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概要
核型次元が有限であることは C∗ 環が分類可能であるための条件であるが一般に核型次元の計
算は難しい．そこで核型次元を計算しやすい他の量で評価するという研究が行われてきた．本発
表では亜群の塔次元というものを定義し，核型次元が塔次元を用いて評価できるということを発
表する．この塔次元は位相力学系で知られている塔次元を参考に定義された．

1 導入
例えば離散群や位相力学系，グラフが与えられると C∗ 環が構成される．このように作られた C∗

環がいつ同型になるかという分類問題は C∗ 環論の基本的な問題である．解析的に良い性質を持つよ
うな C∗ 環のクラスにおいてはある不変量が完全不変量になることがわかっている．そのためどのよ
うな C∗ 環がそのクラスに入るのかということが自然な疑問である．C∗ 環の核型次元が有限である
という条件はその C∗ 環が分類可能であるための条件の一つであるが核型次元は一般に計算は難し
い．そのため計算しやすい他の量で核型次元を上から評価するという研究が行われてきた．[Ker]で
は位相力学系の塔次元が定義され，それを用いて位相力学系から構成される C∗ 環の核型次元が評価
されている．
位相力学系やグラフ，同値関係の一般化として亜群というものがある．亜群からも C∗ 環を構成す
ることができるが例えば位相力学系やグラフから構成される C∗ 環と位相力学系やグラフの亜群 C∗

環は一致する．本稿の主定理は [Ker]の位相力学系の C∗ 環の結果を亜群に一般化したものである．
まず第 2節では C∗ 環の定義と具体例，そして 主定理と関係する分類理論の結果について紹介す
る．第 3節では亜群の定義と具体例を述べたのちに亜群から C∗ 環を構成する．最後に第 4節では亜
群の塔次元を定義し，主結果を紹介する．
　

2 C∗ 環の定義と具体例
C∗ 環は大雑把にいうと無限次元で非可換な環である．C∗ 環は群や位相空間など様々な数学的対
象からも構成され，多くの具体例を作ることができる．そのため与えられた C∗ 環の組がいつ同型に
なるのかというのは自然な問いである．しかし無限次元で位相の入った環である C∗ 環を分類するこ
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とは難しい問題である．本節では C∗ 環の定義や具体例を述べ，本稿の主結果に関連する C∗ 環の分
類問題の話題を書く．参考文献としては作用素環論の基本的な事柄に関しては [Tom]，C∗ 環の分類
理論に関しては [GLN]をあげておく．

定義 1. 環 Aが C上の線型空間で積が双線型であるとき Aを代数という．さらに代数 Aが Banach

空間で任意の Aの元 a, bに対して ‖ab‖ ⩽ ‖a‖‖b‖が成り立つとき Aは Banach環であるという.

定義 2. Banach環 Aと対合と呼ばれる共役線形写像 ∗ : A 3 a 7→ a∗ ∈ Aの組であって以下の条件
を満たすものを C∗ 環という.

• 任意の Aの元 a, bに対して (ab)∗ = b∗a∗ が成り立つ.

• 任意の Aの元 aに対して (a∗)∗ = aが成り立つ.

• 任意の Aの元 aに対して ‖a∗a‖ = ‖a‖2 が成り立つ.

例 3.

• 行列環Mn(C)は共役転置と作用素ノルムにより C∗ 環になる．より一般に Hilbert空間H上
の有界作用素のなす代数 B(H)は作用素の随伴と作用素ノルムで C∗ 環になる．

• コンパクト空間 X 上の連続関数のなす代数 C(X) は対合 f∗(x) := f(x) とノルム ‖f‖ :=

supx∈X |f(x)|により C∗ 環になる．

作用素環論においては無限次元で非可換なものが主な興味の対象である．有限次元な C∗ 環は行列
環の有限個の直和に同型になる，また可換な (単位的) C∗ 環はコンパクト集合上の連続関数のなす環
に同型になる. このことから C∗ 環はコンパクト空間の非可換化だと言える．作用素環の特徴として
無限次元，非可換だけでなく 正値性が重要であるというものがある．

定義 4. Aを C∗ 環とする．a ∈ Aに対してある x ∈ Aが存在して a = x∗xであるとき aは正であ
るといい，a ⩾ 0とかく．

例 5.

