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概要
物体が外部の物理・化学的性質を変化させることで，自発的な運動を持続的に行うことを自己
駆動体運動と呼ぶ．我々は phase-field 法を応用した自己駆動体運動モデルに着目した．このモ
デルは液滴運動と固体運動を単一のモデルで再現できることが示唆されているが，数学解析は行
われていなかった．本研究では非局所項を伴う反応拡散系に対する特異摂動法の適用方法を考察
し，一次元定常パルス解の存在証明を行う．

1 はじめに
生物は外力を加えずとも持続的に運動を行うが，生物以外でもそのような運動を再現することは可

能であり，自己駆動体運動と呼ばれている．例えば，アルコールの液滴を水面上に置くと，アルコー
ルに共存する親水性と疎水性の構造から，界面活性剤の働きを示し，水面上の表面張力分布を変化さ
せることが知られており，対称性の破れ（液滴自体の非対称性や，水面下の水の流れなど）が発生す
ることによって，表面張力分布の不均一性から自発的な運動が継続して行われる．このような実験系
は実際の生物の運動に比べて非常に単純であることから，数理的に運動の解析を行うことによって，
工学的な応用のみならず，生物学的な知見の深化へと繋がることが期待されている．近年は細胞のよ
うに形状変化を伴いながら運動する系への興味が高まっており，それを再現するような実験系の開発
や数理モデルの構築が盛んに行われている．その中でも，本研究ではアルコールの液滴運動に代表さ
れるような，水面の表面張力の不均一性で自発的な運動が行われる液滴系に対して数理モデルを提案
した論文 [1]に注目する．[1]は次の phase-field型自己駆動体運動モデルを提案した：

ε2τut = ε2σ2uxx + u(1− u)(u− 1
2 + εγ(v)− εS[u](t)),

vt = vxx − kv + u,
x ∈ R, t > 0,

(u, v)(x, 0) = (u0, v0)(x), x ∈ R.
(1)

ここで，uは 0 ≤ u < 1
2，1

2 ≤ u ≤ 1のときに，それぞれ水面，自己駆動体を表す秩序変数であり，v
は水面上の界面活性剤分子濃度を表す変数である．0 < ε ≪ 1, τ > 0, σ > 0, k > 0であり，u0(x),
v0(x)は適当な初期関数である．また，関数 γ(v)と S[u](t)はそれぞれ水面上での表面張力を表す関
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数，自己駆動体の面積を時刻 t > 0において保存させるための関数であり，

γ(v) =
1

1 + (v/v1)m
+ γ0,

S[u](t) = α

(∫
R
G(u(x, t)) dx− S0

)
,

S0 =

∫
R
G(u0(x)) dx,

G(u) = u2(3− 2u)

で定義されている．[1]では G(u) = uの場合を扱っていたが，G(u) = u2(3− 2u)とすると，(1)の
第一式を L2 勾配流方程式として導出することが可能であることから，こちらを採用している．実際，
エネルギー汎関数 E(u)を次のように定める．

E(u) :=

∫
R

(
εσ2

2
u2x +

W (u)

ε

)
dx

+
α

12

(∫
R
G(u(x, t)) dx− S0

)2

+
1

6

∫
R
(1−G(u))γ(x) dx.

ここで，W (u) = 1
4u

2(1 − u)2 であり，表面張力関数は γ(x) と表されていることに注意されたい．
このとき，E(u)の第一変分を計算すると

d

dη
E(u+ ηψ)

∣∣∣∣
η=0

=

∫
R
−
{
εσ2uxx +

1

ε
u(1− u)(u− 1

2 + εγ(x)− εS[u](t))

}
ψ dx

=:

∫
R
−δE
δu
ψ dx

(∀ψ ∈ C∞
0 (R))

が成り立つので，ετut = δE
δu という方程式を定め，γ(x) を γ(v) に置き換えれば (1) の第一式を得

る．また，
dE

dt
= −ετ

∫
R
u2t dx ≤ 0

が成り立つ．

2 対称な定常パルス解の存在について
(1)は安定な定数定常解 (0, 0)を持つが，この定常解に局所的な摂動を与えることで，図 1(a)のよ

うなパルス解へと遷移する．定常パルス解 (u, v)(x; ε)は (2)式を満たす．
ε2σ2uxx + u(1− u)(u− 1

2 + εγ(v)− εū(ε)) = 0,

vxx − kv + u = 0,
x ∈ R,

(u, v)(±∞) = (0, 0).

