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概要
Kontsevichによりホモロジカルミラー対称性（以降 HMSと略す）予想と呼ばれる予想が提唱
されている [1]．二木・梶浦は [2]でモースホモトピーの圏を介することで，射影空間とその直積
に対して HMS予想に近い形の主張を示した. その手法では，射影空間の導来圏の強例外生成系
とモースホモトピーの圏の対象 (ラグランジュ切断)を対応させることで，主張が示される．本稿
では，CP3 の 1 点ブローアップの導来圏の強例外生成系に対応するラグランジュ切断を具体的
に構成した．

1 導入
ミラー対称性は素粒子論に由来するが，数学的な定式化として，Kontsevichによりホモロジカル

ミラー対称性（以降 HMSと略す）予想と呼ばれる予想が提唱されている [1]．シンプレクティック
多様体 X に対し，ラグランジュ部分多様体を対象とする圏である深谷圏 Fuk(X) が対応する．こ
のとき X のミラー対と呼ばれる複素多様体 X̌ の連接層の導来圏 Db(Coh(X̌))と Fuk(X)の三角化
Tr(Fuk(X))が圏同値であろうというのが HMS予想の主張である．　
　二木–梶浦は [2]で射影空間とその直積に対して，HMS予想に近い形の主張に証明を与えた．大ま
かには次の手順である．X = CPn とする．

1. M̌ を X のトーリック因子の補空間，π̌ : M̌ → B ⊂ Rn をモーメント写像とする．このとき
M̌ ∼= T ∗B/Zn が成り立ち，M := TB/Zn，π :M → B を自然な全射として双対トーラス束
を構成する．(SYZ構成)
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2. M̌ 上の正則直線束に対して，π :M → B のラグランジュ切断への対応を作る．(SYZ変換)
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3. 次の圏と関手を構成する．

DG(X) : X 上の正則直線束と，その接続を対象とするDG圏
V : M̌上の正則直線束と，その U(1)接続を対象とするDG圏

I : DG(X) → V : 忠実関手

4. E を Db(Coh(X)) の正則直線束からなる強例外生成系，DGE(X) を E からなる DG(X) の
充満部分圏，V ′ := I(DG(X))，V ′

E := I(DGE(X))とする．P := B̄ を B のRn での閉包と
し，π :M → B のラグランジュ切断を対象とする圏モースホモトピーの圏Mo(P )を考える．
MoE(P ) を E に対応するラグランジュ切断からなる Mo(P ) の充満部分圏とする．このとき
A∞ 擬同型MoE(P ) ∼= V ′

E
∼= DGE(X)を示す．

5. 4で示した式に対して DG圏の三角化 [7]を取り Tr(MoE(P )) ∼= Db(Coh(X))が示される．

　以上の手順で証明される．また 5で示したことは，正確には Kontsevichの意味でのホモロジカ
ルミラー対称性の主張と異なる.一方 [8]では Mo(B) ∼= Fuk(T ∗B)であることが知られている．こ
の圏同値の三角化を取れば，おおよそ Tr(Fuk(T ∗B)) ∼= Db(Coh(X)))が成り立つと言える．同様の
手法でヒルツェブルフ曲面 [3]，トーリックファノ曲面 [4]，重み付き射影空間 [5]に対して HMSに
近い形の主張が示されている.

　本論文は，CP3 の 1点ブローアップの導来圏の強例外生成系に対応するラグランジュ切断を具体
的に構成する．主定理 Theorem 4.1.は 4で示す A∞ 擬同型の対象の間の構成に対応している．これ
は今まで示されていない多様体に対する構成である．

2 CP3 の 1点ブローアップ
Definition 2.1.

Bl1(CP3) := {([s0 : s1 : s2 : s3], [t0 : t1 : t2]) ∈ CP3 ×CP2 | sitj = sjti (0 ≤ i < j ≤ 2)}

を，CP3 の一点ブローアップという．ここでブローアップした点は，[0 : 0 : 0 : 1]である．

CPn に対して

[r0 : . . . : rn] : CPnの同次座標
vi :=

ri
r0
, (v1, . . . , vn) : CPnの非同次座標

とおく．CP3，CP2 はケーラー形式

ωCP3 := −2
√
−1d

( ∑3
i=1 v̄idvi

1 +
∑3

j=1 |vj |2

)
, ωCP2 := −2

√
−1d

( ∑2
i=1 v̄idvi

1 +
∑2

j=1 |vj |2

)

を持つ．このとき

i : Bl1(CP3) ↪→ CP3 ×CP2

pr1 : CP3 ×CP2 → CP3 , pr2 : CP3 ×CP2 → CP2



とすると，
ω̌ := (pr1 ◦ i)∗(ωCP3) + (pr2 ◦ i)∗(ωCP2)

