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概要

本研究では，ポテンシャル付き分数冪 Schrödinger方程式の解 uの波面集合WF (u(t))の特
徴づけを行い，分数冪ラプラシアンの次数に応じたポテンシャルの増大度の元で特異性の伝播が
起こることを明らかにした．Kato-Ito(2014) [2]の手法に基づき，波束変換を用いて方程式の変
形および特性曲線の評価を行うことで，主定理の証明を与える．

1 導入
本講演では，分数冪ラプラシアン (−∆)θ/2 (0 < θ < 2)とポテンシャル V (x) を用いて表される

Schrödinger 方程式の初期値問題{
i∂tu = (−∆)θ/2u+ V (x)u, (t, x) ∈ R× Rn,
u(0, x) = u0(x), x ∈ Rn

(1)

について考察する．分数冪ラプラシアン (−∆)θ/2 は Fourier変換を用いて，

(−∆)θ/2f(x) = F−1
[
|ξ|θF [f ]

]
(x)

で定義される．(1)において，ポテンシャル V (x)は以下の仮定を満たすとする．

仮定 1.1 (ポテンシャル V の仮定). ポテンシャル V (x) は C∞(Rn) に属する実数値関数とする．さ
らに，1 < θ < 2 の場合は，ある ν < θ

θ−1 が存在して，任意の多重指数 α ∈ Zn≥0 に対し，ある定数
Cα > 0が存在して

|∂αxV (x)| ≤ Cα〈x〉ν−|α|, x ∈ Rn

が成立する．

Hörmander[1]によれば，関数の滑らかさはそのフーリエ変換の無限遠における減衰の速さと密接
に関係している．具体的には，関数 u ∈ S ′(Rn)がソボレフ空間 Hs(Rn)に属することは，∫

Rn

(1 + |ξ|2)s|û(ξ)|2dξ <∞
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が成立することと同値である．これは，û(ξ)が無限遠において |ξ|−s 程度の速さで減衰することを意
味している．しかし，このような大域的な滑らかさの概念では，関数の局所的な特異性を捉えること
ができない．そこで，Hörmanderは波面集合という概念を導入した．定義は以下の通りである．

定義 1.2 (波面集合). (x0, ξ0) ∈ Rn × (Rn \ {0}), f ∈ S ′ (Rn)に対し, (x0, ξ0) /∈ WF (f)であると
は, x0 の近傍上で χ (x) ≡ 1となる χ ∈ C∞

0 (Rn)と ξ0 の錐近傍 Γが存在し, 任意の N ∈ N に対し
CN > 0が存在して，次が成立することである：

|χ̂f(ξ)| ≤ CN (1 + |ξ|)−N , ξ ∈ Γ.

錐近傍とは，ある開集合 U ⊂ Rn \ {0}に対し，Γ = {λξ | ξ ∈ U, λ > 0}で定義される集合をい
う．この定義によれば，波面集合は特異性の位置と方向の組み合わせとして記述され，関数の特異性
をより詳細に捉えることができる．主定理の紹介と証明に先立ち，波束変換の定義を以下に示す．

定義 1.3 (波束変換). ϕ ∈ S(Rn)\{0} と f ∈ S ′(Rn) に対し，波束変換 Wϕ[f ](x, ξ) を以下で定義
する．

Wϕ[f ](x, ξ) =

∫
Rn

ϕ(y − x)f(y)e−iyξdy.

2 主定理
本研究では，(1)の解 u(t, x)の波面集合WF (u(t))の特徴付けを行い，分数冪ラプラシアンの次

数に応じたポテンシャルの増大度の元で特異性の伝播が起こることを明らかにした．

定理 2.1. u(t, x) を C(R;L2(Rn)) に属する (1) の解とする．ポテンシャルは仮定 1.1 を満たし，
パラメータ b は 0 < b < (2− θ)/2 を満たすとする．このとき，以下の主張 (i), (ii) は同値である．

(i) (x0, ξ0) /∈WF (u(t))．
(ii) x0 の近傍 K と ξ0 の錐近傍 Γ が存在し，任意の N ∈ N, 任意の a ≥ 1, そして任意の