(2)

ただし，
ū(ε) := α

(∫
R
G(u(x; ε)) dx− S0

)
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(a) 定常パルス解の u成分 (b) 内部遷移層 l(ε)と p(ε)の定義

図 1: (1)式を計算して得られた定常パルス解．パラメータは ε = 0.12, σ = 0.5, τ = 0.09, k = 2.5,

γ0 = 0.0, v1 = 0.05, m = 2, α = 1000.0, S0 = 3.0である

である．なお，定常パルス解 (u, v)(x; ε)の対称性から，半区間 [0,∞)に制限した次の問題を考察す
れば十分であることに注意されたい (図 1)．

ε2σ2uxx + u(1− u)(u− 1
2 + εγ(v)− εū(ε)) = 0,

vxx − kv + u = 0,
x ∈ (0,∞),

(ux, vx)(0) = (0, 0), (u, v)(∞) = (0, 0).

(3)

ただし，
ū(ε) := α

(
2

∫ ∞

0

G(u(x; ε)) dx− S0

)
(4)

である．
(3)の第一式は最高階の導関数に微小パラメータ εを含むため，u成分に内部遷移層が現れる (図

1(b))．したがって，解析的特異摂動法による解の存在証明が有効であることが予想されるが，従来
の特異摂動法を適用するにあたり，非局所項 ū(ε)の処理に問題が生じる．実際，特異摂動法による
一様近似解の構成において，定常問題 (3) を内部遷移層の位置で二つの境界層問題に分割すること
になるが，分割された各区間で (u, v)(x; ε)が満たす方程式に非局所項 ū(ε)が存在するため，他方の
区間における解の情報も必要になる．したがって，従来の特異摂動法の適用が困難である．しかし，
[2, 3] で用いられたアイディアを我々の問題に適用することで解析を可能にした．[2, 3] は積分保存
量を持つ 2成分の反応拡散系を対象として，特異摂動法を適用することにより，遷移層を一つもつ定
常解の存在証明を行った．彼らのアイディアは，まず積分保存量を εのみに依存する定数として任意
に与え，その定数に対して厳密解が存在することを証明し，その後，解の C1-接合によるパラメータ
の決定から，具体的に積分保存量を決定するという方法である．我々の問題で現れる非局所項 (4)に



注目すると，αと S0 を任意に固定すれば，εのみに依存している定数として扱えることが確認でき
る．したがって，我々の問題にもこのアイディアが適用可能であり，次の定理を得た．

Theorem 2.1. パラメータ α, S0, k を任意に固定したとき，内部遷移層の位置 x = l(ε)の主要項
l0 > 0 が次の関係式 (5) を満たせば，十分小さな ε > 0 に対して，図 1(b) のような定常パルス解
(u, v)(x; ε)が存在する．

α(2l0 − S0) = γ

(
1

k

tanh(
√
kl0)

1 + tanh(
√
kl0)

)
. (5)

証明は次の手順で行う：内部遷移層の位置 x = l(ε)を u(l(ε)) = 1
2 によって定義し，その位置にお

ける v 成分の値を p(ε) = v(l(ε))で定義する (図 1(b))．まず，未知パラメータ l(ε), p(ε), ū(ε)が
l(ε) = l0 + εl1,

p(ε) = p0 + εp1,

ū(ε) = ū0 + εū1

のように与えられていると仮定して，区間 I1 = [0, l(ε)] と I2 = [l(ε),∞) ごとに一様近似解
(U (i), V (i)) (i = 1, 2)を構成する．一様近似解 (U (i), V (i))は次の通りである．

U (1)(x/l(ε); ε; l1, p1, ū1)

= 1 + θ

(
x

l(ε)

){
ϕ
(1)
0

(
x− l(ε)

εl(ε)

)
+ εϕ

(1)
1

(
x− l(ε)

εl(ε)
; l1

)

