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概要
この講演では，作用素エントロピーの拡張である作用素情報量の発展を述べる．特に作用素情
報量を White Noise 理論の舞台で超汎関数の空間上に拡張して構成することで作用素値微分方
程式による特徴づけを与える．さらに，Number Operator(個数作用素) の半群の作用素情報量
が超関数値 Ornstein-Uhlenbeck 過程を中心とする White Noise デルタ超関数による確率表現
が得られることも示す．最後に最新の成果を発表する．

1 導入
エントロピーは様々な分野で研究されているが，無限次元非可換エントロピーの一種である作用素
エントロピーが導入されたのは [6]に始まる. その後多くの研究がなされてきたが，その特徴づけに
ついてはほとんど新しいものは得られていない状況であった. 近年，筆者が導入した新しい作用素平
均を用いることで新たに特徴づける定理を示した.([3]) 特に新規に導入した 2つの作用素平均を使う
ことで作用素エントロピーの性質を表す 〈OE1〉：「トレースノルムに関する連続性」と 〈OE2〉：「ト
レースクラス作用素に作用する２つの作用素平均間のトレースノルムに関する等長性」だけで特徴づ
けが成り立つことは，非常に重要なポイントである. 作用素エントロピーの発展として，半群の作用
素エントロピーとその拡張である半群の作用素情報量を新規に導入した.([4]) これらを実際の確率過
程や超確率過程などで表される現象に応用できるようにするため，White Noise 理論上で考察する.

特に半群の作用素エントロピーと半群の作用素情報量は White Noise 超汎関数の空間上に拡張して
定式化することにより，作用素値微分方程式による特徴づけを与えることができる.([4])

一方，White Noise 理論とは，飛田武幸教授及び名古屋の確率論研究グループにより提唱された理
論であり，無限次元確率解析の一つである. この理論はゆらぎを伴う現象を独立な連続無限のホワイ
トノイズ変数の汎関数とみなして超汎関数空間を構成し，その解析を行うものである. この超汎関数
の空間では，ほとんどいたるところ微分不可能である Brown 運動の微分（ホワイトノイズ）を数学
的に実現することができるため，様々なゆらぎを伴う現象を捉えることができるという他に類のない
利点がある.
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1.1 作用素エントロピー
この節では，作用素エントロピーの定義および特徴づけ定理について概説する. Hを可分 Hilbert

空間とし，H上の内積を 〈·, ·〉, ノルムを || · ||で表す.

B(H) := {T ; T : H → Hは有界線型作用素 }

とすると，B(H) は作用素ノルム || · || に関して Banach 空間となる．また，B(H)の部分集合 B+(H)

を正作用素全体とする. すなわち，
B+(H) := {A ∈ B(H); 任意の x ∈ Hに対し, 〈x,Ax〉 ≥ 0}

である.

Definition 1.1 A ∈ B+(H)に対して，

TrA =

∞∑
n=1

〈en,Aen〉 (1.1)

と定め Aのトレースとよぶ. ここで，{en}はHの正規直交基底とする.また A ∈ B(H)に対して,

||A||1 = Tr |A|と定義する. || · ||1 をトレースノルムという.

Definition 1.2 A ∈ B(H)は ||A||1 = Tr |A| < ∞を満たすとき,トレースクラス作用素とよばれる.

トレースクラス作用素の全体を C1(H)で表す.特に ρ ∈ C1(H) ∩ B+(H)に対して，Tr ρ = 1となる
とき，ρは密度作用素とよばれる.密度作用素の全体を T(H) で表す.

Remark 1.3 任意のトレースクラス作用素 A ∈ C1(H) は H の正規直交基底 {em} と実数列 {λm}
で

λ1 ≥ λ2 ≥ · · · > 0,

∞∑
m=1

λm < ∞

を満たすものが存在して,

A =

∞∑
m=1

λm|em〉〈em|

と表現される. これを作用素 A の Schatten 分解という. ここで, |em〉〈em|は,

|em〉〈em|x = 〈em, x〉em, x ∈ H

によって定義される，em の張る 1次元部分空間への射影作用素である.

Definition 1.4 H を可分 Hilbert 空間とする. 集合 C1,+(H)，T∗(H)，∆∞ をそれぞれ
C1,+(H) : = C1(H) ∩ B+(H),

T∗(H) : = {A ∈ T(H); ∃α > 0 s.t. A1−α ∈ C1,+(H)},

∆∞ :=

{
λ = (λ1, λ2, · · · );

∞∑
k=1

λk = 1, λk ∈ [0, 1] (k = 1, 2, · · · )

}
によって定義する.



