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概 要
本稿では，複素 Ginzburg–Landau半群と重み函数の交換関係を考える．まず，交換関係の
明示公式を基礎として，複素 Ginzburg–Landau半群の重み付き評価を精密化する．次に，得
られた交換関係の明示公式とその評価を，優藤田冪を持つ複素 Ginzburg–Landau型方程式へ
応用し，時間大域解の重み付き評価を導出するための新たな方法論を確立する．尚，本稿は黄
益 副教授（南京師範大学，中国）と小澤徹 教授（早稲田大学）との共同研究 [4]に基づく．

1 導入
次の複素Ginzburg–Landau型方程式の初期値問題を考える：∂tu− ν∆u = f (u) , (t, x) ∈ (0,+∞)× Rn,

u (0) = u0, x ∈ Rn.
(P)

ここで，u : [0,+∞)×Rn → Cは未知函数，u0 : Rn → Cは t = 0で与えられた初期値，ν ∈ Cは
Re ν > 0を満たす定数である．さらに，f : C → Cはある p > 1, λ ∈ Cを用いて f (ξ) := λ |ξ|p−1 ξ

または f (ξ) := λ |ξ|pと定義される単独冪とする．より一般には，f : C → Cは f (0) = 0及びあ
る p > 1, C > 0に対して

|f (ξ)− f (η)| ≤ C
(
|ξ|p−1 + |η|p−1

)
|ξ − η| , ∀ξ, η ∈ C

を満たすと仮定する．
複素Ginzburg–Landau方程式

∂tu− ν∆u = µu+ λ |u|p−1 u

は，超伝導，超流動，パターン形成など，様々な自然現象を記述する数理モデルとして知られて
いる [1]．また，この方程式は，指数函数的に膨張する宇宙（de Sitter宇宙）を始めとする一様等
方的な時空に於けるスカラー場方程式の非相対論的極限としても導出される [11]．このような背
景から，複素Ginzburg–Landau方程式は物理学に於いて重要な方程式の一つと見做されている．
本研究の対象である複素 Ginzburg–Landau「型」方程式は，通常の複素 Ginzburg–Landau方程
式に於いて µ = 0とした場合に対応する．
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複素Ginzburg–Landau型方程式は，Im ν = Imλ = 0かつ uが実数値のとき，藤田型方程式と
して知られる放物型方程式になる．藤田型方程式の場合と同様に，複素Ginzburg–Landau型方程
式の初期値問題 (P)に対する解の挙動は，非線形項の冪の指数 pと藤田指数 1 + 2/nの大小関係
によって大きく変化することが知られている [2, 3, 5, 12, 10]．ここでは，藤田優臨界 p > 1 + 2/n

の場合に焦点を当て，次の命題で与えられる時間大域解の長時間漸近挙動を考察する．以下，各
q ∈ [1,+∞]に対し，Lebesgue空間 Lq (Rn) = Lq (Rn;C)のノルムを ‖ · ‖Lq と表す．
命題 1.1 ([12]) p > 1 + 2/nとする．このとき，ある ε0 > 0が存在し，‖u0‖L1 + ‖u0‖L∞ ≤ ε0

を満たす任意の u0 ∈
(
L1 ∩ L∞) (Rn)に対して初期値問題 (P)は一意的な時間大域解

u ∈ X := C
(
[0,+∞) ;L1 (Rn)

)
∩ L∞ ((0,+∞)× Rn)

を持つ．さらに，次の減衰評価が成り立つ：

sup
q∈[1,+∞]

sup
t>0

(1 + t)
n
2

(
1− 1

q

)
‖u (t)‖Lq < +∞. (1.1)

初期値問題 (P)に対する時間大域解の長時間挙動を考える上で，次式で定義される複素Ginzburg–

Landau半群 (etν∆; t ≥ 0
)の漸近展開が基本的な役割を果たす：

etν∆φ :=

φ, t = 0,

Gtν ∗ φ, t > 0.

