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概要
岡潔らの結果によれば、複素領域が正則関数の定義域として自然であるかどうか (正則性) は、その境界
が満たす幾何学的条件 (擬凸性) によって特徴づけられます。こうした境界を微分幾何学的に調べる理論が
CR幾何学です。
本講演では、Chern–Simons 理論を用いて CR 多様体の 2 次特性数を定義し、それが CR 幾何学にお
いて古くから知られている不変量を大域的に一般化するものであることを紹介します。さらに、Kähler–
Einstein計量から得られる領域の双正則不変量との比較を通じて、この 2次特性数の整数性が、CR多様体
を Euclid空間に超曲面として埋め込む際の障碍を与えることを説明します。

1 導入
1.1 CR多様体の定義

CR多様体とは、一言で言えば、複素多様体の中の実超曲面を一般化した概念です。X2(n+1) を複素多様体、
M2n+1 を実超曲面とします。このとき、M には外側の複素多様体に由来する幾何構造

T 1,0M := T 1,0X|M ∩ TCM

が備わっています。さらに、複素多様体の可積分性から

[T 1,0M,T 1,0M ] ⊂ T 1,0M

が成り立ちます。この状況を抽象化して、次の定義をします。

定義 1.1. M2n+1 を奇数次元多様体とします。M の上に超平面分布 HM ⊂ TM があって、そこに概複素構
造 J : HM → HM が備わっており、概複素構造から得られる複素化の分解

TCM ⊃ HCM = T 1,0M ⊕ T 0,1M

に関して
[T 1,0M,T 1,0M ] ⊂ T 1,0M

が成り立つとき、(M,T 1,0M)を CR多様体といいます。T 1,0 を保つような CR多様体の間の微分同相写像
を CR同型写像といいます。

もちろん、外側の複素多様体の双正則写像に由来する実超曲面の間の微分同相写像は CR同型写像になって
います。

∗ E-mail:syuyamatsumoto@g.ecc.u-tokyo.ac.jp



次に、CR幾何学の分野で重要な凸性の概念を定義します。まずは CR多様体M が複素多様体 X2(n+1) の
領域 Ωの境界M = ∂Ωである場合を考えます。このとき、M には Ωの境界としての向きが定まっています。
ρを Ωの内部で負、外部で正であるような定義関数とします。ρの複素 Hessianが定める T 1,0M の上の 2次
形式

(Z,W ) 7→ i∂∂ρ(Z,W ), Z,W ∈ T 1,0M

が正定値であるとき, 領域 Ωないし向きづけられた CR多様体M は強擬凸であるといいます。

θ :=
i

2
(∂ − ∂)ρ|TM

とおくと、θ は HM⌟ θ = 0 を満たす実 1 形式であり、その外微分 dθ = i∂∂ρ は先程考えていた ρ の複素
Hessianと一致します。この状況を抽象化して、次の定義をします。

定義 1.2. M を向きづけられた CR多様体とするとき、

(TM/HM)
∗ ' HM⊥ (⊂ T ∗M)

の positiveな大域切断 θ がとれます。θ の外微分が定める T 1,0M 上の 2次形式

lθ(Z,W ) := dθ(Z,W )

を Levi形式といいます。θを θ̂ = eΥθ (Υ ∈ C∞(M,R))に取り替えると、Levi形式は lθ̂ = eΥlθ に替わるの
で、その符号は θ のとり方によらずに定まります。そこで、Levi形式が正定値であるとき、M は強擬凸であ
るといいます。このとき 2n+ 1形式

θ ∧ (dθ)n

は体積形式になっているので、θ は接触形式になっています。以降、CR多様体が強擬凸であるという仮定の
もとで、θ のことを単に接触形式と呼びます。

1.2 なぜ CR幾何学か
ここでは、どうして CR幾何学が重要であるかについて、個人的な見解を述べます。Cn+1 の領域 Ωは、そ

の上の正則関数 f で、これ以上定義域を拡張することができないようなものが存在するとき、正則領域である
といいます。また、C2 級の境界をもつ領域 Ωについて、その境界の Levi形式が非負であるとき、Ωは擬凸領
域であるといいます。岡潔らの結果により、この 2つの概念は一致することが知られています。