ϕ ∈ S(Rn)\{0} に対してある定数 λ0 > 0, CN,a,ϕ > 0 が存在して，

|Wϕλ
[u0](x(0; t, x, λξ), ξ(0; t, x, λξ))| ≤ CN,a,ϕλ

−N (2)

が，λ > λ0, a
−1 ≤ |ξ| ≤ a, x ∈ K, ξ ∈ Γなるすべての λ, x, ξ に対して成立する．ただし，

ϕλ(x) = λnb/2ϕ(λbx)であり，(x(s), ξ(s)) := (x(s; t, x, λξ), ξ(s; t, x, λξ))は以下の方程式の
解である． {

d
dsx(s) = θ|ξ(s)|θ−2ξ(s), x(t) = x,
d
dsξ(s) = −∇xV (x(s)), ξ(t) = λξ.

(3)

3 背景
(1) は，パラメータ 0 < θ < 2 の値によってその性質が異なる．θ = 1 の場合は，主要部は波動

方程式に一致し，ポテンシャルの増大度がいかなるものであっても，解の特異性は古典軌道に沿っ
て伝播することが Hörmanderによって古くから知られている．一方，θ = 2 の場合は，通常のラプ



ラシアンを持つ Schrödinger 方程式となる．この場合については多くの研究が行われている．中村
[3]では，Schrödinger方程式の解の波面集合を初期状態の項によって特徴付けられ，さらに特異性が
古典軌道に沿って伝播することが示されている．加藤・伊藤 [2]では，劣二次のポテンシャルを持つ
Schrödinger方程式について，波束変換を用いて本研究の主定理に相当する波面集合を特徴付ける結
果が示されている．本研究では，これらの先行研究を踏まえ，分数冪 Schrödinger方程式の特異性の
伝播について考察を行った．先行研究では，特異性の伝播が起こるためにはポテンシャルの増大度が
劣二次であることが必要であったが，本研究では分数冪ラプラシアンの次数に応じたポテンシャルの
増大度の下で特異性の伝播が起こることを明らかにした．これにより，分数冪ラプラシアンの次数が
小さくなるにつれてポテンシャルの増大度の制限が緩和され，特異性伝播が起こる条件を拡張するこ
とに成功した．

4 証明のための準備

4.1 補題の用意

主定理の証明に先立ち，いくつかの重要な主張について述べる．

命題 4.1 (波面集合の特徴付け：[2]より). (x0, ξ0) ∈ Rn×(Rn\{0}), f ∈ S ′(Rn) とする．0 < b < 1

を固定する．このとき，以下の条件は同値である．

(i) (x0, ξ0) /∈WF (f)

(ii) (x0, ξ0) の錐状近傍 V が存在し，任意の N ∈ N，任意の a ≥ 1，そして任意の ϕ ∈ S(Rn)\{0}
に対してある定数 CN,a,ϕ > 0 が存在して，

|Wϕλ
[f ](x, λξ)| ≤ CN,a,ϕλ

−N

が，λ ≥ 1 かつ a−1 ≤ |ξ| ≤ a なるすべての (x, ξ) ∈ V に対して成立する．

補題 4.2 (特性曲線のオーダー評価). 0 < T0 < T < ∞ とする．仮定 1.1 の下で，特性方程式 (3)
の解 (x(s), ξ(s)) について，λ に依存しない正の定数 Cξ, C

′
ξ, Cx, C

′
x および λ0 > 0 が存在し，全て

の λ ≥ λ0 に対して
C ′
ξλ ≤ |ξ(s)| ≤ Cξλ (T0 ≤ |s− t| ≤ T ) (4.1)

が T0 ≤ |s− t| ≤ T 上で成立する．また，x(s) については T0 ≤ |s− t| ≤ T において，{
C ′
xλ

θ−1 ≤ |x(s)| ≤ Cxλ
θ−1 (1 < θ < 2),

|x(s)| ≤ Cx (0 < θ ≤ 1).
(4.2)

が成立する．

証明は省略するが，加藤・伊藤 [2]の appendixの議論と同様に，Picardの逐次近似法により証明
できる．



4.2 波束変換による方程式の表現と積分方程式への変形

波束変換を (1) に適用し，方程式を変形する．Cξ′ , λ0 を補題 4.2 の定数とし，cut-off 関数 χ ∈
C∞

0 (Rn)を

χ(η) =


1

(
|η| ≤ C′

ξλ0

2

)
smoothly decreasing from 1 to 0

(
C′

ξλ0

2 < |η| < C ′
ξλ0

)
0 (|η| ≥ C ′

ξλ0)