Lemma 1.5 任意の A ∈ T∗(H) に対して，Ŝ(A) := −A logA ∈ C1,+(H) が成り立つ.

Definition 1.6 作用素
Ŝ : T∗(H) −→ C1,+(H)

∈ ∈

A 7−→ Ŝ(A) := −A logA

をH上の作用素エントロピー，Ŝ(A)を Aの作用素エントロピーとよぶ.

Remark 1.7 Hilbert空間H⊗H上の作用素エントロピーは

ŜH⊗H : T∗(H⊗H) −→ C1,+(H⊗H)
∈ ∈

A ⊗B 7−→ −(A⊗B) log (A⊗B)

と表現されるが以降は定義域を書かずに単に Ŝ で表す.

上記により，Hilbert 空間上に作用素エントロピーを構成することができた. 次に作用素エントロ
ピーの性質を示すため，[3] で導入した 2つの作用素平均を紹介する.

Definition 1.8 T∗(H) の部分集合 A を A = (A1,A2, · · · ) とし，λ = (λ1, λ2, · · · ) ∈ ∆∞，Λ =∑∞
k=1 λk|ek〉〈ek| ∈ T∗(H)とする. このとき，Aの λ- mean Mλ(A) を

Mλ(A) :=
∞∑
k=1

λkAk

によって定義する. ここで，Mλ(A) ∈ T∗(H) である. さらに，Aの Λ- mean MΛ(A) を

MΛ(A) :=
∞∑
k=1

λkAk ⊗ |ek〉〈ek|

によって定義する. ここで，MΛ(A) ∈ T∗(H⊗H)である. また，λ • A ⊂ C1,+(H) を

λ • A := (λ1A1, λ2A2, · · · )

とする.

Theorem 1.9 ([3]〈OE〉 作用素エントロピーの性質)

作用素エントロピー Ŝ(A) = −A logA ∈ C1,+(H)，A ∈ T∗(H) は次の性質 〈OE1〉，〈OE2〉 をも
つ.

〈OE1〉: 作用素 Ŝ は T∗(H)上トレースノルム || · ||1 に関して連続である. すなわち，

∀A ∈ T∗(H) ∀(AN )∞N=1 ⊂ T∗(H) (||AN −A||1
N→∞−−−−→ 0 ⇒ ||Ŝ(AN )− Ŝ(A)||1

N→∞−−−−→ 0)

〈OE2〉: 任意の Λ =
∑∞

k=1 λk|ek〉〈ek| ∈ T∗(H)，λ = (λ1, λ2, · · · ) ∈ ∆∞ と任意の λ • A ⊂∪∞
m=2 Tm(H)となる，A = (A1,A2, · · · ) ⊂ T∗(H)に対して，

||Ŝ(MΛ(A))||1 = ||Ŝ(Λ)⊕Mλ(Ŝ(A))||1 (1.2)

が成り立つ.



Theorem 1.10 ([3]) 作用素

ŜH : T∗(H) → C1,+(H), ŜH⊗H : T∗(H⊗H) → C1,+(H⊗H)

が 〈OE1〉，〈OE2〉を満たすとする. このとき，ある正定数 C が存在して，任意の A ∈ T∗(H)に対
して，

Ŝ(A) = C · (−A logA) (1.3)

が成り立つ.

Remark 1.11 1) この作用素エントロピーの特徴づけ定理は，作用素 Ŝ の定義域が T∗(H) であるこ
とが重要である. 作用素エントロピーは A が T∗(H) の元であるときに公理系 〈OE1〉，〈OE2〉 を満
たす. 実際には，特徴づけ定理の証明は von Neumann エントロピーの特徴づけ定理 (Shannon エン
トロピーの特徴づけ定理を含む)を経由することで示されるため，作用素 Ŝ(A) = −A logA がエン
トロピーというときは A が T∗(H) の元として然るべきである.

2) 上記より，作用素エントロピー Ŝ は定義域が T∗(H) であるときに作用素エントロピーとよん
だ. Ŝ の定義域がそうでない場合に Ŝ が定義されるときに作用素情報量とよぶ.

1.2 半群のエントロピー
C1,+,∗(H) := {A ∈ C1,+(H); O < A < I} とする. 任意の A ∈ C1,+,∗(H) と t ≥ 0 に対して，ト

レースノルム || · ||1 を用いて H上の作用素 EA(t) を次で定義する:

EA(t) :=

{
e−tA/‖e−tA‖1 (t 6= 0)

O (t = 0)
.

