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概要
交通流の数理モデルとして知られるバーガーズ方程式は, 遅延項を導入することで, 運転手が周
囲の混雑状況から判断し行動するまでの時間遅延を考慮した数理モデルとできる. そうした時間
遅延を考慮したバーガーズ方程式の中で, 本講演では, 一般の Lp 関数をカーネルにもつ分布型時
間遅れを考慮したバーガーズ方程式を考え, その時間大域解の存在と一意性, 減衰評価について,

半群理論を用いて得られた結果を紹介する.

1 導入
本発表は, 久保隆徹先生 (お茶の水女子大学)との共同研究に基づく.

昨年の講究録 [4]に, 時間遅れを考慮したバーガーズ方程式の詳しい導出について記しているが, こ
こにも簡潔に記す.

交通流の数理モデルとして，以下のバーガーズ方程式がよく知られている :

∂tρ− ν∂2
xρ+ Vm∂x

{
ρ

(
1− ρ

ρm

)}
= 0. (B)

ここで，x ∈ R, t > 0とし，ρ = ρ(t, x)は車の密度（未知関数）, ν は拡散係数, Vm は ρ → 0のとき
の最大速度，ρm は最大密度を表し，ν, Vm と ρm はすべて正定数である.

運転手が混雑状況を把握してから車の速度を調整するまでの時間遅延を考慮するために, 固定
された遅延パラメータ τ > 0 に対し, τ だけ過去の密度 ρτ = ρ(t − τ) から決まる速度 v(t, x) =

Vm

(
1− ρτ

ρm

)
− ν

ρ
∂xρを上の式に導入することで, 以下の時間遅れを考慮したバーガーズ方程式を

得る :

∂tρ− ν∂2
xρ+ Vm∂x

{
ρ

(
1− ρτ

ρm

)}
= 0.

この速度の項をさらに一般化し，Kubo-Ueda [1]では次のように初期履歴問題が定式化されている :{
∂tρ− ν∂2

xρ+ ∂x(ρV (ρτ )) = 0 (t > 0, x ∈ R),

ρ(θ, x) = ρ0(θ, x) (−τ ≤ θ ≤ 0, x ∈ R).
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ただし, V (ρ)は ρに関してC1級関数, ρ0(θ, x)は既知関数である. この問題に対しては，Kubo-Ueda

[1]，[2]において，時間局所解の一意存在性定理とアプリオリ評価を組み合わせることで，ρ0 と τ が
ある関係を満たす場合に時間大域解の一意存在性定理が証明されている.

本発表では, τ だけ過去から現在までの密度分布に依存する速度を導入して得られる, 次のような
時間遅れを考慮したバーガーズ方程式を考える [2]： ∂tρ− ν∂2

xρ+ ∂x

{
ρ

(
V0 −

∫ t

t−τ

f(t− s)ρ(s) ds

)}
= 0 (t > 0, x ∈ R),

ρ(θ, x) = ρ0(θ, x) (−τ ≤ θ ≤ 0, x ∈ R).
(DB)

ただし, ν, V0 は正定数とする. また, 1 ≤ p ≤ ∞ に対して f は f ∈ Lp(0, τ) である重み関数とし,

Mf を, 1 ≤ p < ∞のときMf :=
(∫ τ

0
|f(t)|pdt

)1/p
, p = ∞のときMf := sup0≤t≤τ |f(t)| と定め

る. ρ0(θ, x)は, −τ ≤ θ ≤ 0を満たす θ に対して与えられた関数とする.

本発表では，上の問題に対し, 補助関数 z(t, θ, x) := ρ(t + θ, x)を用意し考察を行った．[3]から,

微分作用素に対する半群 T0(t)が生成されることが知られており,微分方程式 (DB)に対応する積分
方程式は以下の (IE)のように与えられる :(

ρ
z

)
= T0(t)

(
ρ(0)
z(0, θ)

)
+

∫ t

0

T0(t− s)

(
∂xG(ρ, z)(s)

0

)
ds. (IE)

ただし, G(ρ, z)(t) = ρ

∫ 0

−τ

f(−θ)z(t, θ) dθ とおいた. また, 半群 T0(t) =

(
S(t) 0

St T0(t)

)
は以下で

与えられる :

{S(t)}t≥0 は, −ν∂2
x + V0∂x によって生成される解析的半群であり, X = C([−τ, 0] : H1)とすると,

St は, H1 から X への作用素 ; (Stx)(θ) =

 S(t+ θ)x (t+ θ > 0)

0 (t+ θ ≤ 0)
,

{T0(t)}t≥0 は, X 上のべき零左シフト半群 ; T0(t)z(0, θ) =

 z(0, t+ θ) (t+ θ ≤ 0)

0 (t+ θ > 0)
.

2 主定理
初期履歴によって決まる定数 I0 を以下のように定義する :

I0 := ∥ρ0(0)∥L1 + sup
−τ≤θ≤0

∥ρ0(θ)∥H1 .

