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概要
代数的組合せ論においてデザインとは，「全体を近似する良い部分集合」である．一方，加法的
整数論において Prouhet̶Tarry̶Escott（PTE）問題とは，ある次数までの冪和が一致するよ
うな整数の多重集合を求めるディオファントス問題である．本稿では「組合せデザイン」という
離散的な空間上のデザインから高次元 PTE問題の解を構成する手法を紹介する．

1 導入
加法的整数論において，Prouhet–Tarry–Escott（PTE）問題というディオファントス問題が古く
から研究されてきた（問題 2参照）．Matsumura–Sawa [7] は，2次元 PTE問題と楕円デザインを
初めて関連付け，それらの相互間研究を提案した．楕円デザインとは，Pandey [10]による球面デザ
インの一般化であり，「ある次数までの多項式の重み付き積分を有限個の点での関数値の算術平均と
して与える楕円上の集合」である．楕円デザインは「幾何的デザイン」という連続的な空間上のデザ
イン構造である．
2024年 11月の早稲田整数論セミナーにおいて上記の研究について講演した際，雪江明彦氏より以
下の質問を頂いた．

問題 1 (雪江). PTE問題と離散的な空間上のデザインを関連付けられるか？

本研究では，問題 1 への回答の 1 つとして，高次元 PTE 問題と組合せデザインを関連付けた
（[8]）．本稿では特に直交配列（orthogonal array, OA）及びブロックデザインとの関連について得ら
れた結果を中心に解説する．

2 Prouhet–Tarry–Escott（PTE）問題
本節では，PTE問題の一般化である r 次元 PTE問題（PTEr）について述べる．

問題 2 ([1], 次数mサイズ nの r 次元 PTE問題 (PTEr)). 与えられた自然数 m, nに対して以
下を満たす互いに素な多重集合

A := {(a11, . . . , a1r), . . . , (an1, . . . , anr)}, B := {(b11, . . . , b1r), . . . , (bn1, . . . , bnr)} ⊂ Zr
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を求めよ：1 ≤ k1 + · · ·+ kr ≤ mなる任意の (k1, . . . , kr) ∈ Zr
≥0 に対し，

n∑
i=1

ak1
i1 · · · akr

ir =

n∑
i=1

bk1
i1 · · · bkr

ir .

mを次数，nをサイズといい，PTEr の解（以下 PTEr 解）を

[(a11, . . . , a1r), . . . , (an1, . . . , anr)] =
n
m [(b11, . . . , b1r), . . . , (bn1, . . . , bnr)]

または
[A] =n

m [B]

と表す．

PTE問題の歴史は Goldbachや Eulerの時代に遡る．彼らは 1750年から 1751年にかけて以下の
PTE1 解の無限系列を発見した：

[a, b, c, a+ b+ c] =4
2 [0, a+ b, a+ c, b+ c].

1910 年代に Tarry や Escott らが研究し，この問題は Tarry–Escott 問題と呼ばれるようになった.

Wright [12]が 1959年に Prouhet [11]による 1851年の貢献を指摘して以来，Prouhet–Tarry–Escott
問題と呼ばれるようになった．この辺りの歴史は Dickson の本（[3]）に詳しくまとめられている．
PTE1 は，Alpers–Tijdeman [1] により PTEr へと拡張された（問題 2）．さらに，この構成法は
Ghiglione [4]により PTEr へと拡張された．
PTE1 は暗号理論における巨大な連続する滑らかな整数の探索（[2]）やグラフ理論における彩色多
項式の零点の整数性 （[6]）等の様々な応用もある．また，PTEr は離散トモグラフィーに応用され
ている（[1, 4]）．

3 直交配列（OA）
本節では，直交配列（OA）という組合せデザインについて説明する．

定義 3 ([5, p. 1], 直交配列（orthogonal array, OA）). s, t, λ, r, N ∈ Nとする．N × r 行列が水
準 s，強さ t，指数 λ，制約数 r，サイズN の直交配列（OA）であるとは，任意の N × t行列に対
して，全ての sシンボルからなる順序付 t対（st 個）が丁度 λ回ずつ現れることである．そのような
OAを OA(N, r, s, t)λ と書く．

OAは実験計画法において，少ない実験回数で各因子の効果や因子間の交互作用の効果を測定する
ために応用されている（[5, Chapter 11]）．
主結果では，互いに素な OAから PTEr 解を構成した（定理 10）．