+ ε2ϕ
(1)
2

(
x− l(ε)

εl(ε)
; l1, p1, ū1

)}
,

x ∈ I1,

V (1)(x/l(ε); ε; l1, p1, ū1)

= V
(1)
0

(
x

l(ε)

)
+ εV

(1)
1

(
x

l(ε)
; l1, p1

)
+ ε2V

(1)
2

(
x

l(ε)
; l1, p1

)
+ θ

(
x

l(ε)

)[
ε2ψ

(1)
0

(
x− l(ε)

εl(ε)

)
+ ε3

{
ψ
(1)
1

(
x− l(ε)

εl(ε)
; l1

)
− ψ

(1)
1 (0; l1)

}
+ ε4

{
ψ
(1)
2

(
x− l(ε)

εl(ε)
; l1, p1, ū1

)
− ψ

(1)
2 (0; l1, p1, ū1)

}]
,

x ∈ I1,

U (2)(x− l(ε); ε; p1, ū1)

= 0 + ϕ
(2)
0

(
x− l(ε)

ε

)
+ εϕ

(2)
1

(
x− l(ε)

ε

)
+ ε2ϕ

(2)
2

(
x− l(ε)

ε
; p1, ū1

)
,

x ∈ I2,

V (2)(x− l(ε); ε; p1, ū1)

= V
(2)
0 (x− l(ε)) + εV

(2)
1 (x− l(ε)) + ε2V

(2)
2 (x− l(ε))

+ ε2ψ
(2)
0

(
x− l(ε)

ε

)
+ ε3

{
ψ
(2)
1

(
x− l(ε)

ε

)
− ψ

(1)
1 (0)e−(x−l(ε))

}
+ ε4

{
ψ
(2)
2

(
x− l(ε)

ε
; p1, ū1

)
− ψ

(2)
2 (0; p1, ū1)e

−(x−l(ε))

}
.

x ∈ I2,



ただし，θ(y)は次の条件を満たす C∞([0, 1])級の cut-off関数である．

θ(y) = 0, 0 ≤ y ≤ 1

2
; 0 ≤ θ(y) ≤ 1,

1

2
≤ y ≤ 3

4
; θ(y) = 1,

3

4
≤ y ≤ 1.

また，

V
(1)
0 (y) =

p0 − 1
k

cosh(
√
kl0)

cosh(
√
kl0y) +

1

k
, y ∈ (0, 1),

V
(1)
1 (y; l1, p1) = e

√
kl0y

{
1

2
√
kl0

∫ y

1

e−
√
kl0sf1(s; l1) ds

+
e−

√
kl0

2
√
kl0 cosh(

√
kl0)

∫ 1

0

cosh(
√
kl0s)f1(s; l1) ds

}

− e−
√
kl0y

{
1

2
√
kl0

∫ y

1

e
√
kl0sf1(s; l1) ds

+
e
√
kl0

2
√
kl0 cosh(

√
kl0)

∫ 1

0

cosh(
√
kl0s)f1(s; l1) ds

}

+
p1 cosh(

√
kl0y)

cosh(
√
kl0)

y ∈ (0, 1),

V
(1)
2 (y; l1, p1) = e

√
kl0y

{
1

2
√
kl0

∫ y

1

e−
√
kl0sf2(s; l1) ds

+
e−

√
kl0

2
√
kl0 cosh(

√
kl0)

∫ 1

0

cosh(
√
kl0s)f2(s; l1) ds

}

− e−
√
kl0y

{
1

2
√
kl0

∫ y

1

e
√
kl0sf2(s; l1) ds

+
e
√
kl0

2
√
kl0 cosh(

√
kl0)

∫ 1

0

cosh(
√
kl0s)f2(s; l1) ds

}

− ψ
(1)
0 (0) cosh(

√
kl0y)

cosh(
√
kl0)

y ∈ (0, 1),

ϕ
(1)
0 (ξ) = − 1

1 + e
− l0ξ√

2σ

, ξ ∈ (−∞, 0),

ϕ
(1)
1 (ξ; l1) = − 1

σ2
ϕ̇
(1)
0 (ξ)

∫ 0

ξ

{
ϕ̇
(1)
0 (η)