は，Bl1(CP3)のケーラー形式となる．
　また Bl1(CP3)には

Bl1(CP3)× T 3 → Bl1(CP3)

; (([s], [t]), (a1, a2, a3)) 7→ (([s0 : a1s1 : a2s2 : a3s3], [t0 : a1t1 : a2t2]))

としてトーラス作用が定まる．したがってモーメント写像

µ : Bl1(CP3) → (t3)∗ ∼= R3

; ([s], [t]) 7→

(
2|s1|2∑3
j=0 |sj |2

+
2|t1|2∑2
j=0 |tj |2

,
2|s2|2∑3
j=0 |sj |2

+
2|t2|2∑2
j=0 |tj |2

,
2|s3|2∑3
j=0 |sj |2

)

を得る．
　 M̌ をトーリック因子の補空間，P := µ(Bl1(CP3))，B := Int(P ) とする．このとき，M̌ ∼=
(C×)3 ∼= T ∗B/Z3 より，µ|M̌ : M̌ → B はトーラス束になる．また M̌ は ui =

si
s0

= exi+
√
−1yi と

してアフィン構造を持つ．fi := |ui|2 = e2xi とおき，この座標でのケーラー計量と B の双対座標を
求めると次の形になる．

ω̌ = (pr1 ◦ i)∗(ωCP3) + (pr2 ◦ i)∗(ωCP2)

= 4
(1 + f2 + f3)f1dx1 ∧ dy1 − f1f2dx1 ∧ dy2 − f1f3dx1 ∧ dy3

(1 +
∑3

i=1 fi)
2

+ 4
−f1f2dx2 ∧ dy1 + (1 + f1 + f3)f2dx2 ∧ dy2 − f2f3dx2 ∧ dy3

(1 +
∑3

i=1 fi)
2

+ 4
−f1f3dx3 ∧ dy1 − f2f3dx3 ∧ dy2 + (1 + f1 + f2)f3dx3 ∧ dy3

(1 +
∑3

i=1 fi)
2

+ 4
(1 + f2)f1dx1 ∧ dy1 − f1f2dx1 ∧ dy2 − f1f2dx2 ∧ dy1 + (1 + f1)f2dx2 ∧ dy2

(1 +
∑2

i=1 fi)
2

またこの表示から B 上の計量 (gij)が

(gij) =


　 4(1+f2+f3)f1

(1+
∑3

i=1 fi)2
+ 4(1+f2)f1

(1+
∑2

i=1 fi)2
− 4f1f2

(1+
∑3

i=1 fi)2
− 4f1f2

(1+
∑2

i=1 fi)2
− 4f1f3

(1+
∑3

i=1 fi)2

− 4f1f2
(1+

∑3
i=1 fi)2

− 4(f1f2
(1+

∑2
i=1 fi)2

4(1+f1+f3)f2
(1+

∑3
i=1 fi)2

+ 4(1+f1)f2
(1+

∑2
i=1 fi)2

− 4f2f3
(1+

∑3
i=1 fi)2

− 4f1f3
(1+

∑3
i=1 fi)2

− 4f2f3
(1+

∑3
i=1 fi)2

4(1+f1+f2)f3
(1+

∑3
i=1 fi)2


として与えられる．ψ := log(1+

∑3
i=1 e

2xi)+log(1+
∑2

i=1 e
2xi)とおくと，Bの双対座標 (x1, x2, x3)

は

(x1, x2, x3) :=

(
∂ψ

∂x1
,
∂ψ

∂x2
,
∂ψ

∂x3

)
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(
2e2x1
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i=1 e
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+
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i=1 e
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2e2x3

1 +
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i=1 e
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)
= µ([1 : ex1+

√
−1y1 : ex2+

√
−1y2 : ex3+

√
−1y3 ], [1 : ex1+

√
−1y1 : ex2+

√
−1y2 ])



で与えられる．構成から，M := TB/Z3，π : M → B を自然な全射とすると，π : M → B，
µ : M̌ → B は双対トーラス束である．

Definition 2.2. Dを三角圏，C を Dの充満部分加法圏，Ω = {ωi}i∈I を Dの対象の集合，もしく
は部分圏とする．

1. C が同型をとる操作で閉じているとき，C を D の狭義充満部分圏という．
2. C を含み，直和因子をとる操作で閉じている D の最小の狭義充満部分圏を，C の D における

thick 閉包といい，thickD C，thick C と表す．C = thick C が成り立つとき，C を D の thick

部分圏という．
3. Ωを含む Dの最小の thick部分三角圏を，〈Ω〉や 〈ωi | i ∈ I〉と表す．D = 〈Ω〉が成り立つと
き Ωは D を生成するという．