定理 1.3 ([19, 2, 18]). Ωを Cn+1 の領域で、C2 級の境界をもつものとする*1。このとき、Ωが正則領域であ
ることと擬凸領域であることは、同値である。

それでは、正則領域を分類することを考えてみましょう。ここでは特に、Ω が有界で、なめらかな境界を
もっていて、境界M = ∂Ωが強擬凸である場合に注目します。そのような領域が 2つあったとして、それら
を Ωi (i = 1, 2)で表し、境界をMi = ∂Ωi とおきます。
境界の間の CR同型写像 f : M1 → M2 があったとします。このとき、Bochner–Hartogs原理 [1]と呼ばれ

る論法により、f がある双正則写像 F : Ω1 → Ω2 の境界値になっていることが示されます。逆に、Fefferman

は次の定理を示しました。

*1 擬凸性の概念は境界が C2 級でなくても定義でき、この定理も境界の微分可能性の仮定なしに成り立ちます。本稿では境界上の微
分幾何学に重きをおいているので、この形で定理を述べました。



定理 1.4 ([10]). 有界強擬凸領域の間の双正則写像 F : Ω1 → Ω2 は、境界までなめらかに延長され、CR同型
写像 f : M1 → M2 を引き起こす。

これにより、有界強擬凸領域を分類するためには、その境界である強擬凸 CR多様体を分類すればよいこと
がわかりました。この意味で、強擬凸 CR多様体の CR幾何学は多変数複素解析の分野で非常に重要なものに
なっています。

1.3 CR多様体の局所不変量
ここでは、強擬凸 CR 多様体を局所的に完全に分類する Chern の結果 [8] を紹介します。結果として、

Cartan束上の標準 Cartan接続というものが CR構造を分類することになるのですが、まずはそのモデルケー
スとして、CR球面上の標準 Cartan接続を扱います。
行列

h =

 1
In

1


で与えられる Cn+2 の Lorentz–Hermite計量を考えます。h に関して長さが 0 である非零ベクトル全体の集
合を

N =
{
v ∈ Cn+2 \ {0} | ‖v‖h = 0

}
とおきます。このとき、射影 [·] : Cn+2 \ {0} → CPn+1 による N の像 [N ] は、(CPn+1 の実超曲面として
の)CR構造も込めて球面 S2n+1 と同一視することができます。SU(h) = SU(n+1, 1)のN への作用は S2n+1

の CR自己同型を引き起こし、PSU(n+ 1, 1) = SU(n+ 1, 1)/Zn+2 は S2n+1 の上に効果的に作用します。し
たがって、P ⊂ PSU(n + 1) を球面上の 1 点の安定化部分群とすれば、S2n+1 = PSU(n + 1, 1)/P であり、
主 P 束 PSU(n+ 1, 1) → S2n+1 が得られます。この主 P 束が Cartan束のモデルであり、PSU(n+ 1, 1)の
Maurer–Cartan形式 ωMC ∈ A1(PSU(n+ 1, 1), su)が標準 Cartan接続のモデルになっています。
一般には、次のことが成り立ちます。

定理 1.5 ([8, 24]). 強擬凸 CR多様体M に対して、ある一定の手続きによって、主 P 束 G → M が構成され
る。G の上には、以下の 4条件を満たす微分形式 ω ∈ A1(G, su)がただ一つ存在する。

1. ω を G の各ファイバーに制限したものは、P のMaurer–Cartan形式を与える。
2. 構造群 P の G への右作用に関して、R∗

gω = Ad(g−1)ω が成り立つ。
3. 各点 u ∈ G に対して、ωu : TuG → su(n+ 1, 1)は同型写像である。
4. 曲率形式 Ω := dω + 1