定理 2.1. 1 ≤ p ≤ ∞, τ は正定数とし, K0 は τ と ν に依存しないある正定数とする.

もし初期履歴 ρ0 ∈ C([−τ, 0] : H1)が, ρ0(0) ∈ L1 であり, かつ
Mf

ν
(1 + 2ντ)

5
2 τ1−

1
p I0 < K0 (I)

を満たすなら, (IE)は一意解 ρ(t) ∈ C([−τ,∞) : H1)をもち, t > 0に対し次を満たす :

∥ρ(t)∥L1 ≤ C1, ∥ρ(t)∥L2 ≤ C2(1 + 2νt)−
1
4 , ∥∂xρ(t)∥L2 ≤ C2(1 + 2νt)−

3
4 .

ただし, C1, C2 は τ , ν と I0 に依存するある正定数.



注意 2.1. 定理 2.1に現れる正定数 C1 は C1 = O(ν−
3
2 ) (ν → 0)を満たす.

注意 2.2. 重み関数を一般の Lp 関数と仮定することで, 重み関数によって初期履歴の条件 (I)は変わ
ることがわかる. 実際, p = 1とした場合には初期値を十分小さくとらなければ初期履歴に関する条
件 (I)を満たすことはできないが, p > 1であれば初期値が大きくても τ の値が十分小さければ初期
履歴に関する条件 (I)を満たすことがわかる.

定理 2.2. ρ は定理 2.1で得られた (IE)に対する解とする.

このとき, ρ ∈ C
1
2 ([0,∞) : L2) ∩ C

1
2 ((0,∞) : H1)は, 0 ≤ s < tに対し以下を満たす :

∥ρ(t)− ρ(s)∥L2 ≤ K1(t− s)
1
2 (1 + 2νs)−

1
4 ,

∥∂x(ρ(t)− ρ(s))∥L2 ≤ (K2 +K3s
− 1

2 )(t− s)
1
2 (1 + 2νs)−

3
4 .

ただし, Kj (j = 1, 2, 3)はある正定数.

注意 2.3. 定理 2.2により, 定理 2.1で得られた解は (DB)に対する強解になることもわかる.

3 主定理の証明の概略
3.1 定理 2.1の証明の概略
まず, 以下のように基盤空間 B を用意する :

BE :=

{(
ρ
z

)
| ρ ∈ C([−τ,∞) : H1), z ∈ C([0,∞) : C([−τ, 0] : H1))

}
,

B :=


(
ρ
z

)
∈ BE

∥ρ(t)− ρ0(θ)∥H1 → 0 (t → 0),
sup

−τ≤θ≤0
∥z(t, θ)− z(0, θ)∥H1 → 0 (t → 0),∥∥∥∥(ρz

)∥∥∥∥
B

≤ 2C0

(
∥ρ0(0)∥L1 + sup

−τ≤θ≤0
∥ρ0(θ)∥H1

)
 .

ただし, C0 は後に決めるある正定数.また, ∥·∥B を以下のように定義する :∥∥∥∥(ρz
)∥∥∥∥

B

:= sup
t≥0

{
(1 + 2νt)

1
4 ∥ρ(t)∥L2 + (1 + 2νt)

3
4 ∥∂xρ(t)∥L2

}
+ sup

t+θ≥0

[
sup

−τ≤θ≤0

{
(1 + 2ν(t+ θ))

1
4 ∥z(t, θ)∥L2

+(1 + 2ν(t+ θ))
3
4 ∥∂xz(t, θ)∥L2

}]
.

t(ρ, z) ∈ B に対して, Φ (t(ρ, z))を積分方程式 (IE)の右辺と定義し, Φ (t(ρ, z))に対して以下の 2

つの補題と縮小写像の定理を用いることで, (IE)の時間大域解の一意存在性定理を証明する.



補題 3.1. g ∈ H1 ∩W 1,1, 0 ≤ δ0, δ1, δ2 ≤ 1とする. このとき, 以下が成り立つ :

∥S(t)g∥L2 ≤ (1 + 2νt)−
1
4 ∥g∥L1 + e−νt∥g∥L2 ,

∥S(t)∂xg∥L2 ≤ (1 + 2νt)−
3
4 ∥g∥L1 +

{
e−

1
2 νt(νt)−

1
2 ∥g∥L2

}δ0 {
e−νt∥∂xg∥L2

}1−δ0
,

∥∂xS(t)∂xg∥L2 ≤
{
(1 + 2νt)−

5
4 ∥g∥L1

}δ1 {
(1 + 2νt)−

3
4 ∥∂xg∥L1

}1−δ1

+
{
e−

1
2 νt(νt)−1∥g∥L2

}δ2 {
e−

1
2 νt(νt)−

1
2 ∥∂xg∥L2

}1−δ2
.

