

n∑
k=1

F−1
[
ξk |ξ|−2 F [Fk(ξ)]

]
.

ここで，Pj,k は以下の Riesz 作用素に基づく．

定義 2.3 (Riesz 作用素). Riesz 作用素 Rj (j = 1, . . . , n) は次式で定義される．

[Rjφ](x) =
1

(2π)n

∫
Rn

eix·ξ ξj |ξ|−1
φ̂(ξ) dξ = F−1

[
ξj |ξ|−1 F [φ]

]
(x). (2.26)

1 < p < ∞ のとき，Rj は Fourier multiplier theorem により Lq(Rn) 上の有界作用素である．

Rj を上記のように定義すると，vj = uj −
∑n

k=1 RjRkuk = Pju となることから，
PRnu := (P1u, . . . , Pnu), QRnu := θ とおくと，n, q にのみ依存する定数 C が存在して，
次の Rn 上の Helmholtz 分解が成立する：

u = PRnu+∇QRnu, ∇ · u = 0, ‖PRnu‖Lq
+ ‖∇QRnu‖Lq

≤ C ‖u‖Lq
.

ステップ 2の補正方程式は hj = gj − Uj と置くことによって，以下のように表せる．

λv − ν∆v +∇Θ = 0, ∇ · v = 0 (x ∈ Rn
+),

vj |xn=0 = hj |xn=0, vn|xn=0 = 0.



フーリエ変換等を行って，以下の解表示を得る．

Stokesレゾルベント問題の解表示

vj(x) =

∫ ∞

0

F−1
ξ′

[
E
(
ωλ√
ν

)(
ωλ√
ν
−Dyn

)
h̃j(ξ

′, yn)

]
(x′) dyn

+

n−1∑
k=1

{∫ ∞

0

F−1
ξ′

[
rξ̃j ξ̃kE

(
ωλ√
ν

)
h̃k(ξ

′, yn)

]
(x′) dyn

+

∫ ∞

0

F−1
ξ′

[
rξ̃j ξ̃kM(r, ωλ, xn + yn) (r −Dyn) h̃k(ξ

′, yn)
]
(x′) dyn

}
,

vn(x) =
n−1∑
k=1

{∫ ∞

0

F−1
ξ′

[
rξ̃kE

(
ωλ√
ν

)
h̃k(ξ

′, yn)

]
(x′) dyn

+

∫ ∞

0

F−1
ξ′

[
rξ̃kM(r, ωλ, xn + yn) (r −Dyn

) h̃k(ξ
′, yn)

]
(x′) dyn

}
,

θ(x) = −i

n−1∑
k=1

∫ ∞

0

F−1
ξ′

[
(r + ωλ)ξ̃kE (r) (r −Dyn

) h̃k(ξ
′, yn)

]
(x′) dyn.

ここで関数M(r, ωλ, xn)は以下のように定めている．

M(r, ωλ, xn) =

√
ν

ωλ −
√
νr

(e
− ωλ√

ν
xn − e−rxn).

　今回新たに導入した近似レゾルベント問題においても同様の手順で解表示を導出する．
手順は以下の通りである．

1. 全空間問題の導入
• f を全空間に拡張した F を用いて以下を計算．

λU⋆ − ν∆U⋆ +∇Θ⋆ = F, ∇ · U⋆ − ε∆Θ⋆ = − ε∇ · F (in Rn)

• フーリエ変換により (U⋆,Θ⋆) の解表示を得る．
2. 補正方程式の導入

• Stokes レゾルベント問題の半空間における解 (u, p) と全空間の解 (U⋆,Θ⋆) の差を
v⋆ = u− U⋆, θ⋆ = p−Θ⋆ として，補正方程式の解表示 (v⋆, θ⋆) を導く．

全空間問題の２つの式を xでフーリエ変換すると，(
λ+ ν |ξ|2

)
Û⋆ + iξ Θ̂⋆ = F̂ , (1)

iξ · Û⋆ + ε |ξ|2 Θ̂ = −εiξ · F̂ (2)

式 (1)の両辺に iξ·をかけると
(
λ+ ν |ξ|2

)
iξ · Û⋆ − |ξ|2 Θ̂⋆ = iξ · F̂ となるので，以下のように計

算できる． {
ε
(
λ+ ν |ξ|2

)
+ 1

}(
|ξ|2 Θ̂⋆ + iξ · F̂

)
= 0



∣∣∣ε(λ+ ν |ξ|2
)
+ 1

∣∣∣ > 0より |ξ|2 Θ̂⋆ + iξ · F̂ = 0であり，Θ̂⋆ = − i
|ξ|2 ξ · F̂ なので，元の全空間問題

の２つの式にこれを代入すると以下の解表示が得られる．これは Stokesレゾルベント問題と同様で
あった．

U⋆
j =

n∑
k=1

F−1
[
(λ+ νr2)−1Pj,k(ξ)F [Fk(ξ)]

]
, U⋆

n|xn=0 = 0,

Θ⋆ = QRnF = −i

n∑
k=1

F−1
[
ξk |ξ|−2 F [Fk(ξ)]

]
.