• a ∈Mn(C)が正であることの必要十分条件は aが半正定値行列であることである．
• f ∈ C(X)が正であることの必要十分条件は各 x ∈ X に対して f(x) ⩾ 0であることである．

C∗ 環においては正値性が重要なので正値性を保つような写像も重要である．

定義 6. A,B を C∗ 環とする.

• 線型写像 ϕ : A → B が正値写像であるとは任意の a ⩾ 0に対して ϕ(a) ⩾ 0が成立すること
である．

• 線型写像 ϕ : A → B が完全正値写像であるとは任意の n = 1, 2, . . . に対して Mn(A) 3
(aij)i,j 7→ (ϕ(aij))i,j ∈Mn(B)が正値写像であることである.

例 7.



• Tr :MnC 3 (xij)i,j 7→
∑n

i=1 xii ∈ Cは完全正値写像である．
• x ∈ X に対して δx : C(X) 3 f 7→ f(x) ∈ Cは完全正値写像である．

群や環などの他の代数学的対象と同様に C∗ 環の間にも準同型写像がある．

定義 8.

• A,B を C∗ 環として ϕ : A → B を線型写像とする．任意の A の元 a, b に対して ϕ(ab) =

ϕ(a)ϕ(b), ϕ(a∗) = ϕ(a)∗ が成り立つとき ϕを ∗-準同型という．さらに ϕ(1A) = 1B を満たす
とき ϕは単位的であるという．

• A,B を C∗ 環とする．ψ ◦ ϕ = idA かつ ϕ ◦ ψ = idB となるような ∗-準同型 ϕ : A → B,ϕ :

B → Aが存在するとき Aと B は同型であるといい，A ' B とかく．

注意 9. ∗-準同型は完全正値写像である．

C∗ 環 Aの部分代数 B ⊂ Aが対合に関して閉じていてかつノルム位相に関して閉集合であるとき
B は Aの部分 C∗ 環であるという．多くの C∗ 環は B(H)の部分 C∗ 環として構成される．

例 10.

• si を ℓ2Z から
⊕n

j=1 ℓ2Z の i 番目の直和成分の埋め込みと⊕n
j=1 ℓ2Z

≃−→ ℓ2Z の合成とす
る．このとき i = 1, 2, · · · , n として si ∈ B(ℓ2Z) は s∗i si = 1,

∑n
i=1 sis

∗
i = 1 を満たす．

s1, s2, · · · sn が生成する B(ℓ2Z)の部分 C∗ 環を Cuntz環といい，On とかく．
• Γ を離散群とする．s ∈ Γ, f ∈ ℓ2Γに対して (λsf)(t) = f(s−1t)と定めると λs ∈ B(ℓ2Γ)で
ある．span∥∥{λs|s ∈ Γ} ⊂ B(ℓ2Γ)は B(ℓ2Γ)の部分 C∗ 環になる．この環を被約群 C∗ 環と
いい C∗

rΓとかく．

ここで挙げた具体例の他に例えば C∗ 環の帰納極限やテンソル積というものもある．さらに離散群
のコンパクト空間への作用やグラフから C∗ 環を構成できる．このようにして構成された C∗ 環は材
料となったものの性質を反映する．例えば Γを可換群としたとき C∗

rΓは C(Γ̂)と同型になる．ただ
し Γ̂は Γの Pontrjagin双対群である．
上記の通り C∗ 環は様々な構成方法があるが与えられた C∗ 環の組がいつ同型であるかということ
を決定する，という分類問題は作用素環論の基本的な問題である．しかし無限次元かつ位相の入った
環である C∗ 環を分類するのは一般に難しい．例えば十分非可換な従順加算群 Γ1,Γ2 に対してその
群 von Neumann環 LΓ1 と LΓ2 が同型となり群の情報を忘れてしまう．[Con](von Neumann環は
C∗ 環でもある. ) このように出自がはっきりとした作用素環であっても同型かどうかということが
非自明な問題となる. このような同型はそれが成り立つことが非自明であるだけでなく，同型写像を
構成することも難しい問題である．そこで分類問題を考えるときは具体的な同型写像を構成するので
はなく，Elliot不変量という不変量を構成しその不変量が完全不変量であることを示す，という方針
が取られてきた．しかし無限次元で位相の入った環である C∗ 環は一般に制御不能で全ての C∗ 環を
分類することは不可能だとも考えられている．そこで解析的に良い性質を持つようなクラスに制限し
てそこで不変量が完全不変量であることを示す，という研究が行われてきた．この解析的に良い性質