}−2
∫ η

−∞
ϕ̇
(1)
0 (ζ)f3(ζ; l1) dζdη, ξ ∈ (−∞, 0),

ϕ
(1)
2 (ξ; l1, p1, ū1) = − 1

σ2
ϕ̇
(1)
0 (ξ)

∫ 0

ξ

{
ϕ̇
(1)
0 (η)

}−2
∫ η

−∞
ϕ̇
(1)
0 (ζ)f4(ζ; l1, p1, ū1) dζdη, ξ ∈ (−∞, 0),

ψ
(1)
0 (ξ) = −l20

∫ ξ

−∞

∫ η

−∞
ϕ
(1)
0 (ζ) dζdη, ξ ∈ (−∞, 0),

ψ
(1)
1 (ξ; l1) = −

∫ ξ

−∞

∫ η

−∞

{
l20ϕ

(1)
1 (ζ; l1) + 2l0l1ϕ

(1)
0 (ζ)

}
dζdη, ξ ∈ (−∞, 0),

ψ
(1)
2 (ξ; l1, p1, ū1) = −

∫ ξ

−∞

∫ η

−∞

{
−kl20ψ

(1)
0 (ζ)



+ l20ϕ
(1)
2 (ζ; l1, p1, ū1) + 2l0l1ϕ

(1)
1 (ζ; l1) + l21ϕ

(1)
0 (ζ)

}
dζdη, ξ ∈ (−∞, 0),

V
(2)
0 (y) = p0e

−
√
ky, y ∈ (0,∞),

V
(2)
1 (y; p1) = p1e

−
√
ky, y ∈ (0,∞),

V
(2)
2 (y) = −ψ(2)

0 (0)e−
√
ky, y ∈ (0,∞),

ϕ
(2)
0 (ξ) =

1

1 + e
ξ√
2σ

, ξ ∈ (0,∞),

ϕ
(2)
1 (ξ) =

1

σ2
ϕ̇
(2)
0 (ξ)

∫ ξ

0

{
ϕ̇
(2)
0 (η)

}−2
∫ ∞

η

ϕ̇
(2)
0 (ζ)f5(ζ) dζdη, ξ ∈ (0,∞),

ϕ
(2)
2 (ξ; p1, ū1) =

1

σ2
ϕ̇
(2)
0 (ξ)

∫ ξ

0

{
ϕ̇
(2)
0 (η)

}−2
∫ ∞

η

ϕ̇
(2)
0 (ζ)f6(ζ; p1, ū1) dζdη, ξ ∈ (0,∞),

ψ
(2)
0 (ξ) = −

∫ ∞

ξ

∫ ∞

η

ϕ
(2)
0 (ζ) dζdη, ξ ∈ (0,∞),

ψ
(2)
1 (ξ; p1, ū1) = −

∫ ∞

ξ

∫ ∞

η

ϕ
(2)
1 (ζ) dζdη, ξ ∈ (0,∞),

ψ
(2)
2 (ξ; p1, ū1) = −

∫ ∞

ξ

∫ ∞

η

{
ϕ
(2)
2 (ζ; p1, ū1)− kψ

(2)
0 (ζ)

}
dζdη, ξ ∈ (0,∞),

であり，

f1(s; l1) = 2l0l1(kV
(1)
0 (s)− 1),

f2(s; l1) = 2l0l1kV
(1)
1 (s; l1, p1) + l21(kV

(1)
0 (s)− 1),

f3(ζ; l1) = 2l0l1ϕ
(1)
0 (ζ)(1 + ϕ

(1)
0 (ζ))(ϕ

(1)
0 (ζ) + 1

2 ) + l20ϕ
(1)
0 (ζ)(1 + ϕ

(1)
0 (ζ))(γ(p0)− ū0),

f4(ζ; l1, p1, ū1) = l21ϕ
(1)
0 (ζ)(1 + ϕ

(1)
0 (ζ))(ϕ

(1)
0 (ζ) + 1

2 )

+ l20ϕ
(1)
0 (ζ)(1 + ϕ

(1)
0 (ζ))

{
γ′(p0)(V

(1)
0

′
(1)ζ + p1)− ū1

}
+ 2l0l1

[
3
{
ϕ
(1)
0 (ζ)