2 [ω, ω]はある Lie環論的な条件*2をみたす。

G を Cartan束、ω を標準 Cartan接続と呼ぶ。
(分類定理): 強擬凸 CR多様体の間に CR同型写像が存在するための必要十分条件は、Cartan束の間の写

像で、標準 Cartan接続を保つものが存在することである。

一般に微分形式を保つ写像の存在は Frobenius の定理によって判定できるので、Chern の結果は、強擬凸
CR構造の同値性を微分式系の可積分性のレベルにまで還元したことになります。

*2 具体的な条件式については [8]を、Lie環論的な導出については [17]を見てください。



1.4 Cheeger–Simons微分指標
前節では、標準 Cartan接続が強擬凸 CR構造の局所的な情報をすべて持っていることを説明しました。こ

こでは、接続から情報を引き出す理論として、Cheeger–Simons微分指標 [6]を紹介します。
E → M を階数 kの複素ベクトル束、∇をその上の接続とします。不変多項式 Φ ∈ I∗(gl(k,C))に対し、特

性形式 Φ(∇)そのものは接続のとり方に依存しますが、その de Rhamコホモロジー類は依存しません。そこ
で、「微分したら特性形式になるもの」を考えると、それは接続のとり方に強く依存するであろうことが期待さ
れます。しかし特性形式は一般に完全であるとは限らないので、なにか微分形式や特異コチェインの枠組みを
超えた概念が必要です。

定義 1.6 ([6]). M を多様体とします。なめらかな k − 1サイクルに R/Zの元を対応させる準同型写像

f : Zk−1(M,Z) → R/Z

に対して、ある微分形式 ω ∈ Ak(M)が存在して f ◦ ∂ = ω mod Zとなるとき、すなわち

f(∂c) =

∫
c

ω + Z, c ∈ Ck(M,Z)

が成り立つとき、f を次数 k の微分指標といいます。

Chern–Weil準同型は微分指標の世界にまで持ち上げることができます。階数 k の複素ベクトル束とその上
の接続の組 (E → M,∇)を対象とし、接続を保つ束写像を射とする圏を Ek としましょう。Φ ∈ Ir0 (gl(k,C))
を特性類が整係数になるような不変多項式とします。

定理 1.7 ([6]). Ek から次数 2rの微分指標のなす圏への反変関手 SΦ : (E → M,∇) 7→ SΦ(∇)で、SΦ(∇)◦∂ =

Φ(∇)を満たすものがただ一つ存在する。

本稿では SΦ(∇)のことを Cheeger–Simons微分指標と呼ぶことにします。
「微分したら特性形式になるもの」として最も有名なのは、Chern–Simons形式 [9]でしょう。彼らのアイデ
アは、ベクトル束 E → M をそのフレーム束 π : F(E) → M に引き戻したもの π∗E は自明束であるから、特
性形式を引き戻したもの π∗Φ(∇)は完全であり、dTΦ(∇) = π∗Φ(∇)をみたすF(E)上の微分形式 TΦ(∇)が存
在するであろう、というものでした。実際にそのような TΦ(∇)の標準的な構成方法があり、Chern–Simons

形式と呼ばれています。Cheeger–Simons微分指標と Chern–Simons形式の間には次の関係が成り立ちます。

命題 1.8. π∗SΦ(∇)は、TΦ(∇)を Zk−1(F(E),Z)に制限し、値を mod Zしたものに等しい。

最後に、Cheeger–Simons微分指標が「微分したら特性形式になる」ことから、Stokesの定理との類似で予
想されうる事実を紹介します。

命題 1.9. Ω2n+2をコンパクトかつ向きづけられた境界付き多様体、M2n+1 = ∂Ωをその境界とする。E → Ω

を階数 k の複素ベクトル束、∇ をその上の接続とし、整係数不変多項式 Φ ∈ In+1
0 (gl(k,C)) をとる。この

とき、
〈SΦ(∇|M ),M〉 =

∫
Ω

Φ(∇) + Z

が成り立つ。



2 先行研究
ここでは、標準 Cartan接続の Chern–Simons形式から得られる大域 CR不変量である Burns–Epstein不

変量について、今回の研究と直接関係する 3つの先行研究を紹介します。

2.1 Burns–Epstein ’88 [3]

M を 3次元コンパクト強擬凸 CR多様体で、T 1,0M が自明であるものとします。このとき、Cartan束 G
も自明になるので、大域切断 s : M → G をとることができます。そこで