ステップ 2の補正方程式は kj = gj − U⋆
j (j = 1, · · · , n)と置くことにより，以下のように示せる．

λv⋆ − ν∆v⋆ +∇θ = 0 ,∇ · v⋆ − ε∆θ = 0
(
in Rn

+

)
,

v⋆j |xn=0 = kj |xn=0, v⋆n|xn=0 = −U⋆
n|xn=0, ∂xnθ

⋆|xn=0 = 0.

x′ = (x1, · · ·xn−1) についてフーリエ変換を行い，連立方程式を解く．
変換後の解を (ṽ, θ̃) とすると，ṽ の基本解は e−p(ε,ωλ)xn , e−rxn , e−q(ε,ωλ)xn，θ̃ の基本解は
e−rxn , e−q(ε,ωλ)xn となるので，未知関数 α, β, γ, S, T を用いて以下のように表せる．

ṽj = αje
−p(ε,ωλ)xn + βje

−rxn + γje
−q(ε,ωλ)xn ,

ṽn = αne
−p(ε,ωλ)xn + βne

−rxn + γne
−q(ε,ωλ)xn ,

θ̃ = Se−rxn + Te−q(ε,ωλ)xn

これを上記の方程式に代入し，各係数を求め，逆フーリエ変換を行い，以下の解表示を得る．下記の
解表示では，ξ′ = (ξ1, · · · , ξn−1)としている．

近似レゾルベント問題の解表示

v⋆j (x) =

∫ ∞

0

F−1
ξ′

[
E
(
ωλ√
ν

)(
ωλ√
ν
−Dyn

)
k̃j(ξ

′, yn)

]
(x′) dyn

−
n−1∑
k=1

{∫ ∞

0

F−1
ξ′

[
m2(ξ

′, ε, ωλ)rξ̃j ξ̃kE
(
ωλ√
ν

)
k̃k(ξ

′, yn)

]
(x′) dyn

+

∫ ∞

0

F−1
ξ′

[
m2(ξ

′, ε, ωλ)rξ̃j ξ̃kM(r, ωλ, xn + yn) (r −Dyn
) k̃k(ξ

′, yn)
]
(x′) dyn

+

∫ ∞

0

F−1
ξ′

[
n(ξ′, ε, ωλ)rξ̃j ξ̃kE

(
ωλ√
ν

)
k̃k(ξ

′, yn)

]
(x′) dyn

+

∫ ∞

0

F−1
ξ′

[
n(ξ′, ε, ωλ)rξ̃j ξ̃kN (r, ωλ, xn + yn)(q(ε, ωλ)−Dyn

)k̃k(ξ
′, yn)

]
(x′) dyn

}
,



v⋆n(x) = −i

n−1∑
k=1

{∫ ∞

0

F−1
ξ′

[
m′

2(ξ
′, ε, ωλ)rξ̃kE

(
ωλ√
ν

)
k̃k(ξ

′, yn)

]
(x′) dyn

+

∫ ∞

0

F−1
ξ′

[
m′

2(ξ
′, ε, ωλ)rξ̃kM(r, ωλ, xn + yn) (r −Dyn

) k̃k(ξ
′, yn)

]
(x′) dyn

+

∫ ∞

0

F−1
ξ′

[
n′(ξ′, ε, ωλ)rξ̃kE

(
ωλ√
ν

)
k̃k(ξ

′, yn)

]
(x′) dyn

+

∫ ∞

0

F−1
ξ′

[
n′(ξ′, ε, ωλ)rξ̃kN (r, ωλ, xn + yn)(q(ε, ωλ)−Dyn)k̃k(ξ

′, yn)
]
(x′) dyn

}
,

θ⋆(x) = −i

n−1∑
k=1

{∫ ∞

0

F−1
ξ′

[
r − q(ε, ωλ)

p(ε, ωλ)
ξ̃kE (r) (r −Dyn

) k̃k(ξ
′, yn)

]
(x′) dyn

+

∫ ∞

0

F−1
ξ′

[
ℓ(ξ′, ε, ωλ)rξ̃kE(q(ε, ωλ))k̃k(ξ

′, yn)
]
(x′) dyn

+

∫ ∞

0

F−1
ξ′

[
ℓ(ξ′, ε, ωλ)rξ̃kL(r, ωλ, xn + yn) (r −Dyn

) k̃k(ξ
′, yn)

]
(x′) dyn

}
.