で定義する．この χを用いて a(η) = χ(η)|η|θ と b(η) = (1− χ(η))|η|θ とおく．a, bを用いて分数冪
ラプラシアンの分割，及び表象 bとポテンシャルに関してテイラー展開を行い，波束変換の計算を行
うと方程式 (1)は以下のように表される．

(∂t +∇ξb(ξ) · ∇x −∇xV (x) · ∇ξ)Wϕλ
u(t, x, ξ) = iP (x, ξ)Wϕλ

u(t, x, ξ) + iRu(t, x, ξ) (4.3)

ここで P (x, ξ) =
(
−b(ξ)− V (x) +

(
x · ∇xV (x)

))
であり，

Ru(t, x, ξ) =−Wϕλ
[a(D)u(t, ·)](x, ξ)−Wϕλ

[RV u(t, ·)](x, ξ)

−
∫∫

ϕλ(y − x)eiy(η−ξ)Rb(η, ξ)û(η)dηdy (4.4)

と定義した．特性曲線法により，(4.3)の解を積分方程式の形で表す．λ ≥ λ0 のときに補題 4.2が成
立していることに注意すると，特性曲線の方程式は (3)を満たす解となる．したがって，(4.3)の解
は以下の積分方程式の形で表される．

Wϕλ
u(t, x(t), ξ(t)) = exp

(∫ t

0

iP (x(τ), ξ(τ))dτ

)
Wϕλ

[u0](x(0), ξ(0))

+ i

∫ t

0

exp

(∫ s

t

iP (x(τ), ξ(τ))dτ

)
Ru(s, x(s), ξ(s))ds (4.5)

P,R1, R2 は以下のように与えられる．

P (x(s), ξ(s)) = −|ξ(s)|θ − V (x(s)) + (x(s) · ∇xV (x(s))) (4.6)

R1(η, ξ(s)) =
∑

2≤|α|<L

1

α!
(∂αξ |ξ|θ)

∣∣
ξ=ξ(s)

(η − ξ(s))α (4.7)

R2(η, ξ(s)) = L
∑

|α|=L

(η − ξ(s))α

α!

∫ 1

0

(1− τ)L−1 (∂αξ |ξ|θ)
∣∣
ξ=ξ(s)+τ(η−ξ(s)) dτ (4.8)

5 主定理の証明
証明は加藤・伊藤 [2]の手法に基づき，帰納法を用いて行う．(ii) ⇒ (i)を示す．逆側の証明は同様

の議論により得られるため省略する．命題 4.1より，(i)を示すためには，次の主張を示せば十分で



ある．
P (σ, ϕ)：任意の σ ≥ 0 と任意の ϕ ∈ S(Rn) \ {0} に対して、ある定数 Cσ,a,ϕ > 0 が存在し、

|Wϕλ
u(s, x(s), ξ(s))| ≤ Cσ,a,ϕλ

−σ

が、λ ≥ λ0，a−1 ≤ |ξ| ≤ a，x ∈ K，ξ ∈ Γ，T0 ≤ s ≤ T なるすべての λ, x, ξ, s に対して成立する．

P (0) は u ∈ C(R;L2(Rn)) であり，波束変換が有界であることを踏まえると成立する．続いて，
P (σ) の成立を仮定し，P (σ + δ) がある δ > 0 について成立することを示す．そのためには積分方
程式 (4.5) の右辺第 2項に含まれる剰余項 Ruについて，

|Ru(s, x(s), ξ(s))| ≤ Cσ,a,ϕλ
−(σ+δ) (δ > 0)

と評価できることを示せば十分である．剰余項 Ru は (4.4) で定義される 3つの項の和であるため，
各項について順に評価を行う．テイラー展開の次数 Lは証明中で N に依存して十分大きくとるもの
とする．

5.1 Wϕλ
[a(D)u(s, ·)](x(s), ξ(s)) の評価

e−iyξ(s) =
−∆y

|ξ(s)|2 e
−iyξ(s) の関係式を用いて y について M 回部分積分を行うと，

Wϕλ
[a(D)u(s, ·)](s, x(s), ξ(s)) =

∫
ϕλ(y − x(s))(a(D)u(s, ·))(y)

(
−∆y

|ξ(s)|2

)M
e−iyξ(s)dy

=

(
−1

|ξ(s)|2

)M ∫
∆M
y

(
ϕλ(y − x(s))(a(D)u(s, ·))(y)

)
e−iyξ(s)dy.