というのは大雑把にいうと有限次元行列環による強い近似性をもち，Elliot不変量におけるテンソル
積に関する単位元のようなものである Jiang–Su 環 Z をテンソル積で吸収するという性質などであ
る．このような状況では Elliot不変量 Ell(·)は完全不変量であることが知られている．

定理 11. [EGLN] A,B を単位的，単純，可分，核型，A⊗Z ' Aで UCTを満たす C∗ 環とする．
このとき A ' B であるための必要十分条件は Ell(A) ' Ell(B)であることである．

分類問題の現在の話題として不変量が完全不変量となる分類可能なクラスに入るような C∗ 環の例
を見つけることと分類可能であるための条件の他の特徴づけを見つけるというものがある．単位的，
単純，可分，核型，無限次元な C∗ 環 Aに対して A⊗Z ' Aであることの特徴づけを述べるために
核型次元というものを定義する．

定義 12. A,B を C∗ 環とする．作用素ノルムが 1以下の線型写像 ϕ : A→ B が任意の n = 1, 2, . . .

に対して ϕ⊗ idMn(C) : A⊗Mn(C) → B ⊗Mn(C)が正値写像であるとき ϕを完全正値縮小写像で
あるという．

定義 13. [WZ] C∗ 環 Aに対して次の条件を満たす最小の自然数 dを Aの核型次元 dimnuc(A)とす
る．ただしそのような自然数が存在しないときは Aの核型次元は∞とする．任意の ε > 0と有限部
分集合 F ⊂ Aに対し，有限次元 C∗ 環 Fi (i = 0, 1, . . . , d), 完全正値縮小写像 ϕ : A→

⊕d
i=0 Fi, ψ :

Fi → Aが存在し以下の条件を満たす．

1. 任意の ab = 0を満たすような a, b ∈ Aに対して ψi(a)ψi(b) = 0が成立する.

2. 任意の a ∈ F に対して ‖(
∑d

i=0 ψi) ◦ ϕ(a)− a‖ < εが成立する．

核型次元は位相空間の被覆次元の非可換化だと思うことができる．実際，コンパクト空間上の連続
関数のなす C∗ 環 C(X)の核型次元は X の被覆次元に一致する．

定理 14. [CETWW] 単位的，単純，可分，核型, 無限次元であるような C∗ 環 Aに対して以下の条
件が同値．

1. Aの核型次元が有限である．
2. A⊗Z ' Aである．

このような特徴づけがあるため核型次元を計算するということはその C∗ 環が分類可能であるかを
調べるために重要な問題であるが一般に核型次元を計算することは難しい．そのため計算しやすい他
の量で核型次元を評価するという方向の研究が行われている．離散群のコンパクト空間への作用から
作られる C∗ 環の核型次元が位相力学系の塔次元とコンパクト空間の被覆空間を用いて評価できると
いう知られている結果を紹介する．

定義 15. Γを離散群, X をコンパクト空間として α : Γ ↷ X とする．作用 αが自由であるとは任意
の x ∈ X に対して {s ∈ Γ|αs(x) = x} = {e}が成立することである．



以下，本節では Γを離散群, X をコンパクト距離空間として α : Γ ↷ X は自由作用とする．また
S ⊂ Γ, V ⊂ X に対し SV := {αs(x)|s ∈ S, x ∈ V }と定める．

定義 16.

