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概要

反復関数系は縮小写像の反復によりその極限集合として自己相似構造を持つフラクタル集合を

生成する. エッジを特定のグラフで再帰的に置換するエッジ置換グラフモデルは, 局所構造の入

れ子として自己相似構造を持ち, 置換先のグラフの種類を複数に増やすことで部分自己相似構造

を持つグラフが得られる. 本講演では, こうした部分自己相似構造を持つグラフモデルに対して,

フラクタル次元としてボックスカバリング次元および一般化次元を評価した.

1 はじめに

ネットワーク科学では 1990年代末以降, スケールフリー性やスモールワールド性等の特徴を持つ

ネットワークに関する研究が数多く報告されてきた. これらとは別に, C.Songらはネットワークに対

して部分グラフによる被覆に基づくフラクタル次元評価を導入し, ネットワーク構造の自己相似性に

関する指標を提案した [3, 4, 2].

本講演で扱うエッジ置換モデルに関する先行研究として, Yakuboらによるジェネレータモデルの

研究 [6]と Neroliによる Iterated Graph Systemの研究 [1]がある. Yakuboらはスケールフリー指

数など構造の特徴に関する指標との関連に注目し, Neroliは数学的な枠組みの中でグラフのフラクタ

ル次元を定式化した. 細かい用語の定義などに差異はあるが, 両者が扱うグラフモデルの生成規則は

共通する部分を多く持つ. 本講演では, Neroliによるエッジ置換モデルの直径評価を用いて, 部分自

己相似構造を持つグラフモデルの一般化フラクタル次元を計算可能な形で与えた.

2 グラフ

離散集合 V ⊂ N と, V の要素対を要素とする集合 E ⊂ V × V の集合対 G = (V,E) でグラフ

Gを定義する. V の要素をノードや頂点, Vertex等と呼び, E の要素をエッジや辺, Link等と呼ぶ.

ノードやエッジの集合のうち, 特に特定のグラフ G の集合であることを明示する際には V (G) と書

き, エッジについても同様に E(G)と書く. ノード u, v ∈ V の間にエッジ存在するとき, (u, v) ∈ E

(または e = (u, v)について e ∈ E)と書き, ノード uとノード v は「隣接している」という.
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定義 1 (パス). グラフ G = (V,E)においてノード v0, vn ∈ V を端点に持つパス P (v0, vn)を, 以下

を満たすノードの列として定義する.

P (v0, vn) = (v0, . . . , vn), (vk, vk+1) ∈ E

v0, vn を端点とするパス全体の集合を P(v0, vn)で表す. パス P (v0, vn)の長さ |P (i, j)|をそのエッ
ジの本数で定義する.

全てのノード対に対して少なくとも一つのパスが存在するグラフを連結グラフと呼ぶ. 以降では連

結グラフのみを考える. 端点が同じで同一ノードが二回以上出現しないパスをサイクルと呼ぶ.

定義 2. グラフの距離と直径

ノード i, j 間の距離 d(i, j)を次で定義する.

d(i, j) = min
p∈P(i,j)

|p|

グラフ上の距離の最大値で直径を定義する. つまり, グラフ Gの直径 diamG を次で定める.

diamG = max
i,j∈V (G)

d(i, j).

3 エッジ置換モデルグラフ

再帰的にエッジを特定のグラフに置換して構成するエッジ置換モデルについて紹介する. 置換する

特定のグラフ構造を「ジェネレータ」と呼び, エッジを置換する際に元のエッジのノードと重複する

ジェネレータのノードを「置換基点」と呼ぶ.

3.1 1つのジェネレータを用いたエッジ置換モデル

図 1は 1つのジェネレータからなるエッジ置換モデルの例であり, ジェネレータを長さ 4のサイク

ルからなるグラフとしてエッジ置換を 2回繰り返したグラフである.

図 1 (2, 2)-flowerグラフ. 左から順に初期状態の 4-サイクルグラフ, 中央と右はそれぞれ左隣の

グラフから 1回エッジ置換を行ったグラフ. 新しく追加されたノードを青丸で示す.

ジェネレータの構造からグラフの大域的な特徴を解析するために, 以降ではジェネレータの構造と

置換基点について以下の条件を課す. 条件 2については図 2で図解する



条件 1. ジェネレータは連結.

条件 2. 置換基点となるノード対の距離はジェネレータの直径と等しい.