ここで，a(D)u(s, ·)(y) は Cauchy-Schwarz の不等式を用いると有界であることに注意すると，
ϕλ(y − x(s))(a(D)u(s, ·))(y) は S(Rn)に属する．そのため，ある定数 CM,ϕ > 0 が存在して，∣∣∣∆M

y

(
ϕλ(y − x(s))(a(D)u(s, ·))(y)

)∣∣∣ dy ≤ CM,ϕ

が成立する．このことと補題 4.2を用いると，次の評価が得られる．

|Wϕλ
[a(D)u(s, ·)]| ≤ (C ′

ξ)
−2MCM,ϕλ

−2M .

M は任意に選べるため，−2M < −(σ + δ) となるように M を十分大きく選べば，この項の評価が
完了する．

5.2 Wϕλ
[Rb(D)u(s, ·)](x(s), ξ(s)) の評価

まず，Wϕλ
[R1(D)u(s, ·)](x(s), ξ(s)) の評価を行う．Rα := (∂αξ |ξ|θ)

∣∣∣
ξ=ξ(s)

(η − ξ(s))α とおき，

(η − ξ(s))αeiy(η−ξ(s)) = (−i∇y)
αeiy(η−ξ(s)) であることを用いて部分積分を行うと，

Wϕλ
[R1(D)u(s, ·)](x(s), ξ(s)) = i|α| (∂αξ |ξ|θ)

∣∣
ξ=ξ(s)

W∇α
yϕλ

[u(s, ·)](x(s), ξ(s)) (5.1)



となる．W∇α
yϕλ

[u(s, ·)](x(s), ξ(s)) について，

∇α
yϕλ(y − ξ(s)) = λ

nb
2 ∇α

yϕ(λ
b(y − x)) = λ

nb
2 λb|α|(∇α

yϕ)(λ
b(y − x))

であるから，新しく基本波束を ψ(y) := ∇α
yϕ(y)と定義すれば，

W∇α
yϕλ

[u(s, ·)](x(s), ξ(s)) = λb|α|Wψλ
[u(s, ·)](x(s), ξ(s))

となる．よって，Wψ に帰納法の仮定を適用できて，ψ が ϕに依存していることに注意すると，

|W∇α
yϕλ

[u(s, ·)](x(s), ξ(s))| ≤ C ′
σ,a,ψλ

−σ+b|α|

が成立する．一方， (∂αξ |ξ|θ)
∣∣∣
ξ=ξ(s)

については，特性曲線の評価と斉次関数の性質より，ある定数

Kα > 0 が存在して，(∂αξ |ξ|θ)
∣∣∣
ξ=ξ(s)

≤ Kαλ
θ−|α| となる．以上より，(5.1)の各項は次のように評価

できる．

|Wϕλ
[Rα(D)u(s, ·)](x(s), ξ(s))| ≤ KαCσ,a,ψλ

θ−|α|λ−σ+b|α|

= KαCσ,a,ψλ
−(σ−θ+|α|(1−b)).

ここで，σ − θ + |α|(1 − b) ≥ σ − θ + 2(1 − b) であるから，δ1 := −θ + 2(1 − b) とおくと，
Wϕλ

[Rα(D)u(s, ·)](x(s), ξ(s)) ≤ C ′′
σ,a,α,ϕλ

−(σ+δ1) となる．これを踏まえると，

|Wϕλ
[R1(D)u(s, ·)](x(s), ξ(s))| ≤

∑
2≤|α|<L

1

α!
|Wϕλ

[Rα(D)u(s, ·)](x(s), ξ(s))|

≤
∑

2≤|α|<L

1

α!
C ′′
σ,a,α,ϕλ

−(σ+δ1)

= Cσ,a,ϕλ
−(σ+δ1)