作用素 EA(t) は T∗(H) の元である. したがって，任意の t > 0 と A ∈ C1,+,∗(H) に対して，
EA(t) ∈ T∗(H)となるゆえ，−EA(t) logEA(t) を Ŝ(EA(t)) で表すことができる. 作用素 Ŝ(EA(·))
を半群 {e−tA; t ≥ 0} のエントロピーとよぶ. このとき，微分可能な B(H) に値をとる関数
X : [0,∞) → X(t) ∈ B(H) と A ∈ C1,+,∗(H) に対して，次の B(H) に値をとる微分方程式

d

dt
X(t) = EA(t)

−1E′
A(t)X(t)− E′

A(t), t > 0, lim
t→0

X(t) = O (1.4)

を考える.

Theorem 1.12 ([3]) 微分方程式 (1.4) は解

X(t) = Ŝ(EA(t)) + EA(t)CA, t > 0

をもつ. ここで，CA ∈ C1,+(H) は A ∈ C1,+,∗(H)に依存する任意作用素である.

Remark 1.13 1) 作用素を A ∈ B+(H)とする. このとき，ある半群 {e−tA; t ≥ 0} に対し，半群の
作用素情報量 Ŝ(e−tA)は

Ŝ(e−tA) ≡ −e−tA log e−tA ≡ tAe−tA

により定義される.



2) 作用素 A ∈ C1,+(H) に対し B := − logA とおくことで A の作用素情報量 Ŝ(A) = −A logA
は Ŝ(e−B) = Be−B, e−B ∈ C1,+(H) と表すことができる. このことから，作用素情報量は半群の作
用素情報量の時間発展のパラメータ t が 1 のときであり，半群の作用素情報量は通常の作用素情報
量の自然な拡張である.

3) Theorem 1.12 により，作用素値微分方程式 (1.4)の解は存在して，半群の作用素エントロピー
とある作用素の和になっているが，解の一意性は成り立っていない. これは White Noise 理論の舞
台で超汎関数の空間に拡張して構成することにより一意性も満たされる.

1.3 White Noise理論
この節では，White Noise 理論の基礎事項と扱う作用素についてまとめておく. L2(R) を 2乗可
積分な実数値関数からなる Hilbert 空間とし，ノルムを | · |0 で表す. E := S(R) を R 上の実数値
急減少関数からなる Schwartz 空間とし，E∗ を E の双対空間とする.(すなわち，緩増加な超関数の
空間である) このとき，A = −d2/du2 + u2 + 1 は L2(R) 上で稠密に定義された自己共役作用素で
あり，Aeν = 2(ν + 1)eν , ν = 0, 1, 2, . . . , となるような L2(R) の正規直交基底 {eν}ν≥0 ⊂ E が
存在する. f ∈ E と p ∈ R に対し，|f |p = |Apf |0 により，ノルム | · |p を定義し，Ep を | · |p に関
して E の完備化とする. このとき，標準的な Gel’fand triple

E ⊂ L2(R) ⊂ E∗

を得る. E∗ × E 上の正準双線型形式を 〈·, ·〉 で表し，L2(R)，E，Ep の複素化をそれぞれ L2
C(R)，

EC，EC,p により表す. このとき Bochner-Minlos の定理より，∫
E∗

ei⟨x,ξ⟩dµ(x) = e−
1
2 ⟨ξ,ξ⟩, ξ ∈ E

を満たす E∗ 上の確率測度 µ が唯一存在する. (L2) ≡ L2(E∗, µ) を µ に関して L2-ノルム ‖ · ‖0 を
もつ E∗ 上の複素数値 2乗可積分汎関数からなる Hilbert 空間とする. 任意の t ∈ R に対して，

B(t) :=

{
〈·, 1[0,t)〉 (t ≥ 0)
−〈·, 1(t,0]〉 (t < 0)

とおくとき，{B(t); t ∈ R} は Brown 運動となる. このとき (L2) はWiener-Itô 分解定理を満たす:

(L2) =
∞⊕

n=0

Hn. (1.5)

ただし，Hn は n (∈ N) 次の多重 Wiener 積分の空間であり，H0 = C である. この Wiener-Itô 分
解定理により，φ ∈ (L2) は

φ =

∞∑
n=0

In(fn), fn ∈ L2
C(R)⊗̂n

で表せられる. ここで，L2
C(R)⊗̂n は L2

C(R) の対称 n-重テンソル積とし，In(fn) は

In(fn) =

∫
Rn

fn(u1, . . . , un)dB(u1) · · · dB(un)