図 2 ジェネレータの条件. 赤い四角で表したノードをジェネレータの置換基点とする. (a)は 6-

サイクルグラフであり, 2個の置換基点間距離がサイクルグラフの直径よりも小さいため不適切で

ある. (b)は同じく 6-サイクルだが, 置換基点間距離が直径と等しいためジェネレータについての

条件 2を満たす. (c), (d)はそれぞれ条件をすべて満たすジェネレータの例.

図 2 (a)は条件 2を満たさないジェネレータと置換基点の例であり, 置換基点の間の距離が 3でな

ければならないが, この例は距離 2であるため不適. 図 2 (b)は (a)と同じ 6-サイクルグラフで条件

2を満たす例. 図 2 (c), (d)は条件をすべて満たすグラフ例である.

3.2 複数のジェネレータを用いたエッジ置換モデル

複数のジェネレータを用いてエッジ置換モデルを構築する場合, 置換先の区別はモデル構造を決定

する重要な要素である. 本講演ではジェネレータ中の各エッジがどのジェネレータに置換されるかあ

らかじめ定めた決定論的なモデルについて考察する.

定義 3. K 個のジェネレータを S1, . . . , SK と表し, Si のノード集合とエッジ集合をそれぞれ

V Si, ESi で表し, その要素数を ni,mi で表す. 以降, ジェネレータ Si に対応する記号 i の集合を

[K] = {1, . . . ,K}で表す. Si の直径 Li について以下が成り立つようにジェネレータとそれを表す記

号とを対応付ける.

Li ≤ Lj , (i, j ∈ [K], i < j).

Si に置換されるエッジ eのラベルを ℓ(e)で表し, ジェネレータの記号と対応付けて ℓ(e) = iで定

める. モデルのすべてのエッジ eに対して, 置換先のジェネレータのラベル ℓ(e) ∈ [K]をあらかじめ

定める.

エッジ置換モデルの初期状態 G(1)を, ジェネレータ 1つからなるグラフとする.

定義 4 (ジェネレータからなる部分グラフ数についての遷移行列). K ×K 行列 A = (aij)の要素 aij



を, ジェネレータ Si のエッジ e ∈ ESi で Sj に置換されるエッジの本数を用いて

aij =
∑

e∈E(Si)

δj,ℓ(e)

で定義する.

この行列を用いることでグラフ中のジェネレータからなる部分グラフの数を計算することができ

る. 自明な構造でグラフ全体が飽和することを避けるため, 行列 Aが既約行列となるように置換先を

設定する.

3.3 エッジ置換モデルの直径

一般に, 与えられたグラフの直径を正確に推定することはには計算量上の困難がある. 本稿では

ジェネレータの直径 L1, . . . , LK からグラフ全体の直径を推定する方法について, Z.Neroliによる定

理 [1]を紹介し, これを用いてモデルの直径を評価する.

既に述べたジェネレータについての条件（図 2）から, ジェネレータ中の置換基点対の間には, 少な

くとも 1つのパスが存在する. グラフ全体の直径はジェネレータからなる部分グラフの直径の増大と

関係して増大し, ジェネレータからなる部分グラフの直径は置換基点の間のパス上のエッジが対応す

るジェネレータに置換されることで増大する. この性質を用いてモデル全体の直径を推定する.

置換基点の間の距離がジェネレータの直径と等しいため, 各ジェネレータの置換基点間のパスとそ

の置換先の分布は, グラフの直径を考えるうえで重要である. ジェネレータの部分グラフにおいて直

径を推定するうえで重要な構造を定義する.

ジェネレータ Si の置換基点の一方 ai から始まり bi に至るパスで, その長さが置換基点同士の間の

距離と等しいものを P (ai, bi)と表す. Si の全ての P (ai, bi)からなる集合 Pi(ai, bi) を用いて, Si の

エッジを適当なジェネレータで置換した時の各 P (ai, bi)の距離の増分を考える. 以降, 混同の恐れが

ないときは P (ai, bi)を P と略記し, Pi(ai, bi)を Pi と略記する.

定義 5. 各 P ∈ Pi に対して, P を構成するエッジの置換先の数を並べたベクトル bi を以下で定義

する.

bi = (bi1, . . . , biK),

bij =
∑
e∈P

ℓ(e)∈[K]

δjℓ(e) .

各ジェネレータについてのベクトル bi を並べた行列を用いて, グラフ全体の直径の推移を近似的

に解析する.

定義 6 (直径の増大に関する行列). bi を第 i行成分とする行列を B とする. 各ジェネレータについ

て Pi の要素 P (ai, bi)を 1つ固定する毎に bi が 1つ定まる. とりうる全ての b1, . . . ,bK の組み合

わせからなる B の集合を B で表す.