が成立し，Wϕλ
[R1(D)u(s, ·)](x(s), ξ(s)) の評価が完了する．

次に，Wϕλ
[R2(D)u(s, ·)](x(s), ξ(s)) の評価を行う．S ′ におけるフーリエ (逆)変換の定義を用いて

式変形を行うと，

Wϕλ
[R2(D)u](x(s), λξ) = 〈R2(D)u, ϕλ(· − x(s))e−i·λξ〉

= 〈F−1F [R2(D)u], ϕλ(· − x(s))e−i·λξ〉

= 〈F [R2(D)u],F−1[ϕλ(· − x(s))e−i·λξ]〉

=

∫
R2(η, ξ(s))û(η)F−1

[
ϕλ(· − x(s))e−i·ξ(s)

]
(η)dη (5.2)

となる．(5.2)式の積分を以下の二つの領域に分けてそれぞれ評価を行う．

A1 := {η ∈ Rn |η − ξ(s)| ≤ λc}, A2 := {η ∈ Rn |η − ξ(s)| > λc}



cは b < c < 1を満たすようにとる．また，I1 :=
∫
A1

· · · dη, I2 :=
∫
A2

· · · dη とする．まず，I1 の評
価を行う．R2(η, ξ(s))について，補題 4.2と斉次関数の性質を用いると，

|R2(η, ξ(s))| ≤ L
∑

|α|=L

|η − ξ(s)|L

α!

∫ 1

0

(1− τ)L−1
∣∣∣(∂αξ |ξ|θ)∣∣ξ=ξ(s)+τ(η−ξ(s))∣∣∣ dτ

≤
∑

|α|=L

KL

α!
λcL

(
1

2
C ′
ξ

)θ−L
λθ−L

となる．従って，I1 は次のように評価できる．

|I1| ≤
∫
A1

|R2(η, ξ(s))||û(η)|
∣∣∣F−1

[
ϕλ(· − x(s))e−i·ξ(s)

]
(η)

∣∣∣ dη
≤

∑
|α|=L

KL

α!

(
1

2
C ′
ξ

)θ−L
λθ−L(1−c)

∫
A1

|û(η)| ·
∣∣∣F−1

[
ϕλ(· − x(s))e−i·ξ(s)

]
(η)

∣∣∣ dη
≤

∑
|α|=L

KL

α!

(
1

2
C ′
ξ

)θ−L
‖ϕ‖L2‖u0‖L2λθ−L(1−c)

となる．1− c > 0であることに注意して，Lを十分大きくとれば，ある定数 Cσ,ϕ > 0が存在して，

|I1| ≤ Cσ,ϕλ
−(σ+δ1)

が成立する．次に，I2の評価を行う．領域A2において，斉次関数の性質，及び Lを十分大きくとること

を踏まえると，(∂αξ |ξ|θ)
∣∣∣
ξ=γ
は有界となる．すなわち，ある定数KLが存在して，

∣∣∣∣(∂αξ |ξ|θ)∣∣∣ξ=γ
∣∣∣∣ ≤ KL

となる．このことから，R2(η, ξ(s))は，

|R2(η, ξ(s))| ≤ L
∑

|α|=L

|η − ξ(s)|L

α!

∫ 1

0

(1− τ)L−1
∣∣∣(∂αξ |ξ|θ)∣∣ξ=ξ(s)+τ(η−ξ(s))∣∣∣ dτ

≤
∑

|α|=L

KL

α!
|η − ξ(s)|L

と評価できる．従って，Cauchy-Schwartzの不等式，基本波束のスケーリングの性質，及び急減少性
を踏まえると I2 は，

|I2| ≤ λ−McC ′
N,a,L

∫
A2

|û(η)||η − ξ(s)|M+L
∣∣∣F−1[ϕλ(· − x(s))e−i·ξ(s)](η)

∣∣∣ dη
≤ λ−McC ′

N,a,L

(∫
|û(η)|2dη

)1/2(∫
|η − ξ(s)|2(M+L)

∣∣∣F−1[ϕλ(· − x(s))e−i·ξ(s)](η)
∣∣∣2 dη)1/2

≤ λ−McC ′
N,a,L ‖u0‖L2(Rn) λ

2b(M+L)