}2

+ 3ϕ
(1)
0 (ζ) + 1

2

]
ϕ
(1)
1 (ζ; l1)

+ 2l0l1ϕ
(1)
0 (ζ)(1 + ϕ

(1)
0 (ζ))(γ(p0)− ū0)

+ l20(1 + 2ϕ
(1)
0 (ζ))(γ(p0)− ū0)ϕ

(1)
1 (ζ; l1) + 3l20(ϕ

(1)
0 (ζ) + 1

2 ){ϕ
(1)
1 (ζ; l1)}2,

f5(ζ) = (γ(p0)− ū0)ϕ
(2)
0 (ζ)(1− ϕ

(2)
0 (ζ)),

f6(ζ; p1, ū1) = −ϕ(2)0 (ζ)(1− ϕ
(2)
0 (ζ))

{
γ′(p0)(V

(2)
0

′
(0)ζ + p1)− ū1

}
+ 3(ϕ

(2)
0 (ζ) + 1

2 ){ϕ
(2)
1 (ζ)}2 − (γ(p0)− ū0)(1− 2ϕ

(2)
0 (ζ))ϕ

(2)
1 (ζ)

である．各区間 I1, I2 における一様近似解を用いることで，各区間における厳密解が

{
u(1)(x; ε; l1, p1, ū1) = U (1)(x/l(ε); ε; l1, p1, ū1) + ε2Ũ (1)(x/l(ε); ε; l1, p1, ū1),

v(1)(x; ε; l1, p1, ū1) = V (1)(x/l(ε); ε; l1, p1, ū1),+ε
2Ṽ (1)(x/l(ε); ε; l1, p1, ū1),

x ∈ I1,

{
u(2)(x; ε; p1, ū1) = U (2)(x− l(ε); ε; p1, ū1) + ε2Ũ (2)(x− l(ε); ε; p1, ū1),

v(2)(x; ε; p1, ū1) = V (2)(x− l(ε); ε; p1, ū1) + ε2Ṽ (2)(x− l(ε); ε; p1, ū1)
x ∈ I2,

(6)



の形で得られることが [4, 5] と同様にして示される．ただし，(U (1), V (1)) ∈ Xε := Aε × B,

(U (2), V (2)) ∈ Xε,κ := Aε,κ ×Bκ，

Aε := {u ∈ C2([0, 1]) | u′(0) = 0, u(1) = 0, sup
y∈[0,1]

2∑
i=0

|
(
ε
d

dy

)i

u(y)| < +∞},

B := {v ∈ C2([0, 1]) | v′(0) = 0, v(1) = 0},

Aε,κ := {u ∈ C2([0,∞)) | u(0) = 0, u(∞) = 0, sup
y∈[0,∞)

2∑
i=0

eκy|
(
ε
d

dy

)i

u(y)| < +∞},

Bκ := {v ∈ C2([0,∞)) | v(0) = 0, v(∞) = 0, sup
y∈[0,∞)

2∑
i=0

eκy|
(
d

dy

)i

v(y)| < +∞}

である．ただし，κ > 0である．また，(Ũ (1), Ṽ (1))と (U (2), V (2))はそれぞれ次の性質を満たす．

Lemma 2.2. 任意に与えられた l∗1, p
∗
1, ū

∗
1 に対して，∆ρ = {(l1, p1, ū1) ∈ R3 | |l1− l∗1|+ |p1−p∗1|+

|ū1 − ū∗1| < ρ} (ρ > 0)と定める．このとき，ある ε1 > 0と ρ1 > 0が存在し，任意の ε ∈ (0, ε1)に
対して，(Ũ (1), Ṽ (1))(y; ε; l1, p1, ū1),

∂
∂l1

(Ũ (1), Ṽ (1))(y; ε; l1, p1, ū1),
∂

∂p1
(Ũ (1), Ṽ (1))(y; ε; l1, p1, ū1),

∂
∂ū1

(Ũ (1), Ṽ (1))(y; ε; l1, p1, ū1)は Xε に属し，Xε の位相において連続である．さらに，∥∥∥(Ũ (1), Ṽ (1))(·; ε; l1, p1, ū1)
∥∥∥
Xε∥∥∥∥∥ ∂