• Γの有限部分集合 S とX の部分集合 V の組 (S, V )が塔であるとは {sV }s∈S が互いに素であ
ることをいう．

• 塔 (S, V )が開であるとは V が X の開集合であることをいう．
• 塔の族 {Si, Vi}i∈I が X =

∪
i∈I SiVi を満たすとき {Si, Vi}i∈I は X の被覆であるという．

定義 17. E を Γの有限集合として X の開被覆 {Si, Vi}i∈I が E-Lebesgueであるとは任意の x ∈ X

に対してある i ∈ I と t ∈ Si が存在して x ∈ tVi かつ Et ⊂ Si を満たすことをいう．

定義 18. [Ker] 作用 α : Γ ↷ X に対して次の条件を満たす最小の自然数 dを α : Γ ↷ X の塔次元
dimtow とする．ただしそのような自然数が存在しないときは Γ ↷ X の塔次元は∞とする．
Γの有限部分集合 E に対して E-Lebesgueで X の開被覆となり．かつ彩色数が高々 d+ 1であるよ
うな塔の族が存在する．ここで塔の族の添字集合を頂点とし，2つの塔が共通部分を持つときに辺を
結ぶようなグラフを考えている．

塔次元は核型次元に比べて計算がしやすい．実際 Zm の作用の塔次元は下記のように計算できる．
[Ker]

例 19. 任意の自然数m, dに対してある定数 C > 0が存在して任意の被覆次元 dim(X)が d以下の
コンパクト距離空間への自由作用 Zm ↷ X の塔次元に対して dimtow(X,Zm)+1 ⩽ C(dim(X)+1)

が成立する．

位相力学系の塔次元を用いて核型次元は次のように評価できる．ただし C(X)⋊α Γは位相力学系
α : Γ ↷ X から構成される C∗ 環である．

定理 20. [Ker] Γ を離散群，X をコンパクト距離空間，α : Γ ↷ X を自由作用とする．このとき
dimnuc(C(X)⋊α Γ) + 1 ⩽ (dimtow(X,Γ) + 1)(dim(X) + 1)が成り立つ．

3 亜群と亜群 C∗ 環
亜群とは大雑把に言えば単位元がたくさんある群のことである．亜群は位相力学系の一般化であ
り，位相力学系だけでなく有向グラフや集合上の同値関係など様々なものから構成される．また亜
群からも C∗ 環を構成することができるが位相力学系や有向グラフから構成される C∗ 環は位相力学
系や有向グラフから構成された亜群の C∗ 環と一致する．そのため例えば位相力学系から構成された
C∗ 環を調べるために亜群を調べるということが行われている．本節では亜群を定義し，亜群から C∗

環を構成する．亜群や亜群 C∗ 環の参考文献としては [Pat]や [BO]をあげておく．

定義 21.

• 集合 G,



• Gの部分集合 G(0) ⊂ G,

• 写像 s, r : G→ G(0),

• 写像 G(2) := {(g, h)|s(g) = r(h)} 3 (g, h) 7→ gh ∈ G,

の組であって以下の条件を満たすものを亜群という．

1. 任意の g ∈ G(0) に対して r(g) = g = s(g)が成立する．
2. 任意の (g, h) ∈ G(2) に対して r(gh) = r(g), s(gh) = s(h)が成立する．
3. 任意の g ∈ Gに対して r(g)g = g = gs(g)が成立する．
4. 任意の (g1, g2), (g2, g3) ∈ G(2) に対して (g1g2)g3 = g1(g2g3)が成立する.

5. 任意の g ∈ Gに対してある g−1 ∈ Gが存在して gg−1 = r(g), g−1g = s(g)が成立する．

注意 22.

• G(0) ⊂ Gを unit spaceという．
• r, s : G→ G(0) をそれぞれ source map, range mapという．
• G(2) := {(g, h)|s(g) = r(h)} 3 (g, h) 7→ gh ∈ Gを積という．
• x ∈ G(0) に対して Gx := s−1(x), Gx := r−1(x)と定める．
• U ⊂ Gとする．s|U , r|U : U → G(0) が単射であるとき U を G集合という．

例 23. 群 Gは G(0) が一点集合であるような亜群であり, 集合 Gは G(0) = Gであるような亜群で
ある．

このことから亜群は単位元がたくさんある群だと思える．
積 G(2) 3 (g, h) 7→ gh ∈ G と G 3 g → g−1 ∈ G が連続となるような位相の入った亜群を位相亜
群という．このとき r(g) = gg−1, s(g) = g−1g なので source map と range map は連続である．
X,Y を位相空間とする．連続写像 f : X → Y が局所同相であるとは任意の x ∈ X に対して xの開
近傍 U ⊂ X が存在して f(U)が開集合になり，かつ f : U → f(U)が同相写像になることである．