Definition 2.3. X を C上の滑らかな射影代数多様体とする．

1. X 上の連接層 F が Hom(F, F ) = C，Exti(F, F ) = 0 (i > 0)を満たすとき，F は例外的で
あるという．

2. 順序付けられた X 上の連接層の列 (F0, . . . , Fn)が Exti(Fk, Fj) = 0 (i ≥ 0, k > j)を満たす
とき，(F0, . . . , Fn)を例外列という．

3. 例外列 (F0, . . . , Fn)が Exti(Fk, Fj) = 0 (i ≥ 1, j ≥ k)を満たすとき，(F0, . . . , Fn)を強例外
列という．

4. 強例外列 (F0, . . . , Fn)がDb(Coh(X))を生成するとき，(F0, . . . , Fn)を強例外生成系という．

Lemma 2.4 ([6]). X を C 上の滑らかな射影代数多様体，E を階数 r の X 上のベクトル束，
p : P(E) → X を自然な全射，(F0, · · · , Fn) を X 上の局所自由層の強例外生成系，OE(1) を P(E)
上のトートロジカル直線束とする．このとき

0 ≤ ∀a ≤ r − 1 , 0 ≤ ∀l ≤ ∀m ≤ n , 0 < ∀i , Hi(X,SaE ⊗ Fm ⊗ F∨
l ) = 0

を満たすならば

(p∗F0 ⊗OP(E)(−r + 1), . . . , p∗Fn ⊗OP(E)(−r + 1), p∗F0 ⊗OP(E)(−r + 2), . . . , p∗F0, . . . , p
∗Fn)

は P(E)の強例外生成系となる．

ここで次のことに注意する．E = OCP2 ⊕ OCP2(1) とする．Bl1(CP3) ∼= PCP2(E) であり，ま
た (OCP2 ,OCP2(1),OCP2(2)) は CP2 の強例外生成系であることが知られている．H を CP3 の
超平面の狭義変換，E を Bl1(CP3) の例外因子とすると Pic(Bl1(CP3)) = ZH ⊕ ZE となる．
したがって Bl1(CP3) の正則直線束は OBl1(CP3)(aH + bE), (a, b ∈ Z) の形で表される．以降
O(a, b) := OBl1(CP3)(aH + bE)と表す．Lemma 2.4.を用いれば次が従う．

Lemma 2.5.
(O(0,−1),O(1,−2),O(2,−3),O(0, 0),O(1,−1),O(2,−2))

は Bl1(CP3)の強例外生成系．



3 ラグランジュ切断
Definition 3.1. (M,ω)をシンプレクティック多様体，L ⊂M を部分多様体とする．Lが ω|L = 0

を満たすとき，LをM のラグランジュ部分多様体という．

以降 B，M は２章で定義したものとする．

Definition 3.2. 切断 s : B → M の像がラグランジュ部分多様体であるとき，sをラグランジュ切
断という．

Lemma 3.3.

L(a, b) = 2π


　 a f1

1+
∑3

j=1 fj
+ b f1

1+
∑2

j=1 fj
　

a f2
1+

∑3
j=1 fj

+ b f2
1+

∑2
j=1 fj

　
a f3
1+

∑3
j=1 fj


は π :M → B のラグランジュ切断である．

4 主結果
Theorem 4.1. Lemma 3.5.の Bl1(CP3)の強例外生成系に対応するラグランジュ切断は

(L(0,−1), L(1,−2), L(2,−3), L(0, 0), L(1,−1), L(2,−2))

である．

証明は SYZ変換と呼ばれる方法で次のようにして為される．

• 正則直線束 O(a, b)は標準的に接続 D(a,b) が定まる．
• 接続形式 A(a,b) を用いて局所的に D(a,b) = d+A(a,b) と表せる．
• ある関数 Ψ(a,b) を用いて，A(a,b) から dxi の項を消す．
• 残った dyi の項の係数関数が L(a, b)となる．

Conjecture 4.2.
MoE(P ) ∼= DGE(Bl1(CP3))

主定理の結果は，予想 1の対象の間の構成に対応している．これは今まで示されていない多様体に対
する構成である．射についても対応を構成し，予想 1が示されれば

Tr(MoE(P )) ∼=Tr(DGE(Bl1(CP3)))

∼=Db(Coh(Bl1(CP3)))

となり，二木・梶浦の意味での HMS予想が Bl1(CP3)について解決する．
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