定義 4 (互いに素な OA). 同じパラメータを持つ OA(N, r, s, t)λ X1, X2 が互いに素であるとは，共
通する行を持たないことである．



例 5. 2つの 4× 3の配列

X1 :=

0 1 1 0
0 1 0 1
0 0 1 1

⊤

, X2 :=

1 0 0 1
1 0 1 0
1 1 0 0

⊤

は互いに素な OA(4, 3, 2, 2)1 である．実際，X1, X2 のどの 2 列に着目しても (0, 0), (0, 1), (1, 0),

(1, 1)が丁度 λ = 1回ずつ現れており，共通する行を持たない．

注意 6 (Cf. [5, p. 244]). {0, 1}を有限体 F2 とみなすと例 5の OA X1 は F3
2 の 2次元部分空間であ

る．このような OAを線形なOAといい，線形な OAを平行移動することで互いに素な OAを構成
できる．

4 ブロックデザイン
本節では，ブロックデザインのうち，t-(r, k, λ)デザインという組合せデザインについて説明する．
以下では，有限集合 D の k 元部分集合全体を D{k} と表す．

定義 7 (t-(r, k, λ)デザイン（組合せ tデザイン）). λ, t, k, r を t ≤ k ≤ r を満たす非負整数とする．
r 個の要素からなる有限集合 R と B ⊂ R{k} の組 (R,B) が t-(r, k, λ) デザイン（組合せ t デザイ
ン） であるとは，任意の T ⊂ R{t} に対し，

|{B ∈ B | T ⊂ B}| = λ

となることである．Rの元を点，Bの元をブロックという．特に，t = 2のときはBIBD (balanced

incomplete block design)と呼ばれる．

主結果では，互いに素な t-(r, k, λ)デザインから PTEr 解を構成した（定理 12）．

定義 8 (互いに素な t-(r, k, λ)デザイン). 同じパラメータを持つ t-(r, k, λ)デザイン (R,B1), (R,B2)

が互いに素であるとは，B1 ∩ B2 = ∅となることである．

例 9 (Fano平面). R = Z/7Zとし，B を

B = {{i, i+ 1, i+ 3} | i ∈ R},

で定めると，(R,B)は 2-(7, 3, 1)デザインである．実際，

B = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}}

の各ブロックは以下の図の同じ数字からなる辺（円を含む）に対応しており，任意の 2点を通る辺は
ただ 1 本である．(R,B) を Fano 平面という．また，ブロック集合は下図のように同じ色の (0, 1)

ベクトル（特性ベクトル）と同一視される．



<latexit sha1_base64="m4zcCwzHWiTpAarZzfQ3hcv88HE="></latexit>

0

<latexit sha1_base64="Eefnjc9cOfV2eEm1wkkFq68gkgg="></latexit>

1

<latexit sha1_base64="DzznEL1s9KAkHZv9GXMX/JpYEds="></latexit>

3

<latexit sha1_base64="EkTaDmKQg601GLGwPUYtVj2P7lM="></latexit>

4

<latexit sha1_base64="zZBKOxaPca/jwvugJeNXMGz7FBw="></latexit>

5

<latexit sha1_base64="8wOwb6wvGIcDfKUfgt8COBLiEv0="></latexit>

6

<latexit sha1_base64="gsNXL4bwS/c17UU3cYGEQU/ufik="></latexit>

2

図 1: Fano平面



1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1


図 2: Fano平面の特性ベクトル

同様に，B′ を
B′ = {{i, i+ 2, i+ 3} | i ∈ R},

で定めると，(R,B′)は (R,B)と互いに素な 2-(7, 3, 1)デザインである．

5 主結果
本節では，OAを用いた PTEr 解の構成法とブロックデザインを用いた PTEr 解の構成法を紹介
する．

定理 10 ([8], OA-based construction). X1, X2 を互いに素な OA(N, r, s, t)λ の行ベクトルの集合
とする．このとき，(X1, X2)は次数 tサイズ N の PTEr 解を与える．

例 11. X, Y を例 5の OA(4, 3, 2, 2)1 の行ベクトルの集合とすると，これらは互いに素なので，定
理 10より，[X] =4

2 [Y ]は PTE4 解である．

定理 12 ([8], t-design-based construction). (R,B1), (R,B2) を b ブロックからなる互いに素な
t-(r, k, λ)デザインの組とし，X1, X2 をそれぞれ B1, B2 の特性ベクトルの集合とする．このとき，
(X1, X2)は次数 tサイズ bの PTEr 解を与える．

例 13 ([9, Example 1.3]). Gを巡回置換 (1234567) ∈ S7で生成される位数 7の巡回群，OrbG(x) :=

{gx | g ∈ G}をベクトル x ∈ Q7 の G軌道，

X := OrbG(1, 1, 0, 1, 0, 0, 0), Y := OrbG(0, 0, 1, 0, 1, 1, 0)

とする．このとき，X, Y は例 9の互いに素な 2-(7, 3, 1)デザインに対応する特性ベクトルなので，
定理 12より，[X] =7

2 [Y ]は PTE7 解である．

より一般に講演者らは，group divisible designと呼ばれる組合せデザインに対し，定理 12を拡張
した．
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