µc2(M) :=

∫
M

s∗Tc2(ω)

とおくと、これは sのとり方によらないことが直接計算によって確かめられます。µc2 をBurns–Epstein不
変量と言います。

Burns–Epstein不変量のもともとの動機は、CR多様体の埋め込み不可能性を、不変量の非整数性から導く
ことでした。実際、Chern–Simonsの原論文 [9]は、Riemann多様体の Levi–Civita接続の Chern–Simons形
式から同様にして得られる不変量の非整数性が、Riemann多様体を与えられた余次元の Euclid空間に共形埋
め込みする際の障碍を与えていることを示しています。しかし、次の例が示すように、µc2 の非整数性は CR

多様体の埋め込み不可能性を導きませんでした。

例 2.1. Ωr =
{
(z, w) ∈ C2 | (log |z|)2 + (log |w|)2 < r2

}を Reinhardt領域とし、その境界をMr = ∂Ωr と
おきます。Mr は定義から C2 に埋め込み可能です。しかし、

µc2(Mr) =
3π

8r2

が成り立ちます。

後に示すように、3次元 CR多様体の C2 への埋め込み不可能性を検出するのは、c2 ではなく、(c1)
2 に対応

する Chern–Simons不変量でした。

2.2 Burns–Epstein ’90 [4]

こんどは M を Cn+1 の有界強擬凸領域 Ω の境界とします。この設定では Cartan 束が自明になるとは
限らないので、Cartan 束の大域切断をとることはできません。そこで Burns と Epstein は、Cartan 束上
の特別なサイクル c ∈ H2n+1(G,Z) で、射影すると CR 多様体の基本類になるものを考え、その上で標
準 Cartan 接続の Chern–Simons 形式を積分することによって、CR 不変量を定義しました：不変多項式
Φ = ci1 · · · cip (i1 + · · ·+ ip = n+ 1)に対して、

µΦ(M) :=

∫
c

TΦ(ω)

を Burns–Epstein不変量と呼びます。
さらに彼らは、不変量が境界付き Gauss–Bonnet型の公式の境界項になることを示しました。これについて

説明するために、少し準備をします。



2.2.1 Monge-Ampère方程式
Ω上の実数値関数 ρに対して、Monge–Ampère作用素 J を

J [ρ] := det

[
ρ ∂ρ

∂zj

∂ρ
∂zi

∂2ρ

∂zi∂zj

]

で定義します。Cheng–Yau [7]の結果より、Ωの定義関数であって、Monge–Ampère方程式

J [ρ] = −1 on Ω

を満たすものが一意に存在することが知られているのですが、この定義関数の境界正則性は ρ ∈ Cn+(5/2)−ε(Ω)

程度であり、特に n が小さいときに不都合が生じる可能性があります。そこで、Monge–Ampère 方程式の
Fefferman [11]の意味での近似解

J [ρ] = −1 +O(ρn+2), ρ ∈ C∞(Ω)

をとり、以降これをひとつ固定します。

2.2.2 繰り込み接続
Ω上の完備 Kähler計量

g = −i∂∂ log(−ρ)

を考えます。上述のMonge–Ampère方程式は、g が Kähler–Einsteinであることを述べているのですが、今
回は近似解をとっているため、境界に近ければ近いほど Kähler–Einsteinになっています。完備性から、g お
よびその Chern接続∇g は境界に近づくにつれて発散していきますが、∇g の発散成分を

Y j
i k := (δ j

i ρk + δ j
k ρi)/(−ρ)