ここで，Gtν : Rn → Cは

Gtν (x) := (4πtν)−
n
2 exp

(
−|x|2

4tν

)
, x ∈ Rn

で与えられる複素Gauss核，Gtν ∗ φはGtν と φの Rnに於ける合成積である：

(Gtν ∗ φ) (x) :=
∫
Rn

Gtν (x− y)φ (y) dy.

複素Ginzburg–Landau半群の漸近展開を述べるための準備として，いくつかの記号を導入する．
まず，正整数全体の集合と非負整数全体の集合をそれぞれ Z>0, Z≥0と表し，Zn

≥0の要素を多重指
数と呼ぶ．さらに，α = (α1, . . . , αn) ∈ Zn

≥0と x = (x1, . . . , xn) ∈ Rnに対して

|α| :=
n∑

j=1

αj , α! :=

n∏
j=1

αj !, xα :=

n∏
j=1

x
αj

j , ∂α :=

n∏
j=1

∂
αj

j , ∂j :=
∂

∂xj

と定義する．次に，各m ∈ Z>0に対し，L1 (Rn)を基礎とするm次の重み付き空間を

L1
m (Rn) :=

{
φ ∈ L1 (Rn) ; |α| ≤ mを満たす任意の α ∈ Zn

≥0に対して xαφ ∈ L1 (Rn)
}

と定義する．但し，xαφは函数Rn 3 x 7→ xαφ (x) ∈ Cを表す．また，L1
0 (Rn) := L1 (Rn)と置く．

以上の準備の下，複素Ginzburg–Landau半群の漸近展開は次のように記述される．
命題 1.2 ([10]) m ∈ Z≥0，φ ∈ L1

m (Rn)とする．このとき，任意のα ∈ Zn
≥0及び任意の q ∈ [1,+∞]

に対して

lim
t→+∞

t
n
2

(
1− 1

q

)
+

|α|+m
2
∥∥∂αetν∆φ− Λα,m (t;φ)

∥∥
Lq = 0



が成り立つ．但し，

Λα,m (t;φ) :=
∑

|β|≤m

Mβ (φ) ∂
α+βGtν ,

Mβ (φ) :=
1

β!

∫
Rn

(−y)β φ (y) dy

である．

命題 1.2より複素Ginzburg–Landau半群の漸近形は複素Gauss核及びその導函数の線形結合で
与えられることが分かる．また，命題 1.2の φ ∈ L1

m (Rn)という仮定は，線形結合の係数Mβ (φ)

が複素数として意味を持つための十分条件である．命題 1.2の証明は複素Gauss核（の導函数）の
空間変数に関する Taylor展開

(∂αGtν) (x− y) =
∑

|β|≤m

1

β!
(−y)β

(
∂α+βGtν

)
(x) +剰余項

に基づく．
命題 1.2を初期値問題 (P)へ応用する．そこで，初期値問題 (P)に対応する積分方程式

u (t) = etν∆u0 +

∫ t

0
e(t−s)ν∆f (u (s)) ds (I)

を考える．非線形問題の場合，解の漸近形を決定する方法はいくつか知られており，問題の状況に
応じてそれらを適切に使い分け，組み合わせる必要がある．ここでは，複素Gauss核の時間変数
に関するTaylor展開を用いる方法を紹介する．積分方程式 (I)の右辺に現れる e(t−s)ν∆f (u (s))は

e(t−s)ν∆f (u (s)) = G(t−s)ν ∗ f (u (s))