定義 24. source map, range mapが局所同相であるような亜群をエタール亜群という．

定義 25. {g ∈ G|s(g) = r(g)} = G(0) であるとき亜群 Gは principalであるという．

例 26. Γを離散群, X をコンパクト空間とする．α : Γ ↷ X とする．

• G = Γ×X,

• G(0) = {e} ×X,

• r : G 3 (g, x) 7→ (e, αg(x)) ∈ G(0), s : G 3 (g, x) 7→ (e, x) ∈ G(0),

• G(2) 3 ((g, x), (h, y)) 7→ (gh, y) ∈ G

• G 3 (g, x) 7→ (g−1, αg(x)) ∈ G.

とするとこれは unit spaceがコンパクトな局所コンパクトエタール亜群になる．このような亜群を



変換亜群といい，X ⋊α Γとかく．さらに αが自由であるとき X ⋊α Γは principalである．

例 27. X := {0, 1}N として X 上の同値関係を (an)n ∼ (bn)n :⇔ ある N ∈ N が存在して任意の
n ⩾ N に対して an = bn と定める．

• G := {(x, y) ∈ X ×X|x ∼ y},
• G(0) := {(x, x) ∈ X ×X},
• r : G 3 (x, y) 7→ (x, x) ∈ G(0), s : G 3 (x, y) 7→ (y, y) ∈ G(0),

• G(2) 3 ((x, y), (y, z)) 7→ (x, z) ∈ G,

• G 3 (x, y) 7→ (y, x) ∈ G.

と定めると G は principal な亜群になる．さらに Kn := {(x, y) ∈ X ×X|xn = yn(n ⩾ N)} とし
Kn には X ×X からの相対位相を入れる．U ⊂ Gが開集合 :⇔ 任意の Nに対して U ∩KN ⊂ Kn

が開集合, と G の位相を定めると G は unit space がコンパクトな局所コンパクトエタール亜群で
ある．

本稿では亜群は unit spaceがコンパクト，局所コンパクト，第二加算，エタール，principalであ
ることを仮定する．
亜群 G から C∗ 環を構成する．Cc(G) をコンパクト台を持つ G 上の連続関数全体の集合とする.

ϕ, ψ ∈ Cc(G)に対して (ϕψ)(x) :=
∑

yz=x ϕ(y)ψ(z)とし, ϕ∗(x) := ϕ(x−1)とすると Cc(G)は ∗-代
数になる．各 x ∈ G(0), ϕ ∈ Cc(G), g ∈ Gx に対して λx(ϕ)δg =

∑
r(g)=s(h) ϕ(h)δhg と定めると λx

は Cc(G)から B(ℓ2Gx)への ∗-準同型写像になる.

定義28. Gを亜群とする．ϕ ∈ Cc(G)に対し，その被約ノルムを ‖ϕ‖ := sup{‖λx(ϕ)‖|x ∈ G(0)}と
定める．Cc(G)の被約ノルムによる完備化を C∗

rGとかき Gの被約亜群 C∗ 環とよぶ．

上では位相力学系から亜群を構成したがこの亜群から構成される C∗ 環は位相力学系から構成され
る C∗ 環と一致する．

例 29. 変換亜群 X ⋊α Γに対して，C∗
r (X ⋊α Γ) ' C(X)⋊α,r Γが成立する．

4 主定理
位相力学系に対しては塔次元というものがありそれを用いて核型次元を評価していたが一般に亜群
に対しても塔次元というものが定義することができ，そしてそれを用いて亜群 C∗ 環の核型次元を評
価できる．亜群の塔次元は位相力学系の塔次元を参考に定義された．

定義 30 (O). Gを亜群とし，K を Gの開部分亜群とする．K が初等的であるとは以下の条件を満
たすことである．

• G(0) ⊂ K,



• ある G(0) の開集合の族 {{F i
j}j=1,2,··· ,Ni}i∈I が存在して以下の条件を満たす．

1. K(0) =
∪

i∈I

⊔
1⩽j⩽Ni

F i
j .