とおいて ∇g から引くことによって、境界までなめらかに延長される接続 ∇ = ∇g − Y が得られます。これ
を繰り込み接続と呼びます。

さて、Burnsと Epsteinは次の定理を証明しました。

定理 2.2. 次の境界付き Gauss-Bonnet型公式が成り立つ。∫
Ω

cn+1(∇) = χ(Ω) + µcn+1
(M)∫

Ω

ci1 · · · cip(∇) = µcip ···cip (M) (p > 1)

2.3 丸亀 ’16 [15]

Burns–Epstein ’90の不変量の定義におけるサイクル cは、Cn+1 の座標に依存しており、それが不変量の
一般化の妨げになっていました。そこで丸亀 [15]は、最後に述べた境界付き Gauss–Bonnet型公式を介して、
Burns–Epstein不変量を次のように一般化しました。
X2(n+1) を複素多様体、Ωをその相対コンパクトな強擬凸領域とし、境界をM = ∂Ωとおきます。繰り込

み接続を構成するために、Ωの定義関数 ρで、Monge–Ampère方程式の [14]の意味での近似解になっている
ものが存在すると仮定します。これは次に紹介する擬 Einstein構造の存在と同値になっています。



2.3.1 擬 Einstein構造
CR多様体M の標準束を K =

∧n+1
(T 0,1M)⊥ で定義します。M の接触形式 θ を決めるごとに、標準束上

の接続 Dθ が、[13, 2章]のようにして決まります。

定義 2.3. Dθ が平坦であるとき、θ を擬 Einstein構造と呼びます。

ρがMonge–Ampère方程式の [14]の意味での近似解であるとき、θ = i
2 (∂ − ∂)ρ|TM はM の擬 Einstein

構造になっています。この対応により、近似解の存在と境界上の擬 Einstein構造の存在は同値であることが知
られています [14]。特に、Cn+1 の有界強擬凸領域の境界は必ず擬 Einstein構造を持っています。

さて、この ρから前と同様に繰り込み接続 ∇を構成します。ξ をM に沿った外向き法線 (1, 0)ベクトルと
し、∇ξ-triv を T 1,0X|M の接続で、ξ を平行化するものとします。丸亀 [15]は次の定理を示しました*3。

定理 2.4. 繰り込み Chern–Gauss–Bonnet公式∫
Ω

cn+1(∇) = χ(Ω) +

∫
M

cn+1(∇ξ-triv,∇)

が成り立つ*4。境界積分は CR不変量である。これを µcn+1
(M)と書き、Burns–Epstein不変量と呼ぶ。

3 主結果
3.1 境界付き Gauss–Bonnet型公式の一般化
丸亀 ’16 を参考にして、境界付き Gauss–Bonnet 型公式を一般化しました。丸亀 ’16 の設定で、さらに

T 1,0X|M には r + 1フレーム s = (s1, . . . , sr+1)、すなわち至るところ一次独立な r + 1個の大域切断が存在
すると仮定します。このとき障碍理論により、留数サイクルと呼ばれる 2r サイクル

Rescq (s) ∈ H2r(Ω,Z), q = n− r + 1

が存在して、sを平行化する任意の接続 ∇s-triv に対して∫
Ω

(cq ·Ψ)(∇) =
〈
Ψ(T 1,0Ω),Rescq (s)

〉
+

∫
M

cq(∇s-triv,∇) ∧Ψ(∇) (3.1)

が成り立ちます [20, 21]。ここで Ψ = cj1 · · · cjp (j1 + · · ·+ jp = r = n− q + 1)とおきました。真ん中のペア
リングは常に整数値であることに注意してください。丸亀’16の式は r = 0、s = (ξ)とおいた場合に相当しま
す。r > 0のときは、一般に r + 1フレーム sの標準的なとり方が無いため、sのとり方を変えるごとに境界
積分の値は整数だけ変化します。それでも、次の定理が成り立ちます。

定理 3.1. 式 (3.1)の境界積分を mod Zしたもの∫
M

cq(∇s-triv,∇) ∧Ψ(∇) + Z

は CR不変量である。

この結果は、最高次の Chern多項式以外の不変多項式に対応する Burns–Epstein不変量を一般化するには、
値を R/Zで考えたほうが自然であることを示唆しています。