B = {B|B = t(b1, . . . ,bK)}.



行列 B ∈ B を「直径の増大に関係する行列」と呼ぶこととする. この行列を用いてエッジ置換前

後の直径の増分を考える.

定義 7 (行列集合の最小スペクトル半径). B に含まれる行列 B のスペクトル半径 ρ(B)の最小値を

rmin(B)で表す.

rmin(B) := min
B

{ρ(B)|B ∈ B}.

各ジェネレータ中の置換基点をつなぐパスのジェネレータへの置換による直径の増大は行列 B を

用いて考えることができる. B から行列を一つ決める毎に, 各ジェネレータの置換基点間のパスの組

み合わせが 1つ定まる. このうちスペクトル半径が最小の行列 B が与える組み合わせは, 置換基点間

の距離の増大が最も小さい組み合わせである. グラフ上の距離は最小のパス長で定義されるため, 十

分置換を繰り返した後の直径は, Bのうちスペクトル半径最小の行列 B のスペクトル半径 rmin(B)の
累乗に依存して増大する. この性質からグラフ全体の直径の推移を近似的にとらえたのが次の Neroli

による定理 [1]である.

定理 8 (直径の近似式 (Neroli, ’24[1])). エッジ置換モデルの直径 L(t)は十分大きな置換ステップ t

において以下で近似できる.

L(t) ≃ (rmin(B))t.

証明は Neroli [1] Theorem 3.4を参照のこと. 証明は大きく分けて以下のステップに基づく.

1. エッジ置換 1ステップでの直径の増大が行列 B ∈ B を用いて表せることを示す.

2. 行列の積
∏t

i=1 の漸近挙動を評価し, 上限下限を求めることで直径の評価を行う.

4 主結果：エッジに対する重みの割り当てと一般化次元

本節では, 複数のジェネレータにより部分自己相似構造を持つエッジ置換モデルに対して, 一般化

次元を定義する. ジェネレータへの置換を記号列として表現し, エッジに非負の重みを導入する. t回

置換後のグラフのエッジについて, その重みとその重複度を計算した上で, グラフの一般化フラクタ

ル次元をの計算を行う.

4.1 重みの割り当て

エッジに対して重みづける方法は必ずしも一意に定まるものではない. 本稿では特にジェネレータ

の区別に注目して解析するために, 以下の条件を満たすようにエッジの重みを考える.

条件 1. 規格化条件 ∑
e∈E(G(t))

µ(e) = 1

条件 2. エッジ e ∈ E(G(t))がラベル ℓ(e) ∈ [K]を持ち, 対応するジェネレータ Sℓ(e) に置



換されるとき,

µ(e) =
∑

e′∈E(Sℓ(e)
)

µ(e′)

条件 3. 任意のジェネレータ Si からなる部分グラフのエッジ e, e′ ∈ E(Si)に対し,

µ(e) = µ(e′)

モデルの構成法から, エッジと置換先は記号で対応付けられる. エッジを繰り返し置換していくこ

とは, 各エッジ eについて [K]の要素からなる記号の列 Ie を構成することと見ることができる. 但

し, グラフ全体で同じ記号と対応付けられるエッジは複数存在することに注意が必要である. 以上か

ら, G(t)のエッジ eについて, その重み µ(e)を以下で定義する.

定義 9 (エッジの重み). エッジ eの重み µ(e)をエッジ置換の履歴を表す記号列 Ie とジェネレータ

Si のエッジ数mi を用いて,

µ(e) =
∏
i∈Ie

mi
−n(Ie,i)

と定義する. 但し, n(Ie, i)は記号列 Ie ∈ [K]
t における記号 iの出現回数を表し, 以下で定める.

n(Ie, i) =
∑
k∈Ie

δik.

命題 10. 上で定義したエッジの重み µ(e)は 4.1節冒頭の 3条件を満たす.

条件 2, 3は定義 9より従う. 条件 1は置換により増えるエッジの本数と重みの変化が逆数の関係に

あるため、グラフの初期状態がジェネレータ一 1つからなるグラフであることから従う.

同じ記号列 Ie を持つエッジの本数 ν(µ(e))を以下で計算する.

命題 11 (エッジの重みの重複度). 記号列 Ie に対応する µ(e)をもつエッジの本数 ν(µ(e))を以下で

計算する.

ν(µ(e)) =

t−1∏
k=1

aikik+1
.