と表されることに注意し，G(t−s)ν を sに関して tの周りで Taylor展開すると

e(t−s)ν∆f (u (s)) =

[m/2]∑
k=0

1

k!
(−sν∆)k etν∆f (u (s)) +剰余項

=
∑

|γ|≤m/2

(−ν)|γ|

γ!
s|γ|∂2γetν∆f (u (s)) +剰余項

を得る．但し，[m/2] := max {j ∈ Z≥0; j ≤ m/2}である．これを積分方程式 (I)に代入すると

u (t) = etν∆u0 +
∑

|γ|≤m/2

(−ν)|γ|

γ!
∂2γetν∆

(∫ t

0
s|γ|f (u (s)) ds

)
+剰余項

となる．よって，大まかに述べると，f (u) ∈ L1
(
0,+∞;L1

m (Rn)
)ならば上式に命題 1.2を適用す

ることができ，次の結論を得る．

命題 1.3 ([10]) m ∈ Z≥0，p > 1 + (m + 2)/n とする．さらに，u0 ∈
(
L1
m ∩ L∞) (Rn) は

‖u0‖L1 + ‖u0‖L∞ ≤ ε0を満たすと仮定し，u ∈ X を命題 1.1で与えられる初期値問題 (P)の時間
大域解とする．このとき，任意の q ∈ [1,+∞]に対して

lim
t→+∞

t
n
2

(
1− 1

q

)
+m

2 ‖u (t)−Am (t)‖Lq = 0



が成り立つ．但し，

Am (t) := Λ0,m (t;u0) +
∑

|γ|≤m/2

(−ν)|γ|

γ!
Λ2γ,m−2|γ|

(
t;ψ|γ|

)
,

ψk :=

∫ +∞

0
skf (u (s)) ds

である．

命題 1.3より初期値問題 (P)に対する時間大域解の漸近形は複素Ginzburg–Landau半群の漸近
形の線形結合で与えられることが分かる．また，命題 1.3の p > 1 + (m + 2)/nという仮定は，
f (u) ∈ L1

(
0,+∞;L1

m (Rn)
)となるための十分条件である．この仮定は，Λ2γ,m−2|γ|

(
t;ψ|γ|

)の定
義に現れる ψ|γ|の（空間変数に関する重み付き）積分から定まる係数が全て複素数として意味を
持つことを保証するものでもある．この事実を検証するためには，初期値問題 (P)に対する時間
大域解の重み付き評価を確立する必要がある．
形式的に，求める重み付き評価は積分方程式 (I)に複素Ginzburg–Landau半群の重み付き評価∥∥|x|m etν∆φ∥∥

L1 ≤ C
(
t
m
2 ‖φ‖L1 + ‖|x|m φ‖L1

)
(1.2)

とGrönwallの補題を適用することで得られる．実際，積分方程式 (I)，式 (1.1)，式 (1.2)より任意
の t > 0に対して

‖|x|m u (t)‖L1 ≤ C (1 + t)
m
2 + C

∫ t

0
(1 + s)−

n
2
(p−1) ‖|x|m u (s)‖L1 ds

となる．さらに，Grönwallの補題より

‖|x|m u (t)‖L1 ≤ C (1 + t)
m
2 (1.3)

が従う．Grönwallの補題を適用するためには，例えば uが |x|m u ∈ C
(
[0,+∞) ;L1 (Rn)

)を満た
す必要がある．しかし，この条件が成り立つかどうかは非自明であり，別途証明しなければなら
ない．このような問題点を回避する方法として，藤田型方程式の場合は，比較原理を用いる方法
[6, 7]と，時間大域解の逐次近似及びAscoli–Arzelàの定理を用いる方法 [8, 9]が知られている（比
較原理については [14, Proposition 52.10]を参照）．しかし，前者の方法では解の正則性を，後者
の方法では解の一意性を同時に検証する必要がある．また，複素スカラー場に対する順序構造の
欠如により，前者の方法は複素Ginzburg–Landau型方程式には適用不可能である．
本研究では，複素Ginzburg–Landau半群と重み函数の交換関係を活用して複素Ginzburg–Landau

半群の重み付き評価 (1.2)を精密化し，それ応用して初期値問題 (P)に対する時間大域解の重み付
き評価 (1.3)を厳密に導出するための新たな方法論を確立する．

2 主結果
函数 w : Rn → Cに対し，複素Ginzburg–Landau半群と wの交換関係 [w, etν∆]を[

w, etν∆
]
φ := wetν∆φ− etν∆ (wφ)

と定義する．次の定理は複素Ginzburg–Landau半群と単項式から成る重み函数の交換関係の明示
公式とその評価を与える．



定理 2.1 ([4]) m ∈ Z>0，φ ∈ L1
m (Rn)とする．このとき，|α| = mを満たす任意の α ∈ Zn

≥0及
び任意の t > 0に対して [

xα, etν∆
]
φ = Rα (tν)φ (2.1)

が成り立つ．但し，

Rα (tν)φ :=
∑

β+γ=α
β ̸=0

∑
2κ≤β

α!