関数M(r, ωλ, xn)は Stokesレゾルベント問題の解表示に用いたものと同義である．そのほか新た
に定めた関数は以下の通りである．

q(ε, ωλ) =

√
εωλ

2 + 1

εν
,

p(ε, ωλ) = εr2 +

(
r

λ
− ωλ

λ
√
ν
− ωλ√

ν
ε

)
q(ε, ωλ),

E(q(ε, ωλ)) = e−q(ε,ωλ)xn ,

E(r) = e−rxn ,

N (r, ωλ, xn) =

√
ν

ωλ −
√
νq(ε, ωλ)

(
e
− ωλ√

ν
xn − e−q(ε,ωλ)xn

)
,

L(r, ωλ, xn) =
1

q(ε, ωλ)− r

(
e−q(ε,ωλ)xn − e−rxn

)
,

m2(ξ
′, ε, ωλ) =

q(ε, ωλ)

λp(ε, ωλ)

ωλ −
√
νr√

ν
,

n(ξ′, ε, ωλ) =
εr

p(ε, ωλ)

ωλ −
√
νq(ε, ωλ)√
ν

,

m′
2(ξ

′, ε, ωλ) =
q(ε, ωλ)

λp(ε, ωλ)

ωλ −
√
νr√

ν
,

n′(ξ′, ε, ωλ) =
εq(ε, ωλ)

p(ε, ωλ)

ωλ −
√
νq(ε, ωλ)√
ν

,

ℓ(ξ′, ε, ωλ) =
q(ε, ωλ)− r

p(ε, ωλ)
.

該当の評価条件を満たすことを示すため，柴田・久保 [1]にある以下の補題を解表示の各項が適用
できることを確認していく．



補題 2.4. 0 < σ < π
2 , 1 < q < ∞, γ0 ≥ 0とする．mi ∈ Mi(Σσ,γ0) (i = 1, 2), λ = γ + iτ ∈ Σσ,γ0

に対し，作用素K1(λ,m1),Kj(λ,m2) (j = 2, 3, 4, 5)を次で定義する．

[K1(λ,m1)](x) =

∫ ∞

0

F−1
ξ′

[
m1(λ, ξ

′)|λ|1/2E
(
ωλ√
ν

)
ĝ(ξ′, yn)

]
(x′) dyn,

[K2(λ,m2)](x) =

∫ ∞

0

F−1
ξ′

[
m2(λ, ξ

′)rE
(
ωλ√
ν

)
ĝ(ξ′, yn)

]
(x′) dyn,

[K3(λ,m2)](x) =

∫ ∞

0

F−1
ξ′ [m2(λ, ξ

′)rE (r) ĝ(ξ′, yn)] (x
′) dyn,

[K4(λ,m2)](x) =

∫ ∞

0

F−1
ξ′

[
m2(λ, ξ

′)r2M(r, ωλ, xn + yn)ĝ(ξ
′, yn)

]
(x′) dyn,

[K5(λ,m2)](x) =

∫ ∞

0

F−1
ξ′

[
m2(λ, ξ

′)|λ|1/2rM(r, ωλ, xn + yn)ĝ(ξ
′, yn)

]
(x′) dyn.

ℓ = 0, 1 に対して集合 {(τ∂τ )ℓK1(λ,m1) | λ ∈ Σσ,γ0} と集合 {(τ∂τ )ℓKj(λ,m2) | λ ∈ Σσ,γ0}(j =

2, 3, 4, 5)はR有界であり，n, q, σ, γ0 に依存する定数 Cn,q,σ,γ0
が存在して次が成立する．

R
(
{(τ∂τ )ℓK1(λ,m1) | λ ∈ Σσ,γ0

}
)
≤ Cn,q,σ,γ0

,

R
(
{(τ∂τ )ℓKj(λ,m2) | λ ∈ Σσ,γ0

}
)
≤ Cn,q,σ,γ0

.

これにより，各項に対応する積分作用素が Lq 空間上で有界に作用することが保証できる．上記の
２つの解表示を比較すると，近似レゾルベント問題の解表示の第 1項目は Stokesレゾルベント問題
の解表示と同じ形であり，柴田・久保 [1]と同じようにレゾルベント評価を行うことができる．本研
究では第 2項目から評価条件を満たすことを示す．

これらの作用素評価を統合することで，近似レゾルベント問題の解が柴田・久保 [1] と同様の Lq

評価を満たすことを示し，近似レゾルベント問題においても，既存の Stokesレゾルベント問題と同
程度の評価が成立することの結論づけを目指す．
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