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Abstract

デング熱の流行予測において、数理モデル（SEIR等）は季節性の骨格を捉えることに長け
ているが、突発的な流行規模の予測には限界がある。一方、純粋な機械学習モデルは長期予測
において軌道の安定性を欠く。本研究では、これらを統合するハイブリッドフレームワークを
提案する。本稿では特に、予測モデル決定に至るまでの比較検討プロセスに焦点を当てる。初
期実験において、短期的な予測には Lasso等の線形モデルが有効である一方、長期的な再帰的
予測（Rolling Forecast）には不向きであることが判明した。この課題に対し、本研究では予測
対象を「残差の水準」から「残差の増分」へと定式化し直すことで、LSTMネットワークが感
染拡大のモメンタムを学習可能にした。最終的に、提案手法は長期予測において既存手法を有
意に上回る精度（RMSE: 84）を達成した。

1 はじめに
デング熱は、蚊媒介性感染症の中でも最も急速に拡大している脅威の一つである。その流行は、生
物学的なメカニズム（蚊のライフサイクル等）と、確率的な環境要因（気候変動、人間行動）が複
雑に絡み合って発生する。既存の予測手法は、決定論的な「数理モデル（Mechanistic Models）」
と、データ駆動的な「機械学習モデル（ML Models）」に二分されるが、それぞれが一長一短を持
つ。本研究の目的は、数理モデルを「骨格」として利用し、そこから逸脱する予測残差（Residuals）
を機械学習で補正するハイブリッドモデルを構築することにある。

2 提案手法の構成
2.1 データセットと実験設定
本研究では、シンガポール環境庁（NEA）の監視データに基づき、2012年から 2022年までの週次
デング熱感染者数データを使用した。長期予測性能を厳密に評価するため、データセットは時系
列順に分割した。具体的には、開始から第 399週までを学習データ（Training Set）とし、第 400
週以降（Week 400+）をテストデータ（Test Set）として設定した。また、蚊の繁殖に影響を与
える環境要因として、Open-Meteo APIより取得したERA5再解析データ（平均気温、総降水量、
相対湿度）を、ラグ特徴量としてモデルに入力している。
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2.2 Phase 1: 数理モデルによる決定論的骨格の抽出
まず、ヒトと蚊の相互作用を記述する季節性 SEIR-SEIモデルを構築した（図 1）。ここで重要と
なるのは、シンガポールの実データに対し、L-BFGS-B法（準ニュートン法の一種）を用いて逆
問題解析を行った点である。これにより、観測データに内在する**「風土病としての安定した季
節変動（Endemic Skeleton）」**をパラメータとして同定し（表 1）、これをベースライン Ymech(t)
とした。
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Figure 1: 本研究で用いた SEIR-SEIモデルの概念図。ヒト（Host）と蚊（Vector）の 2つの個体
群における相互感染サイクルを記述する。潜伏期間（Exposed）を考慮することで、デング熱特有
の感染遅延をモデル化している。

Table 1: モデルパラメータの設定とキャリブレーション結果（一部抜粋）
記号 定義 設定値/範囲 備考
Nh ヒト総人口 5,917,600 シンガポール統計
σh ヒト潜伏率 (1/EIPh) 1/5.9 文献値
γh ヒト回復率 1/5.0 文献値
µv 蚊の死亡率 0.30 校正値 (Vector Control反映)
β0 基本伝達率 最適化により推定 L-BFGS-B
m0 蚊/ヒト比率ベースライン 最適化により推定 L-BFGS-B

2.3 Phase 2: 残差学習の定式化と工夫
次に、実測値 Yobs(t) と数理モデルの予測値 Ymech(t) との乖離を、対数残差 δt として定義する。

δt = log

(
Yobs(t)

Ymech(t)

)
(1)

しかし、図 3(A)に示すように、δt は非定常なトレンドを含むため、直接予測することは長期的な誤
差蓄積の原因となる。そこで本研究では、静的な水準 δt ではなく、その時間的な増分（Increment）
∆δt を学習対象として再定式化した（図 3(B)）。

∆δt = δt − δt−1 (2)

LSTMネットワークはこの ∆δt（流行の加速・減速のモメンタム）を学習し、予測時にはこれを
再帰的に積算することで、元の流行軌道を再構成する。



Figure 2: Phase 1の結果：SEIR-SEIモデルの数値シミュレーション。基本再生産数 R0 = 1.3787
において、ヒトの個体群動態が風土病としての定常状態（Endemic Equilibrium）へ収束する挙動
を示す。この安定した季節変動が、予測における決定論的な「骨格」となる。
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Figure 3: 学習対象の比較。(A)対数残差 δt は非定常なトレンドを含み、長期予測で分散が拡大
しやすい。(B)増分 ∆δt に変換することで信号が定常化（ゼロ平均化）され、LSTMによる流行
モメンタム（速度）の学習が安定する。