γ!κ! (β − 2κ)!
(−2)|β|−2|κ| (tν)|β|−|κ| ∂β−2κetν∆ (xγφ)

である．さらに，φに依存しない C > 0が存在し，任意の t > 0に対して∑
|α|=m

∥∥[xα, etν∆]φ∥∥
L1 ≤ C

(
t
m
2 ‖φ‖L1 + t

1
2

∥∥|x|m−1 φ
∥∥
L1

)
(2.2)

が成り立つ．

式 (1.2)と式 (2.2)を比較すると，右辺に現れる重みの次数が異なることが分かる．特に，式 (2.2)

では，左辺に現れる重みの次数がmであるのに対し，右辺に現れる重みの次数は (m− 1)である．
この重みの次数の差は定理 2.1を非線形問題へ応用する際に極めて重要な役割を果たす．
定理 2.1に類似する結果は既に [10]で得られているが，証明は煩雑であり，その結果，Rα (tν)φ

には具体的に書き下すことのできない定数が含まれているという問題点があった．本研究では，
[10]の証明方法を再検討することで，Rα (tν)φを係数も含めて明示的に書き下し，交換関係の評
価を精密化することに成功した．
初期値問題 (P)に対する時間大域解の重み付き評価に関して次の定理が成り立つ．

定理 2.2 ([10, 4]) p > 1 + 2/n，m ∈ Z>0とする．さらに，u0 ∈
(
L1 ∩ L∞) (Rn)は ‖u0‖L1 +

‖u0‖L∞ ≤ ε0を満たすと仮定し，u ∈ X を命題 1.1で与えられる初期値問題 (P)の時間大域解と
する．このとき，u0 ∈ L1

m (Rn)ならば u ∈ C
(
[0,+∞) ;L1

m (Rn)
)であり，任意の t > 0に対して∑

|α|=m

‖xαu (t)‖L1 ≤ C
(
1 + t

m
2

)
(2.3)

が成り立つ．

定理 2.2では ‖|x|m u0‖L1の小ささを仮定していないことに注意する．式 (1.1)及び式 (2.3)を満た
す初期値問題 (P)の時間大域解 u ∈ Xは，時空重み付きの適当な函数空間に於いて，積分方程式 (I)

に縮小写像の議論を適用することで直接構成できる [13]．しかし，この方法では ‖u0‖L1 + ‖u0‖L∞

の小ささだけでなく，‖|x|m u0‖L1 の小ささも仮定する必要がある．また，定理 2.2の証明では
‖u0‖L1 + ‖u0‖L∞ の小ささに関する仮定は本質的ではなく，この仮定を課さなくても，式 (1.1)を
満たす初期値問題 (P)の時間大域解 u ∈ X に対して定理の主張が成立する．尚，藤田型方程式に
於いて非線形項が f (ξ) = − |ξ|p−1 ξで与えられる場合，比較原理を用いることによって，任意の
大きさの初期値に対して式 (1.1)を満たす時間大域解を構成することができる（cf. [7]）．
定理 2.2は藤田型方程式の場合には既に知られている結果であるが，本研究の新規性はその証明

方法にある．定理 2.2の証明は，重み函数の近似及び複素Ginzburg–Landau半群と重み函数の交
換関係に基づき，積分方程式の枠組みで全て完結している．特に，方程式に付随するエネルギー
評価やコンパクト性の議論は一切用いていない．このことから，従来の方法論で同時に検証する
必要があった解の正則性や一意性は，定理 2.2の証明に於いて本質的ではないことが分かる．



3 定理2.1の証明
定理 2.1を示すための準備として，複素径数を持つ多変数Hermite多項式を導入する．そこで，

t > 0を任意に取り，ω := tνと置く．各 α ∈ Zn
≥0に対し，α次Hermite多項式を

Hω,α (x) := (−1)|α| exp

(
|x|2

ω

)
∂α exp

(
−|x|2

ω

)
, x ∈ Rn

と定義する．上式の右辺の微分を計算すると，Hermite多項式の多項式表現

Hω,α (x) =
∑
2β≤α

(−1)|β| α!