∂l1
(Ũ (1), Ṽ (1))(·; ε; l1, p1, ū1)

∥∥∥∥∥
Xε∥∥∥∥∥ ∂

∂p1
(Ũ (1), Ṽ (1))(·; ε; l1, p1, ū1)

∥∥∥∥∥
Xε∥∥∥∥∥ ∂

∂ū1
(Ũ (1), Ṽ (1))(·; ε; l1, p1, ū1)

∥∥∥∥∥
Xε



= o(1) as ε ↓ 0

が (l1, p1, ū1) ∈ ∆ρ1 に関して一様に成り立つ．

Lemma 2.3. 任意に与えられた p∗1, ū
∗
1 に対して，∆ρ = {(p1, ū1) ∈ R2 | |p1 − p∗1|+ |ū1 − ū∗1| < ρ}

(ρ > 0)と定める．このとき，ある ε2 > 0, ρ2 > 0, κ > 0が存在し，任意の ε ∈ (0, ε2)に対して，
(Ũ (2), Ṽ (2))(y; ε; p1, ū1),

∂
∂p1

(Ũ (2), Ṽ (2))(y; ε; p1, ū1),
∂

∂ū1
(Ũ (2), Ṽ (2))(y; ε; p1, ū1)は Xε,κ に属し，

Xε,κ の位相において連続である．さらに，∥∥∥(Ũ (2), Ṽ (2))(·; ε; p1, ū1)
∥∥∥
Xε,κ∥∥∥∥∥ ∂

∂l1
(Ũ (2), Ṽ (2))(·; ε; p1, ū1)

∥∥∥∥∥
Xε,κ∥∥∥∥∥ ∂

∂p1
(Ũ (2), Ṽ (2))(·; ε; p1, ū1)

∥∥∥∥∥
Xε,κ∥∥∥∥∥ ∂

∂ū1
(Ũ (2), Ṽ (2))(·; ε; p1, ū1)

∥∥∥∥∥
Xε,κ



= o(1) as ε ↓ 0



が (p1, ū1) ∈ ∆ρ2 に関して一様に成り立つ．

次に，内部遷移層の位置 x = l(ε) において，各区間における解が C1 の意味で接合されるという
条件 

Φ(ε) := l(ε)
{
u(1)x (l(ε); ε)− u(2)x (l(ε); ε)

}
= 0,

Ψ(ε) := l(ε)
{
v(1)x (l(ε); ε)− v(2)x (l(ε); ε)

}
= 0

(7)

と，非局所項 ū(ε)が満たす条件

Σ(ε) := ū(ε)− α

(
2

∫ ∞

0

G(u(x; ε)) dx− S0

)
= 0 (8)

を課す．(7) と (8) によって，本来未知パラメータであった l(ε), p(ε), ū(ε) が一意に定まり，区間
[0,∞)における厳密解の存在が示される．(7)と (8)に各区間の解を代入することで

Φ(ε) =
1

ε

{
ϕ̇
(1)
0 (0)− l0ϕ̇

(2)
0 (0)

}
+
{
ϕ̇
(1)
1 (0; l1)− l0ϕ̇

(2)
1 (0)− l1ϕ̇

(2)
0 (0)

}
+ ε

{
ϕ̇
(1)
2 (0; l1, p1, ū1)− l0ϕ̇

(2)
2 (0; p1, ū1)− l1ϕ̇

(2)
1 (0)

}
+O(ε2)

=:
1

ε
Φ−1 +Φ0 + εΦ1 +O(ε2) = 0,

Ψ(ε) =
{
V

(1)
0

′
(1)− l0V

(2)
0

′
(0)
}

+ ε
{
V

(1)
1

′
(1; l1, p1) + ψ̇

(1)
0 (0)− l0V

(2)
1

′
(0; p1)− l0ψ̇

(2)
0 (0)− l1V

(2)
0

′
(0)
}
+O(ε2)

=: Ψ0 + εΨ1 +O(ε2) = 0,

Σ(ε) = {ū0 − α(2l0 − S0)}+ ε {ū1 − 2αl1}+O(ε2)