(∫
Rn

|ζ|2(M+L)|F−1[ϕ](ζ)|2dζ
)1/2

= CN,a,L,M,ϕλ
−M(c−b)+bL

と評価できる．途中で積分の変数変換を行い，適切に定数をまとめた．c− b > 0であることに注意
して，M を −M(c− b) + bL < −N となるように十分大きく取ると，I2 の評価が完了する．以上よ
り，Wϕλ

[R2(D)u(s, ·)](x(s), ξ(s))の評価が完了する．



5.3 Wϕλ
[RV u(s, ·)](x(s), ξ(s)) の評価

まず，Wϕλ
[RV,1u(s, ·)](x(s), ξ(s)) の評価を行う．RV,1 の波束変換は

Iα(s) :=Wϕλ
[(∂αxV )(x(s))(· − x(s))αu(s, ·)](x(s), ξ(s))

= (∂αxV )(x(s))Wϕλ
[(· − x(s))αu(s, ·)](x(s), ξ(s))

= (∂αxV )(x(s))

∫
ϕλ(y − x(s))(y − x(s))αu(s, y)e−iyξ(s)dy

と計算できる．ここで，ϕλ(y − x(s))(y − x(s))α の部分について新しい基本波束 ψ(y) = yαϕ(y)を
取り直すと，帰納法の仮定を用いることで，|Wϕλ

[(· − x(s))αu(s, ·)](x(s), ξ(s))| ≤ Cσ,a,ψλ
−σ−b|α|

が成立する．一方，(∂αxV )(x(s))については，仮定 1.1を用いて評価を行う．1 < θ < 2で，さらに
ν ≤ |α|のとき，〈x(s)〉ν−|α| ≤ 1であるから，

|Iα(s)| ≤ CαCσ,a,ψλ
−σ−b|α| ≤ CαCσ,a,ψλ

−(σ+2b)

が成立する．
1 < θ < 2で，さらに ν > |α|のとき，補題 4.2より，ある定数 Cx > 0が存在して，

〈x(s)〉ν−|α| ≤ (1 + |x(s)|)ν−|α| ≤ (1 + Cxλ
θ−1)ν−|α| ≤ (1 + Cx)

ν−|α|λ(θ−1)(ν−|α|)

となる．よって，|Iα(s)| ≤ CαCσ,a,ψ(1 +Cx)
ν−|α|λ−σ−b|α|+(θ−1)(ν−|α|) が成立する．ここで，指数

部分について，

−σ − b|α|+ (θ − 1)(ν − |α|) = −σ + (θ − 1)ν − (θ − 1 + b)|α| ≤ −σ + (θ − 1)ν − 2(θ − 1 + b)

であり，主定理の ν に関する仮定より，−2b + (θ − 1)(ν − 2) < 0 が成り立っている．一方で，
0 < θ ≤ 1 のとき，補題 4.2 より，ある定数 Cx > 0 が存在して，|x(s)| ≤ Cx が成り立つので，
〈x(s)〉ν−|α| は定数で抑えることができる．よって，ある定数 C ′

σ,a,ϕ > 0が存在して，

|Iα(s)| ≤ C ′
σ,a,ϕλ

−(σ+2b)

が成立する．ここで，δ2 := min(2b,−2b + (θ − 1)(ν − 2)) と定義すると，1 < θ < 2 のときも
0 < θ ≤ 1のときも，ある定数 Cσ,a,ϕ > 0が存在して，

|Wϕλ
[RV,1u(s, ·)](x(s), ξ(s))| ≤ Cσ,a,ϕλ

−(σ+δ2)