*3 ξ や ∇ξ-triv のとり方などを少し一般化してあります。
*4 cn+1(∇ξ-triv,∇)は相対 Chern–Simons形式です。例えば [21]を見てください。



3.2 不変量の定義
M2n+1 をコンパクト強擬凸 CR 多様体で擬 Einstein 構造をもつものとします。Cartan 束 G の構造群 P

は PSU(n+ 1, 1) = SU(n+ 1, 1)/Zn+2 の部分群なので、局所的に n+ 2重被覆 G̃ → G をとって、構造群を
P̃ ⊂ SU(n+ 1, 1)にすることができます。P̃ の標準的な表現に関する G̃ の同伴ベクトル束

T = G̃ ×P̃ Cn+2

をトラクター束、標準 Cartan接続の同伴接続 ∇T を標準トラクター接続と呼びます。
トラクター束は局所的にしか存在しませんが、CR多様体の標準束の分数べきをテンソルして

T ′ = K− 1
n+2 ⊗ T

とおくと、これは大域的に存在することがわかります*5。標準束の分数べきには擬 Einstein構造からくる平坦
接続 Dθ が備わっているので、T ′ 上の接続を

∇T ′
= Dθ ⊗∇T

とおきます。Φ = ci1 · · · cip (i1 + · · ·+ ip = n+ 1)とおきます。

定理 3.2. Cheeger–Simons微分指標の基本類における値

µ̃Φ(M) :=
〈
SΦ(∇T ′

),M
〉
∈ R/Z

は擬 Einstein接触形式 θ のとり方によらない、CR不変量である。これを Burns–Epstein不変量と呼ぶ。

定義から直ちに、

命題 3.3. Burns–Epstein ’88の状況で、

µ̃c2(M) = µc2(M) + Z

が成り立つ。

また、CR幾何学における ambient metric construction [25, 12, 5]と丸亀 [16]の計算と命題 1.9より、

定理 3.4. もし T 1,0X|M が r + 1フレーム sをもてば、式 (3.1)の境界積分に関して

µ̃cq·Ψ(M) =

∫
M

cq(∇s-triv,∇) ∧Ψ(∇) + Z

が成り立つ。

系 3.5. µ̃Φ は、Burns–Epstein ’90や丸亀 ’16における不変量を mod Zしたものとも一致する。

Ωが Cn+1 の有界強擬凸領域であれば、T 1,0Cn+1|M は必ず n + 1フレームをもつので、c1(∇) = 0 on M

であることも合わせると、

系 3.6. M2n+1 が Cn+1 に埋め込めるならば、µ̃c1·Ψ(M) = 0である。

これより、µ̃c1·Ψ 6= 0であることを示せば、CR多様体は実余次元 1の複素 Euclid空間に埋め込めないこと
が従うのですが、まだそのような非自明な例は見つかっていません。

*5 例えば [25]を見てください。



3.3 計算例
Y 2n をコンパクト複素多様体、(L, h) → Y を負のラインバンドルとします。曲率形式から得られる Kähler

計量を
ω := −iΘh = i∂∂ log h

とおき、(Y, ω)はKähler–Einstein多様体であると仮定します。M を (L, h)に付随するU(1)束、θ = −i∂ log h

を接続形式とすると、(L, h) が負であることから M は強擬凸、(Y, ω) が Einstein であることから θ は擬
Einstein接触形式になっています。このとき、次の公式が成り立ちます。

定理 3.7. (Y, ω)の Einstein定数を λとおくと、

µ̃c1·Ψ(M) = −λ

∫
Y

Ψ(T 1,0Y ) mod Z

が成り立つ。

証明は竹内 [22, 23]の結果を参考にしています。一般の不変多項式に対応する不変量に対しても同様にして
計算できますが、Chern指標を経由するため複雑になってしまうので、ここでは省略します。
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