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概要
一般に，2つの結び目の多項式不変量が異なれば、それらは異なる結び目であるが，その逆は
正しいとは限らない．本研究では，結び目の図式の中でも特に対称性をもつものに着目し，その
多項式不変量を計算することで，同一の多項式不変量をもつ異なる結び目の無限族を構成した．
本講演では，この結び目の無限族について紹介する．

1 導入
3 次元球面 S3 内の成分 n の絡み目とは，1 次元球面 S1 の n 個の非行和の S3 への埋め込みの

像のことをいい，特に成分数が 1 の絡み目のことを結び目という．現在まで，大域的な問題として
「与えられた結び目が同値であるか判定せよ」という分類問題が考えられている．ここで，与えられ
た結び目が同値であるとは，2 つの結び目が S3 上の向きを保つ同相写像で移り合うときのことを
いう．また，与えられた 2 つの結び目が同値であることの必要十分条件として，以下で定義される
Reidemeister移動の操作で移り合うことが知られている．

定義 1.1 (Reidemeister移動). 結び目の図式において，以下の変形を Reidemeister移動と呼び，左
から RI，RII，RIIIと表す．
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結び目理論とは，この分類問題の解決のために位相不変量を研究する分野とも言える．しかし，与
えられた 2つの結び目が同値であることを示すのは大変難しく，今もなお，その位相不変量の研究が
続けられている．
結び目の分類の研究には，多項式不変量を用いることが有効な手段の 1つである．これは，「2つ

の結び目の不変量が異なれば，それらは異なる結び目である」という性質に基づいている．しかし，
相異なる結び目であるにも関わらず，多項式不変量が一致する例がこれまで数多く知られている．今
回はその中でも，Jones多項式と呼ばれる，1985年に Jonesが組み紐群の表現を用いて定義した，多
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項式不変量に注目する．ここでは，後に Kauffmanにより再度構成された Kauffman 括弧多項式を
用いた定義を紹介する．

定義 1.2 (Kauffman 括弧多項式). 向き付けられていない絡み目の図式 D から変数 Aの整係数ロー
ラン多項式への関数であって，以下の 3つの条件で特徴づけられる関数を Kauffman 括弧多項式と
いう．

1. < ⃝ >= 1．
2. < D ⊔⃝ >= (−A−2 −A2) < D >．
3. < >= A < > + < >．

ここで，⃝は交点のないほどけた結び目を表し，D ⊔⃝は，図式 D と，単純閉曲線⃝で自分自身
とも D とも交点をもたないものとの和を表す．

注意 1.3. Kauffman括弧多項式は，RII，RIIIで不変である．RIでは，以下が成立する．

< >= −A3 < >, < >= −A−3 < > .

上の注意 1.3より，Kauffman括弧多項式は結び目の位相不変量ではない．そこで，以下の writhe

w(D)を考えることにより，結び目の位相不変量となる Jones多項式が定義できる．

定義 1.4 (writhe). 向き付けられた絡み目の図式Dの writhe w(D)とは，以下の方式で各交点に対
して付けられた符号を，D の交点すべてについて足し合わせたものをいう．

.

図 4

定義 1.5 (Jones多項式). Dを向き付けられた絡み目 Lの図式とする．このとき，t−1/2 に関する整
係数ローラン多項式

V (L) = ((−A)−3w(D) < D >)t1/2=A−2 ∈ Z[t−1/2, t1/2]

を Lの Jones多項式という．

Jones多項式が一致するような，異なる結び目の研究は，金信 [1–4],を始め，Jones [5,6], Przytycki
[8]，Rolfsen [9,10]，Watson [11,12]等の研究が知られている．このような結び目の例として，金信
が与えた結び目の無限族 [3, 4]を挙げる．



定理 1.6 ( [3]). 任意の p, q ∈ Z に対して，以下の結び目の無限族を K(p, q) とする．このとき，
{K(p, q) | pと q の和が等しい．}は，Jones多項式が一致するような異なる結び目の無限族である．

図 5 K(p, q).

ここで，整数 n ∈ Z ∪∞に対して， は，以下の n−タングルを表す．

.

図 6

定理 1.7 ( [4]). 任意の p, q, r ∈ Zに対して，以下の結び目の無限族をK(p, q, r)とする．このとき，
{K(1,−q, q) | q ∈ N}は，Jones多項式が一致するような異なる結び目の無限族である．

図 7 K(p, q, r).



この結び目の無限族は，以下で定義される Kauffman多項式という多項式不変量を用いることでお
互いを区別することができる．

定義 1.8 (Kauffman多項式). 次の性質をもつ関数

Λ : { S3内の向き付けられた絡み目 } → Z[a±1, z±1]

が一意的に存在する．

1. Λ(U) = 1である．ここで，U はほどけた結び目を表す．
2. Λ(D)は D に RII，RIIを施しても不変である．
3. Λ( ) = aΛ( ), Λ( ) = a−1Λ( )．
4. D+, D−, D0, D∞ を以下の図で定めたとき，次の関係式が成立する．

Λ(D+) + Λ(D−) = z(Λ(D0) + Λ(D∞)).

.