但し, 記号列 Ie の k 番目の記号を ik と表し, aij は定義 4で定めた行列の (i, j)成分とする.

4.2 一般化次元

エッジ置換モデルの一般化次元を定義する. 置換前のエッジ eの重み µ(e)と, eを置換した後の部

分グラフ Sℓ(e) のエッジの重み総和 µ(E(Sℓ(e))) =
∑

e′∈E(Sℓ(e))
µ(e′)は等しいため, ジェネレータ構

造からなる部分グラフを被覆の部分グラフと考える代わりに, 置換後のジェネレータ構造に対応する

エッジを被覆対象として考え, その重みを用いることで一般化次元を計算する.

グラフのボックス次元解析に関する先行研究の手法 [2, 5]にならい, ユークリッド距離の定まらな

いグラフに対して集合の一般化次元における被覆の直径に相当する量を考えるために, 被覆する部分



グラフの直径をグラフ全体の直径で除して規格化した値を用いる. グラフ全体の直径 L(t)を用いて,

被覆する部分グラフの直径を規格化した値は 1/L(t)で計算する. モデルの一般化次元 D(q)を次の

ように定義する.

定義 12 (エッジ集合の一般化次元). エッジ置換モデルの一般化次元 Dq を以下で定義する.

Dq =
1

q − 1
lim

t→ ∞

log(Zt(q))

log(1/L(t))
(q ̸= 1).

但し L(t)は 3.3節で与えた G(t)の直径で, 分割和 Zt(q)は以下で計算する.

Zt(q) =
∑

e∈E(G(t))

(µ(e))
q
.

q = 1の一般化次元 D1 は

D1 = lim
t→ ∞

∑
e∈E(G(t)) µ(e) log(µ(e))

log(1/L(t))

で表すことができる. 一般化次元の計算に用いる分割和はエッジの重みの q乗の総和であり, エッジ e

の重み µ(e)と重複度 ν(µ(e))は, 定義 9と命題 11から, エッジ eについての記号列 Ie = (i1, . . . , it)

を用いて以下のように表せる.

µ(e) =
∏
i∈Ie

(
1

mi

)i{Ie}

,

ν(µ(e)) =

t−1∏
k=1

aik,ik+1
.

定義 4で定めた行列 Aの要素 aij と, 各ジェネレータ Si のエッジ数mi を用いて, エッジの重みを計

算する行列Wq の要素を

w
(q)
ij =

aij
mi

q
.

で定める. ここで, q は実数値パラメータとする. 以降, この行列Wq を「エッジの重みについての行

列」と呼ぶ. 行列Wq の t乗W t
q の各要素を (w

(q),t
ij )と表すことにすると, (w

(q),t
ij )は以下の条件に当

てはまる全てのエッジの重みの重複を含めた総和を表す.

条件 1. エッジ置換を t− 1回行った後のグラフ G(t)である.

条件 2. グラフの初期状態は i番目のジェネレータ Si ひとつからなるものである.

条件 3. 置換 t− 1回後, ジェネレータ Sj からなる部分グラフのエッジの重みである.

上記条件から, (w
(q),t
ij )はジェネレータ Si を初期状態として t回置換を行った後の Sj の構造からな

る部分グラフのエッジについての重みを表す. このことから, グラフ G(t)のエッジ集合 E(G(t))に

含まれるエッジの重みについての分割和 Zt(q)は以下の式から求められる.

Zt(q) = |X(1)W t
q |1.



但し, X(1)は初期状態のグラフ G(1)におけるジェネレータからなる部分グラフの数を並べた行ベク

トルで, | · |1 は各成分絶対値をとって足し合わせた L1 ノルム. 以上から, ジェネレータに基づく重み

つきグラフのエッジ集合についての一般化次元 Dq は,

Dq =
1

q − 1
lim
t→∞

log(|X(1)Wq
t|1)

log (1/rmin(B))t
.

により計算できる.

4.3 具体例

一般次元計算の具体例として, 図 3を構成規則とするグラフモデルについて, 一般化次元を計算し

た結果を図 4に示す.

図 3 赤の四角で表したノードを置換基点

とし, 青の実線で表したエッジは 4-サイク

ルに置換し, 赤の破線で表したエッジは 6-

サイクルに置換する. 初期状態を 4-サイク

ルとする.

図 4 左に示す置換規則で構成したエッジ

置換モデルにについての一般化次元. プロッ

トする q の範囲は −150 ≤ q ≤ 150とした.
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