β! (α− 2β)!
ω−|α−β| (2x)α−2β

を得る．単項式 xαはHermite多項式の線形結合として

xα =
∑
2β≤α

α!

β! (α− 2β)!
ω|α−β|Hω,α−2β

(x
2

)
と表される [4, Lemma 2.1]．また，Hermite多項式の定義より

(∂αGω) (x) = (−2)−|α|Hω,α

(x
2

)
Gω (x)

が成り立つ．
さて，αを |α| = mなる多重指数とすると，二項展開より(

xαeω∆φ
)
(x)

=

∫
Rn

((x− y) + y)αGω (x− y)φ (y) dy

=
∑

β+γ=α

α!

β!γ!

∫
Rn

(x− y)β Gω (x− y) yγφ (y) dy

=
∑

β+γ=α

∑
2κ≤β

α!

β!γ!

β!

κ! (β − 2κ)!
ω|β−κ|

∫
Rn

Hω,β−2κ

(
x− y

2

)
Gω (x− y) yγφ (y) dy

=
∑

β+γ=α

∑
2κ≤β

α!

γ!κ! (β − 2κ)!
(−2)|β−2κ| ω|β−κ|

∫
Rn

(
∂β−2κGω

)
(x− y) yγφ (y) dy

=
∑

β+γ=α

∑
2κ≤β

α!

γ!κ! (β − 2κ)!
(−2)|β|−2|κ| ω|β|−|κ|

(
∂β−2κeω∆ (xγφ)

)
(x)

=
(
eω∆ (xαφ) +Rα (ω)φ

)
(x)

となる．よって，式 (2.1)が成り立つ．
注意 3.1 式 (2.1)は Fourier変換を用いて示すこともできる [4]．
式 (2.2)の証明では次の補題を用いる．