図 8

このとき，向き付けられた絡み目 L の図式を D とし，その writhe を w(D) としたとき，F (L) =

a−w(D)Λ(D) ∈ Z[a±1, z±1]を Kauffman多項式という．

この結び目の無限族がもつ特徴の 1つに，与えられた結び目の平面への射影図を考えたとき，垂直
方向を軸として，線対称となっていることが挙げられる．このような図式の対称性をもつ結び目の
ことを symmetric unionという．symmetric unionの概念は，1957年に木下と寺坂によって導入さ
れ，Lamm [7]によって一般化された，いわば結び目の連結和の一般化と思えるものである．

定義 1.9 ( [7]). {0} × R を軸とする R2 において，D を向き付けられていない結び目 K の図式，
D∗ を K の鏡像 K∗ の図式とする．ただし，D∗ は D を {0} × R に対して線対称に移動させたも
のとする．ここで，i = 0, 1, · · · , k に対して，Ti を {0} × R 上の，D と D∗ の間の 0− タングル
とする．このとき，図 9 のように，µ ≥ 1 に対して，i = 0, 1, · · · , µ − 1 について，Ti を ∞− タ
ングルに，i = µ, µ + 1, · · · , k について，Ti を ni− タングルに置き換える．この置き換えた図式
を D と D∗ の symmetric unionといい，D ∪D∗(T0, T1, · · ·Tk)と表す．さらに，K および K∗ を
D ∪D∗(T0, T1, · · ·Tk)の partial knotという．



図 9

例 1.10. 定理 1.6の結び目の無限族は，8の字結び目 41 が partial knot であり，41 の symmetric

union 41 ∪ 41
∗(∞, p, q)である．また，定理 1.7の結び目の無限族は，三葉結び目 31 が partial knot

であり，31 の symmetric union 31 ∪ 31
∗(∞,−q, 1, q)である．

symmetric unionは，結び目理論における局所問題の 1つである「スライス・リボン予想」と呼ば
れるものと関連が深く，現在もなおその研究が行われている．
今回は定理 1.7の結び目の無限族を参考に，Jones多項式が一致する結び目の無限族を構成したの

で紹介する．

2 主定理
定理 2.1. 任意の p, q, r ∈ Z に対して，以下の結び目の無限族を M(p, q, r) とする．このとき，
{M(1, q,−q) | q ∈ N}は，Jones多項式が一致するような異なる結び目の無限族である．

図 10



注意 2.2. この結び目は，41 が partial knotであり，41 の symmetric union 41 ∪ 41
∗(∞, q, 1,−q)

である．また，これらの結び目は Kauffman多項式が異なることを用いて区別できる．

主結果は，M(p, q, r)の Jones多項式及び Kauffman多項式を直接計算することにより得られる．
以下の命題 2.3と命題 2.5は，それぞれM(p, q, r)の Jones多項式及び Kauffman多項式を計算して
得られた結果である．

命題 2.3. 任意の p, q, r ∈ Zに対して，

V (M(p, q, r)) = (−1)−q−r(V (M(p, 0, 0))− 1) + 1.

証明の概略. 図 10に含まれる，q−タングル内の q 個の交点と r−タングル内の r個の交点の交差解
消を施して Kauffman 括弧多項式を計算すると，

< M(p, q, r) > = A−q−r < M(p, 0, 0) > +(−1)qA−r+3q(1− (−A−4)r)

+ (−1)rA−q+3r(1− (−A−4)q) + (−1)q+rA3(q+r)(1− (−A−4)r)(1− (−A−4)q)

が得られる．ここから w(M(p, q, r)) = p + q + r であることを用いて計算を行うことで，求める多
項式が得られる．

注意 2.4. 命題 2.3より，{M(p, q, r) | pと qと rの和が等しい．}は Jones多項式が一致する結び目
の無限族である．

定理 2.5. 任意の q, q′ ∈ Zに対して，F (M(1, q,−q))と F (M(1, q′,−q′))が一致する必要十分条件
は，q = q′ となることである．

証明の概略. この計算は [4] を参考に行っているため，詳細はそちらを参照されたい．図 10 に含ま
れる，q−タングル内の q 個の交点と r−タングル内の r 個の交点の交差交換及び交差解消を施して
Λ(M(p, q, r))を計算すると，

Λ(M(p, q, r)) = σq
2(Λ(M(p, 1,−1))− Λ(M(p, 1,−1)))

− σqσq − 1(Λ(M(p, 1, 0))− Λ(M(p, 0, 1)))

+ Λ(M(p, 0, 0))

+ a−p(−σq
2za−1 − σqτq + σq+1τq + a−qτ−q)(Λ(U

2))

が得られる．ここで，U2 はほどけた 2成分の絡み目を表し，σi ∈ Z[z]と τi ∈ Z[a±1, z]は

σi−1 + σi+1 = zσi,

τi−1 + τi+1 = zτi + a−iz,

σ0 = τ0 = τ1 = 0, σ1 = 1

で定義される多項式である．このとき，Λ(M(1, q,−q)) を考える．まず，q ≥ 3 のとき，z の最
高次数が 2q + 7 であることが直接の計算で確かめられる．q = 0, 1, 2 のときは，計算機を用いて
F (M(1, 0, 0)), F (M(1, 1,−1)), F (M(1, 2,−2))を実際に求めることで，互いに異なることがわかる．
ここから求める結果を得る．



定理 2.1の証明. 命題 2.3より，任意の q ∈ Nに対して，

V (M(1, q,−q)) = V (M(1, 0, 0))

が得られる．また，命題 2.5より，これらの結び目を区別することができる．
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