2. 相対コンパクト開K集合の族 {{V i
j,k}j,k=1,2,...,Ni}i∈I が存在して，任意の i ∈ I, j, k,m =

1, 2, · · · , Ni に対して r(V i
j,k) = F i

j , s(V
i
j,k) = F i

k, V
i
j,kV

i
k,m = V i

j,m, (V
i
j,k)

−1 = V i
k,j が

成立する．
3. K =

∪
i∈I

⊔
1⩽j,k⩽Ni

V i
j,k.

初等的亜群は位相力学系における塔を亜群の言葉で書き直したものである．

例 31. Γを離散群, X をコンパクト空間として α : Γ ↷ X とする．X の開被覆であるような塔の
族 {(Si, Vi)}i∈I に対してK =

∪
i∈I

⊔
s,t∈Si

{st−1} × tVi は初等的である．

例 32. Gを X := {0, 1}N として X 上の同値関係を (an)n ∼ (bn)n :⇔ ある N ∈ Nが存在して任
意の n ⩾ N に対して an = bn と定めることで得られる亜群とする．N ∈ N, a, b ∈ {0, 1}N に対して
V N
a,b := {(x, y) ∈ KN |(x1x2 · · ·xN ) = a, (y1y2 · · · yN ) = b} とすると KN =

⊔
a,b∈{0,1}N V N

a,b は初
等的である．

定義 33 (O). K を G の初等的部分亜群として K =
∪

i∈I

⊔
1⩽j,k⩽Ni

V i
j,k であるとする．E ⊂ G

をコンパクト集合とする．このとき K が E-Lebesgue であるとは任意の x ∈ G(0) に対してある
i ∈ I, l ∈ {1, 2, · · ·Ni}が存在して Ex ⊂

⊔
1⩽k⩽Ni

V i
k,l が成立することをいう．

注意 34. Γを離散群，X をコンパクト集合として α : Γ ↷ X とする．X の開被覆 ((Si, Vi))i∈I を
とる．Γの有限部分集合 E に対して塔の族 ((Si, Vi))i∈I が位相力学系の意味で E-Lebsgueであるこ
とと亜群 ∪

i∈I

⊔
s,t∈Si

{st−1} × tVi が亜群の意味で E ×X-Lebsegueであることは同値である．

定義35 (O). 亜群Gに対して次の条件を満たすような最小の自然数 dを亜群Gの塔次元 dimtow(G)

という．
任意のコンパクト集合 E ⊂ Gに対してある初等的部分亜群K が存在してK =

∪
i∈I

⊔
1⩽j,k⩽Ni

V i
j,k

であり，K は E-Lebegueかつ G(0) の開被覆 {
⊔

1⩽j⩽Ni
F i
j}i∈I の彩色数は高々 d+ 1である．

例 36.

1. dimtow(X ⋊α Γ) ⩽ dimtow(X,Γ)である．
2. Gを X := {0, 1}N として X 上の同値関係を (an)n ∼ (bn)n :⇔ ある N ∈ Nが存在して任意
の n ⩾ N に対して an = bn と定めることで得られる亜群とする．このとき G の塔次元は 0

である．

亜群 K =
⊔

i∈I

⊔
1⩽j,k⩽Ni

V i
j,k から構成される亜群 C∗ 環の核型次元は比較的簡単に計算ができ

て G(0) の被覆次元以下である．イメージではあるが亜群 Gの塔次元が dであるというのは K と同
じ形をした亜群を d個を用いて亜群 Gを “近似”できるということである．

定理 37 (O). Gを亜群とする．このとき以下が成立する．



1. Gの塔次元が有限ならば C∗
rGは核型になる．

2. dimnuc(C
∗
rG) + 1 ⩽ (dimtow(G) + 1)(dim(G(0)) + 1)．

次の例は核型次元が直接計算できる亜群 C∗ 環ではあるが上記の定理を用いても計算できる．

系 38. Gを X := {0, 1}N として X 上の同値関係を (an)n ∼ (bn)n :⇔ ある N ∈ Nが存在して任意
の n ⩾ N に対して an = bn と定めることで得られる亜群とする. このとき C∗

rGの核型次元は 0で
ある．
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