によって与えられる多重 Wiener 積分である. このとき，(L)2-ノルム ||φ||0 は

||φ||0 =

( ∞∑
n=0

n!|fn|20

) 1
2

により与えられる. ただし，|·|0 は L2
C(R)⊗̂n のノルムを意味する. p ∈ Rに対し，‖φ‖p = ‖Γ(A)pφ‖0

とする. ここで，Γ(A) は A の第 2量子化作用素である. すなわち，Γ(A)φ が (L2) の元として存在
するとき，φ =

∑∞
n=0 In(fn) ∈ (L2) に対して Γ(A) は

Γ(A)φ =

∞∑
n=0

In(A
⊗nfn) (1.6)

と定義される. 任意の p ≥ 0 に対し，(E)p を Γ(A)p の定義域とする. 任意の p < 0 に対し，(E)p

を ‖ · ‖p に関して (L2) の完備化とする. このとき，(E)p, p ∈ R は ノルム ‖ · ‖p を持つ Hilbert 空
間となる. p ∈ R に対し，分解

(E)p =

∞⊕
n=0

H(p)
n

が得られる. ただし，H(p)
n は || · ||p に関して {In(f); f ∈ E⊗̂n

C } の完備化である. また，p ∈ R に対

して H
(p)
n = {In(f); f ∈ E⊗̂n

C,p} である. φ =
∑∞

n=0 In(fn) ∈ (E)p のノルム ||φ||p は

||φ||p =

( ∞∑
n=0

n!|fn|2p

) 1
2

, fn ∈ E⊗̂n
C,p

によって与えられる. ここで，E⊗̂n
C,p のノルムを | · |p により表す. (E) を (E)p, p ∈ R の射影極限

空間とすると核型空間となる. (E)∗ を (E)p, p ∈ R の帰納極限空間とすると (E) の双対空間とな
る. これにより，Gel’fand triple

(E) ≡ proj lim
p→∞

(E)p ⊂ (L2) ⊂ (E)∗ ≡ ind lim
p→∞

(E)−p

が得られる. (E)∗ の元は (Gaussian) White Noise 超汎関数，(E) の元は (Gaussian) White Noise

テスト汎関数とよばれる. (E)∗ × (E) 上の正準双線型形式 〈〈·, ·〉〉 は次で定められる:

〈〈Φ, φ〉〉 =
∞∑

n=0

n!〈Fn, fn〉,

(
Φ =

∑∞
n=0 In(Fn) ∈ (E)∗

φ =
∑∞

n=0 In(fn) ∈ (E)

)
.

任意の局所凸空間 X，Y に対し，X から Y への連続線型作用素の集合を L(X,Y) と書く. また
単に L(X,X) を L(X) と書く.

(E)∗ 上の Number Operator N は下記で与えられる:

NΦ =

∞∑
n=0

nIn(Fn), Φ =

∞∑
n=0

In(Fn) ∈ (E)∗.

このとき，作用素 −N は Laplace-Beltrami Laplacianとよばれる. また，Number Operator N は
L((E)) と L((E)∗) の両方の元である.



任意の x ∈ E∗ に対して，(E)上の汎関数 δx を

δx : (E) 3 φ 7→ 〈〈δx, φ〉〉 := φ(x) ∈ C

によって定義する. 任意の φ ∈ (E) は E∗ 上の汎関数として連続修正を持つことから，(参照 [1] [7])

任意の x ∈ E∗ に対し，δx は連続線型汎関数であり，δx ∈ (E)∗ である. この連続線型汎関数 δx は
White Noise デルタ超関数または Kubo-Yokoi デルタ関数ともよばれる.

{U(t)(x); t ≥ 0} を (E∗, µ) 上の E∗-値 Ornstein-Uhlenbeck 過程とする. すなわち，任意の
x ∈ E∗ に対し

U(t)(x) := e−t

(
x+

√
2

∫ t

0

esdB(s)
)

である. ただし，{B(t); t ≥ 0} は互いに独立な 1 次元 Brown 運動 {Bn(t); t ≥ 0}, n ∈ N0(:=

N ∪ {0}) の列をもち
B(t) :=

∞∑
n=0

Bn(t)en

によって与えられる E∗-値 Brown 運動である. このとき t ≥ 0 に対し U(t)(·) は L(E∗) の元であ
り，確率微分方程式

dU(t)(x) = −U(t)(x)dt+
√
2dB(t), t ≥ 0 (1.7)

を満たす. このとき，Itô の公式より，

dφ(U(t)(x)) = φ′(U(t)(x))(dU(t)(x)) +
1

2
φ′′(U(t)(x))(dU(t)(x), dU(t)(x)) (1.8)

が成り立つ. このとき，(1.7) と (1.8) により，

dφ(U(t)(x)) =− φ′(U(t)(x))(U(t)(x))dt+
√
2φ′(U(t)(x))(dB(t))

+ φ′′(U(t)(x))(dB(t), dB(t))

=
√
2

∞∑
k=0

Dekφ(U(t)(x))dBk(t) +Nφ(U(t)(x))dt

=
√
2∇φ(U(t)(x)) • dB(t) +Nφ(U(t)(x))dt

となっている. 従って，超関数値 Ornstein-Uhlenbeck 過程を中心とする White Noise Delta 超関
数 δU(t)(x) に関して次の方程式が成り立つ.