=: Σ0 + εΣ1 +O(ε2) = 0

を得る．Φ−1 = 0は任意の l0 > 0に対して成り立つことが確認できる．さらに，Φ0 = 0, Ψ0 = 0,

Σ0 = 0より 
ū0 = γ(p0),

p0 =
tanh(

√
kl0)

k(1 + tanh(
√
kl0))

,

ū0 = α(2l0 − S0)

が従い，(l0, p0, ū0)が満たすべき関係式 (5)が導かれる．また，Φ1 = 0, Ψ1 = 0, Σ1 = 0より
Φ1 =

√
kl0(1 + tanh(

√
kl0))p1 − l0(1− tanh(

√
kl0))l1 = 0,

Ψ1 = −2
√
2

3σ
{l0γ′(p0)p1 − l0ū1 + constant} = 0,

Σ1 = ū1 − 2αl1 = 0

を得る．上記より
{
2
√
2e2

√
kl0 − γ′(p0)

}
p1 = constantという関係式が従うが，γ′(p0) < 0である

ことから p1 が一意に定まり，l1, ū1 も一意に定まる．これによって定まる l1, p1, ū1 を，それぞれ
l∗1, p

∗
1, ū

∗
1 とおく．

ここで，l(ε) = l0 + εl̂, p(ε) = p0 + εp̂, ū(ε) = ū0 + εû とおき，Φ(ε) = εΦ∗(l̂, p̂, û; ε), Ψ(ε) =

εΨ∗(l̂, p̂, û; ε), Σ(ε) = εΣ∗(l̂, p̂, û; ε)によって定まる作用素 Φ∗(l̂, p̂, û; ε), Ψ∗(l̂, p̂, û; ε), Σ∗(l̂, p̂, û; ε)



を考える．このとき，十分小さな δ > 0 と ε0 > 0 が存在して，Φ∗, Ψ∗, Σ∗ は l̂ ∈ (l∗1 − δ, l∗1 + δ),

p̂ ∈ (p∗1 − δ, p∗1 + δ), û ∈ (ū∗1 − δ, ū∗1 + δ), ε ∈ (0, ε0)に対して連続であり，l̂, p̂, ûに関して C1 級
である．さらに，先ほどの議論から (Φ∗,Ψ∗,Σ∗)(l∗1, p

∗
1, ū

∗
1; 0) = 0が成り立つ．また，ヤコビ行列式

∂(Φ∗,Ψ∗,Σ∗)

∂(l̂,p̂,û)
(l∗1, p

∗
1, ū

∗
1; 0)を計算すると

∂(Φ∗,Ψ∗,Σ∗)

∂(l̂, p̂, û)
(l∗1, p

∗
1, ū

∗
1; 0)

=

∣∣∣∣∣∣
0 − 2

√
2l0γ

′(p0)
3σ

2
√
2l0

3σ

−l0(1− tanh(
√
kl0))

√
kl0(1 + tanh(

√
kl0)) 0

−2α 0 1

∣∣∣∣∣∣
=

2
√
2l20

3σ
(1− tanh(

√
kl0))

{
2α

√
ke2

√
kl0 − γ′(p0)

}
であり，γ′(p0) < 0より ∂(Φ∗,Ψ∗,Σ∗)

∂(l̂,p̂,û)
(l∗1, p

∗
1, ū

∗
1; 0) ̸= 0が従う．したがって，陰関数定理により，あ

る ε0 > 0 が存在し，ε ∈ (0, ε0) に対して，Φ∗(l̂(ε), p̂(ε), û(ε); ε) = 0, Ψ∗(l̂(ε), p̂(ε), û(ε); ε) = 0,

Σ∗(l̂(ε), p̂(ε), û(ε); ε) = 0 を満たし，かつ，l̂(0) = l∗1, p̂(0) = p∗1, û(0) = ū∗1 を満たすものが存在
する．
最後に，l̂(ε), p̂(ε), û(ε)をそれぞれ (6)の l1, p1, ū1 に代入することで，x = l(ε)において C1 の

意味で接合され，かつ，(4)を満たす半区間 [0,∞)上の厳密解の存在が従う．
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