補題 3.2. pj (j = 1, . . . , 5) は p1 + p2 < 1 と p3 + p4 + p5 < 1 を満たす非負の定数とするとき,

t ≥ r ≥ 0に対して以下が成り立つ :∫ t

r

(t− s)−p1(1 + 2ν(t− s))−p2s−p3(s− r)−p4(1 + 2ν(s− r))−p5ds

≤ (t− r)1−(p1+p4)t−p3(1 + 2ν(t− r))−(p2+p5)B(1− (p1 + p2), 1− (p3 + p4 + p5)),

ただし, B(·, ·)は B(ℓ,m) =

∫ 1

0

xℓ−1(1− x)m−1 dxで定まるベータ関数である.

3.2 定理 2.2の証明の概略
(i) 0 < s < t ≤ τ , (ii) τ ≤ s < tと (iii) 0 < s ≤ τ ≤ tの場合に分けて考える.

そのために, h1(ρ, ρ0)と h2(ρ, z)を次のように定義する :

h1(ρ, ρ0)(t) = ρ(t)

∫ −t

−τ

f(−θ)ρ0(t+ θ)dθ, h2(ρ, z)(t) = ρ(t)

∫ 0

−t

f(−θ)z(t, θ)dθ.

まず, (i): 0 < s < t ≤ τ の場合について考える. α = 0, 1に対して,

∂α
x (ρ(t)− ρ(s))

= (S(t)− S(s))ρ0(0) +

∫ t

0

S(t− r)∂x(h1(ρ, ρ0)(r) + h2(ρ, z)(r))dr

−
∫ s

0

S(s− r)∂x(h1(r) + h2(r))dr

=

∫ t

s

(ν∂2
x − V0∂x)S(r)∂

α
x ρ0(0)dr +

∫ t

s

∂xS(t− r)∂α
x (h1(ρ, ρ0)(r) + h2(ρ, z)(r)) dr

+ ν

∫ s

0

∫ t−r

s−r

(ν∂3
x − V0∂

2
x)S(r̃)dr̃∂

α
x (h1(ρ, ρ0)(r) + h2(ρ, z)(r)) dr.

が成り立つ. したがって, ∥∂α
x (ρ(t)− ρ(s))∥L2 は以下のように評価できる :∥∥∥∥∫ t

s

(ν∂2
x − V0∂x)S(r)∂

α
x ρ0(0)dr

∥∥∥∥
L2

≤ ν−
1
2

{(√
2 + 2ν−

α
2 s−

α
2

)
(ν + V0)I0

}
(t− s)

1
2 (1 + 2νs)−

1
4−

α
2 ,



∥∥∥∥∫ t

s

∂xS(t− r)∂α
x (h1(ρ, ρ0)(r) + h2(ρ, z)(r)) dr

∥∥∥∥
L2

≤ 2α · 6
√

2

ν
C0(1 + 2C0)I

2
0Mfτ

1− 1
p (1 + 2ντ)

1
4 (t− s)

1
2 (1 + 2νs)−

1
4 ,

V0

∥∥∥∥∫ s

0

∫ t−r

s−r

∂2
xS(r̃)dr̃∂

α
x (h1(ρ, ρ0)(r) + h2(ρ, z)(r))dr

∥∥∥∥
L2

≤ 2α+2V0 ·
1

ν

(
1 + 2

√
2
)
C0(1 + 2C0)Mfτ

3
2−

1
p (1 + 2ντ)

1
4+

α
2 I20 (t− s)

1
2 (1 + 2νs)−

1
4−

α
2 ,

ν

∥∥∥∥∫ s

0

∫ t−r

s−r

∂3
xS(r̃)dr̃∂

α
x (h1(ρ, ρ0)(r) + h2(ρ, z)(r))dr

∥∥∥∥
L2

≤ 2α+3 · 2C0(1 + 2C0)(τ
1
2 + 2

√
2ν−

1
2 )Mfτ

1− 1
p I20 (t− s)

1
2 (1 + 2ντ)

1
4+

α
2 (1 + 2νs)−

1
4−

α
2 .

以上から,

∥ρ(t)− ρ(s)∥L2 ≤ J1
1 (t− s)

1
2 (1 + 2νs)−

1
4 ,

∥∂x(ρ(t)− ρ(s))∥L2 ≤ (J1
2 + J1

3 s
− 1

2 )(t− s)
1
2 (1 + 2νs)−

3
4

を得る. ただし, J1
j (j = 1, 2, 3)はある正定数.

(ii) τ ≤ s < tと (iii) 0 < s ≤ τ ≤ tの場合にも同様に評価を行うことで, 定理 2.1で得られる解の
ヘルダー連続性が示される.
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[3] A. Bátkai and S. Piazzera, Semigroups for delay equations, AK Peters/CRC Press, (2005).

[4] M. Ogawa, Hokkaido University technical report series in Mathematics, 189, Department

of Mathematics, Hokkaido University, 607-703, (2025)