補題 3.2 ([10]) 1 ≤ p ≤ q ≤ +∞，φ ∈ Lp (Rn)とする．このとき，任意の α ∈ Zn
≥0及び任意の

t > 0に対して ∥∥∂αetν∆φ∥∥
Lq ≤ t

−n
2

(
1
p
− 1

q

)
− |α|

2 ‖∂αGν‖Lr ‖φ‖Lp

が成り立つ．但し，1/q + 1 = 1/r + 1/pである．



式 (2.1)と補題 3.2より∑
|α|=m

∥∥[xα, etν∆]φ∥∥
L1 =

∑
|α|=m

‖Rα (tν)φ‖L1

≤ C
∑

|α|=m

∑
β+γ=α
β ̸=0

∑
2κ≤β

t|β|−|κ| ∥∥∂β−2κetν∆ (xγφ)
∥∥
L1

≤ C
∑

|α|=m

∑
β+γ=α
β ̸=0

t
|β|
2

∥∥|x||γ| φ∥∥
L1

≤ C
∑

k,ℓ∈Z≥0

k+ℓ=m, k≥1

t
k
2

∥∥|x|ℓ φ∥∥
L1

と評価される．さらに，m ≥ 2の場合，Hölderの不等式より k + ℓ = m及び k ≥ 2を満たす任意
の k, ℓ ∈ Z≥0に対して

t
k
2

∥∥|x|ℓ φ∥∥
L1 ≤ t

k
2 ‖φ‖

k−1
m−1

L1

∥∥|x|m−1 φ
∥∥ ℓ

m−1

L1

= t
1
2

(
t
m−1

2 ‖φ‖L1

) k−1
m−1

∥∥|x|m−1 φ
∥∥ ℓ

m−1

L1

≤ t
1
2

(
t
m−1

2 ‖φ‖L1 +
∥∥|x|m−1 φ

∥∥
L1

)
= t

m
2 ‖φ‖L1 + t

1
2

∥∥|x|m−1 φ
∥∥
L1

となる．以上の評価を合わせると式 (2.2)を得る．

4 定理2.2の証明
定理 2.2はm ∈ Z>0 に関する帰納法によって示される．ここでは，定理 2.2の主張（「このと

き」以降の部分）をmに関する命題 (S)m と見做し，任意のm ∈ Z>0 に対して (S)m ⇒ (S)m+1

が成り立つことを示す．そこで，m ∈ Z>0を任意に取り，(S)mが真であると仮定する．さらに，
u0 ∈ L1

m+1 (Rn)を仮定し，α′を |α′| = m+ 1なる多重指数とする．このとき，|α| = mを満たす
α ∈ Zn

≥0と j ∈ {1, . . . , n}が存在し，α′ = α+ ej が成り立つ．ここで，ej は第 j成分のみが 1で，
その他の成分が全て 0の多重指数を表す．次に，ε > 0を任意に取り，函数 wj,ε : Rn → Rを

wj,ε (x) := xje
−ε|x|2 , x = (x1, . . . , xn) ∈ Rn

と定義する．このとき，wj,ε ∈W 1,∞ (Rn)であり，‖∇wj,ε‖L∞ ≤ 2が成り立つ．
積分方程式 (I)の両辺に wj,εx

αを掛け，帰納法の仮定と定理 2.1を用いると

wj,εx
αu (t) = wj,εx

αetν∆u0 +

∫ t

0
e(t−s)ν∆ (wj,εx

αf (u (s))) ds

+

∫ t

0

[
wj,ε, e

(t−s)ν∆
]
(xαf (u (s))) ds+

∫ t

0
wj,εRα ((t− s) ν) f (u (s)) ds

(4.1)

を得る．式 (1.1)，式 (1.2)，補題 3.2より上式の右辺第一項と第二項はそれぞれ∥∥wj,εx
αetν∆u0

∥∥
L1 ≤

∥∥|x|m+1 etν∆u0
∥∥
L1



≤ C
(
t
m+1

2 ‖u0‖L1 +
∥∥|x|m+1 u0

∥∥
L1

)
,∥∥∥∥∫ t

0
e(t−s)ν∆ (wj,εx

αf (u (s))) ds

∥∥∥∥
L1

≤
∫ t

0

∥∥∥e(t−s)ν∆ (wj,εx
αf (u (s)))

∥∥∥
L1
ds

≤ C

∫ t

0
‖u (s)‖p−1

L∞ ‖wj,εx
αu (s)‖L1 ds

≤ C

∫ t

0
(1 + s)−

n
2
(p−1) ‖wj,εx

αu (s)‖L1 ds

と評価される．式 (4.1)の右辺第三項の評価では次の補題を用いる．

補題 4.1 ([4]) w ∈W 1,∞ (Rn)，φ ∈ L1 (Rn)とする．このとき，任意の t > 0に対して∥∥[w, etν∆]φ∥∥
L1 ≤ t

1
2 ‖∇w‖L∞ ‖|x|Gν‖L1 ‖φ‖L1

が成り立つ．

(証明) 等式
([
w, etν∆

]
φ
)
(x) =

∫
Rn

(w (x)− w (y))Gtν (x− y)φ (y) dy

=

∫
Rn

∫ 1

0

d

dθ
w (y + θ (x− y))Gtν (x− y)φ (y) dθdy

=

∫
Rn

∫ 1

0
(∇w) (y + θ (x− y)) · (x− y)Gtν (x− y)φ (y) dθdy

とYoungの不等式より従う．

式 (1.1)，補題 4.1，帰納法の仮定より式 (4.1)の右辺第三項は∥∥∥∥∫ t

0

[
wj,ε, e

(t−s)ν∆
]
(xαf (u (s))) ds

∥∥∥∥
L1

≤
∫ t

0

∥∥∥[wj,ε, e
(t−s)ν∆

]
(xαf (u (s)))

∥∥∥
L1
ds

≤ C

∫ t

0
(t− s)