が成立する．次に，Wϕλ
[RV,2u(s, ·)](x(s), ξ(s))の評価を行う．手法はWϕλ

[R2(D)u(s, ·)](x(s), ξ(s))
とほとんど同様であるが，ここでは積分範囲を

B1 := {y ∈ Rn |y − x(s)| ≤ λ−d}, B2 := {y ∈ Rn |y − x(s)| > λ−d}



と分割する．dは 0 < d < bを満たすようにとる．また，J1 :=
∫
B1

· · · dy, J2 :=
∫
B2

· · · dy とする．
まず，J1 の評価を行う．Casuchy-Schwartzの不等式を用いると，

|J1(s)| ≤
∣∣∣∣∫
B1

ϕλ(y − x(s))RV,2(y, x(s))u(s, y)e
−iyξ(s)(y)dy

∣∣∣∣
≤

(∫
B1

∣∣∣ϕλ(y − x(s))RV,2(y, x(s))
∣∣∣2 dy) 1

2
(∫

B1

∣∣∣u(s, y)e−iyξ(s)(y)∣∣∣2 dy) 1
2

≤ ‖u0‖
(∫

B1

∣∣∣ϕλ(y − x(s))RV,2(y, x(s))
∣∣∣2 dy) 1

2

≤ ‖u0‖|B1| sup
y∈B1

|ϕλ(y − x(s))|2 sup
y∈B1

|RV,2(y, x(s))|2

となる．ここで，|B1|は n次元球の体積であり，|B1| = Cnλ
−nd である．

(
Cn = πn/2

Γ(n/2+1)

)
ϕλ については，

sup
y∈B1

|ϕλ(y − x(s))|2 = sup
|z|≤λ−d

|λnb
2 ϕ(λbz)|2 ≤ Cϕλ

nb

が成立する．次に，RV,2(y, x(s))について評価を行う．

|RV,2(y, x(s))| ≤ L
∑

|α|=L

|y − x(s)|α

α!

∫ 1

0

(1− τ)L−1|(∂αxV )(x(s) + τ(y − x(s)))|dτ

= Lλ−Ld
∑

|α|=L

1

α!

∫ 1

0

(1− τ)L−1|(∂αxV )(x(s) + τ(y − x(s)))|dτ

となる．z := x(s)+τ(y−x(s))とおく．ポテンシャル V に関する仮定より，|(∂αxV )(z)| ≤ CL〈z〉ν−L

が成り立つ．ここで，Lは十分大きくとることから，ν ≤ Lであるから，〈z〉ν−L ≤ 1となる．
よって，

|J1(s)| ≤ ‖u0‖Cnλ−ndCϕλnb
 ∑

|α|=L

1

α!
CLλ

−Ld

2

= CL,ϕλ
−nd+nb−2Ld

= Cσ,ϕλ
−(σ+δ1)

となる．途中で，Lは適切に十分大きく取った．
次に，J2 の評価を行う．

|J2(s)| =
∣∣∣∣∫
B2

ϕλ(y − x(s))RV,2(y, x(s))u(s, y)e
−iyξ(s)(y)dy

∣∣∣∣
≤

(∫
B2

∣∣∣ϕλ(y − x(s))RV,2(y, x(s))
∣∣∣2 dy) 1

2
(∫

B2

|u(s, y)|2 dy
) 1

2

≤ ‖u0‖
(∫

B2

∣∣∣ϕλ(y − x(s))RV,2(y, x(s))
∣∣∣2 dy) 1

2



となる．K2(s) :=
∫
B2

∣∣∣ϕλ(y − x(s))RV,2(y, x(s))
∣∣∣2 dyとおく．B1の評価の際と同様に，〈x〉ν−L ≤ 1

である．よって，

K2(s) ≤ C2
L

∫
B2

|ϕλ(y − x(s))|2|y − x(s)|2Ldy

= C2
Lλ

nb−2bL

∫
B2

|ϕ(λb(y − x(s)))|2|λb(y − x(s))|2Ldy

= C2
Lλ

−2bL

∫
|z|>λb−d

|ϕ(z)|2|z|2Ldz

≤ CL,ϕλ
−2bL

となる．これを踏まえて J2(s)の評価を行うと，

|J2(s)| ≤ ‖u0‖
√
CL,ϕλ

−bL = Cσ,ϕλ
−(σ+δ1)

が成立する．途中で，Lは適切に十分大きく取った．
以上の議論を踏まえ，剰余項全体の評価についてまとめる．δ := min{δ1, δ2}とおく．このとき，あ
る定数 Cσ,a,ϕ > 0が存在して，

|Ru(s, x(s), ξ(s))| ≤ |Wϕλ
[a(D)u(s, ·)](s, x(s), ξ(s))|+ |Wϕλ

[Rb(D)u(s, ·)](x(s), ξ(s))|
+ |Wϕλ

[RV u(s, ·)](x(s), ξ(s))|

≤ Cσ,a,ϕλ
−(σ+δ)

が成立する．
以上から目標としていた剰余項の評価が得られ，主定理の証明は完了した．
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