3 モデル選択と検証プロセス（実験）
最適な予測モデルを決定するため、我々は以下の 3段階の比較実験を行った。このプロセスこそ
が、本研究における工学的な主要貢献である。

3.1 Step 1: 線形・非線形モデルの競合評価（短期予測）
まず、1ステップ先（翌週）の残差を予測するタスクにおいて、複数の統計的学習手法（Lasso,
Ridge）と深層学習（LSTM）を比較した（図 4(A)の条件）。その結果、複雑な LSTMよりも、単
純な正則化線形モデルである Lasso回帰 が最も低いRMSE（93）を記録した（LSTMは 95）。特
徴量分析の結果、直近 1〜2週のラグ変数が支配的であったことから、短期的な残差変動は「局所
的な線形性（Local Linearity）」が強く、パラメータ数の少ない線形モデルが有利であったと結論
付けた。
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Figure 4: 予測プロトコルの違い。(A)条件的予測：各ステップで入力が実測値（Ground Truth）
にリセットされるため、誤差がリセットされる。(B)ローリング予測：自身の予測値を次ステップ
の入力として再利用（Recursion）するため、モデルの誤差が時間とともに蓄積・伝播する。

3.2 Step 2: 長期ローリング予測における線形モデルの破綻
次に、より実用的な早期警戒シナリオを想定し、未来の観測値を使わずに自身の予測値を入力と
して使い回す「長期ローリング予測（Rolling Forecast）」を行った（図 4(B)）。この設定下では、
Step 1で優秀だった Lasso回帰の精度は劇的に悪化した（RMSE > 130）。線形モデルは「現在の
位置」からの線形な外挿しかできないため、わずかな初期誤差が時間の経過とともに指数関数的
に増大する「誤差蓄積（Error Accumulation）」の問題に直面した。

3.3 Step 3: LSTMと増分学習による解決
長期予測における誤差蓄積を防ぐため、予測対象を前述の「増分 ∆δt」に変更し、長期記憶を持つ
LSTM を再適用した。増分形式にすることでデータが定常化（Stationary）され、LSTMの学習
が安定した。その結果、提案手法（Hybrid-LSTM）は長期予測において最も低いRMSE（84）を
達成し、線形モデルの弱点を克服することに成功した。

4 最終結果と結論
実験結果の定量的評価を表 2に示す。
本研究では、数理モデルの「安定性」とニューラルネットワークの「適応性」が相補的である

ことを実証した。特に、短期予測と長期予測では支配的なダイナミクスが異なり、長期的な軌道
再構成には LSTMによる増分学習が不可欠であることを明らかにした。本フレームワークは、気
候変動下における感染症早期警戒システムへの応用が期待される。



Figure 5: 実験 1の結果（短期予測区間）。多モデル比較において、単純な線形モデルである Lasso
（青色四角）が、Gradient Boosting（緑線）や LSTMなどの複雑なモデルと同等以上の追従性を
示している（RMSE: Lasso 93 vs LSTM 95）。これは短期的な残差変動に強い局所線形性が存在
することを示唆する。

Table 2: 長期ローリング予測における精度比較 (RMSE)
モデル RMSE (Cases/Week)
Phase 1 Baseline (数理モデルのみ) 289
Lasso Regression (線形モデル) 134
LSTM (静的残差 δt 学習) 106
Proposed LSTM (増分 ∆δt 学習) 84



Figure 6: 実験 2の結果（長期予測ウィンドウ）。短期では優秀だった Lasso（青線）やRidge（緑
線）が、2022年の大きな流行ピークに対して顕著な過小評価と位相の遅れを起こしている。これ
は再帰的予測における線形外挿の限界を示している。

Figure 7: 最終結果：提案手法（LSTMによる増分 ∆δ 学習）。赤破線が提案モデルの予測値。Phase
1のベースライン（青点線）からの逸脱を動的に補正し、数理モデル単体では捉えきれない複雑な
流行ピークの形状（黒実線）を高い精度で再構成することに成功した（R2 = 0.961）。



Figure 8: LSTMモデルによる増分予測（∆δ）の詳細挙動。条件付き・加重学習（Conditional
Weighted Learning）により、急激な変動に対しても頑健な追従性を示している。
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