1
2 ‖∇wj,ε‖L∞ ‖u (s)‖p−1

L∞ ‖xαu (s)‖L1 ds

≤ C

∫ t

0
(t− s)

1
2 (1 + s)−

n
2
(p−1)

(
1 + s

m
2

)
ds

≤ Ct
1
2

(
1 + t

m
2

)
と評価される．式 (4.1)の右辺第四項の評価では次の補題を用いる．

補題 4.2 ([4]) m ∈ Z>0，φ ∈ L1
m (Rn)とする．このとき，任意の t > 0に対して

n∑
j=1

∑
|α|=m

‖xjRα (tν)φ‖L1 ≤ C
(
t
m+1

2 ‖φ‖L1 + t
1
2 ‖|x|m φ‖L1

)
が成り立つ．



(証明) 任意の j ∈ {1, . . . , n}及び |α| = mを満たす任意の α ∈ Zn
≥0に対して

xjRα (tν)φ = Rα+ej (tν)φ−Rej (tν) (x
αφ) (4.2)

が成り立つ．求める評価は上式の右辺を式 (2.2)の証明と同様に評価することで示される．
注意 4.3 φ ∈ L1

m+1 (Rn)の場合，定理 2.1より任意の j ∈ {1, . . . , n}及び |α| = mを満たす任意
の α ∈ Zn

≥0に対して

xjRα (tν)φ = xj
[
xα, etν∆

]
φ

=
[
xjx

α, etν∆
]
φ−

[
xj , e

tν∆
]
(xαφ)

= Rα+ej (tν)φ−Rej (tν) (x
αφ)

となる．しかし，φ ∈ L1
m (Rn)\L1

m+1 (Rn)の場合，上式に現れる [xjxα, etν∆]φと [xj , etν∆] (xαφ)
はいずれも L1 (Rn)に於いて意味を持たない．よって，φ ∈ L1

m (Rn)に対して式 (4.2)が成り立つ
ことを示すためには，Rα (tν)φの定義に基づき，xjRα (tν)φを直接計算する必要がある．
式 (1.1)，補題 4.2，帰納法の仮定より式 (4.1)の右辺第四項は∥∥∥∥∫ t

0
wj,εRα ((t− s) ν) f (u (s)) ds

∥∥∥∥
L1

≤
∫ t

0
‖xjRα ((t− s) ν) f (u (s))‖L1 ds

≤ C

∫ t

0

(
(t− s)

m+1
2 ‖u (s)‖L1 + (t− s)

1
2 ‖|x|m u (s)‖L1

)
‖u (s)‖p−1

L∞ ds

≤ C

∫ t

0

(
(t− s)

m+1
2 + (t− s)

1
2

(
1 + s

m
2

))
(1 + s)−

n
2
(p−1) ds

≤ Ct
1
2

(
1 + t

m
2

)
と評価される．以上より，任意の t > 0に対して

‖wj,εx
αu (t)‖L1 ≤ C

(
1 + t

m+1
2

)
+ C

∫ t

0
(1 + s)−

n
2
(p−1) ‖wj,εx

αu (s)‖L1 ds

が成り立つ．帰納法の仮定よりwj,εx
αu ∈ C

(
[0,+∞) ;L1 (Rn)

)となることに注意すると，Grönwall

の補題より

‖wj,εx
αu (t)‖L1 ≤ C

(
1 + t

m+1
2

)
が従う．さらに，Fatouの補題より ε↘ 0とすれば

‖xjxαu (t)‖L1 ≤ C
(
1 + t

m+1
2

)
を得る．よって，xα′

u (t) = xjx
αu (t) ∈ L1 (Rn)であり，積分方程式 (I)と定理 2.1より

xα
′
u (t) = etν∆

(
xα

′
u0
)
+Rα′ (tν)u0

+

∫ t

0
e(t−s)ν∆

(
xα

′
f (u (s))

)
ds+

∫ t

0
Rα′ ((t− s) ν) f (u (s)) ds

が成り立つ．この等式より xα
′
u ∈ C

(
[0,+∞) ;L1 (Rn)

)が従う．
命題 (S)1が真であることも同様にして示される．
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