Proposition 1.14 ([5]) 任意の t > 0 と x ∈ E∗ に対し

dδU(t)(x) =
√
2∇∗δU(t)(x) • dB(t) +N ∗δU(t)(x)dt (1.9)

が成り立つ.



2 主定理
2.1 作用素値微分方程式による半群の作用素情報量と半群のエントロピーの特徴

づけ
Definition 2.1 任意の p ∈ R に対し，集合 C1,p((E)) を

C1,p((E)) :=

{
A ∈ L((E)); ‖A‖1,p ≡

∞∑
n=0

〈ep,n, |A|ep,n〉p < ∞

}

によって定義する. ただし，{ep,n}∞n=0 は (E) に含まれる (E)p の正規直交基底であり，〈·, ·〉p は
(E)p の内積である. 任意の A ∈ T∗(H) に対し，A の作用素エントロピー Ŝ(A) を C1,+(H) の元と
して Ŝ(A) := −A logA によって定義した. 作用素 J ∈ C1(H) に対して −J logJ が定義できると
き，同じ記法を使って Ŝ(J ) により表す. 作用素 Ŝ(J ) を J の作用素情報量とよぶことにする. こ
のとき，任意の p ∈ R と t ≥ 0 に対し作用素 Ŝ(e−tN ) = −e−tN log e−tN ∈ C1((E)p;σ,λ) は

Ŝ(e−tN )Φ :=

∞∑
n=0

tne−tnΦn for Φ =

∞∑
n=0

Φn ∈ (E)∗

によって，(E)∗ 上の作用素に拡張することができる. さらに任意の t ∈ R に対し Ŝ(eitN ) =

−eitN log eitN は

Ŝ(eitN )Φ := −
∞∑

n=0

itneitnΦn for Φ =

∞∑
n=0

Φn ∈ (E)∗

により拡張して定義することができる. ただし，log z, z ∈ C は主値をとる.

任意の t > 0 と p ∈ R 対し，‖e−tN ‖1,p =
∑∞

n=0 e
−tn = 1/(1− e−t) となるから

EN (t) = (1− e−t)e−tN

である. 従って，t > 0 に対して

Ŝ(EN (t))Φ = (1− e−t)

∞∑
n=0

(log(1− e−t) + tn)e−tnΦn for Φ =

∞∑
n=0

Φn ∈ (E)∗

となる.

上記により，Number Operator に基づき White Noise 汎関数の空間上にそれぞれ Laplace-

Beltrami Laplacian を生成作用素とする半群の作用素エントロピーと半群の作用素情報量を定式化
することできた. それらを作用素値の微分方程式を考えることにより特徴づけを与える.

Proposition 2.2 ([4]) t > 0 に対する L((E)∗)-値微分方程式

d

dt
X(t) = −NX(t) (2.10)

は条件 limt→0 X(t) = N の下で 一意的に解 X(t) = Ŝ(e−tN )/t をもつ.



Corollary 2.3 ([4]) t > 0 に対する L((E)∗)-値微分方程式

d

dt
X(t) =

(
1

t
−N

)
X(t) (2.11)

は条件 limt→0 X(t)/t = N の下で 解が一意的に X(t) = Ŝ(e−tN ) により表される.

Theorem 2.4 ([4]) L((E))-値微分方程式

R
(

1

et − 1
,N
)

d

dt
X(t) = X(t)− EN (t), t > 0 (2.12)

は条件
etN

(
X(t)− Ŝ(e−tN )

)
→ O as t → ∞

の下で唯一 L((E))-解
X(t) = −EN (t) logEN (t)

を持つ. ただし，R (1/(et − 1),N ) は N のレゾルベントである.

上記により，White Noise 理論の舞台で考えることで半群の作用素情報量と半群の作用素エント
ロピーを作用素値微分方程式から特徴づけ定理を与えることができた. 特に，半群の作用素エント
ロピーは作用素値微分方程式 (2.12) を満たすことと作用素エントロピーの特徴づけ定理 Theorem

1.10 を満たすことは同値である.

2.2 半群の作用素情報量の確率表現
超関数値 Ornstein-Uhlenbeck 過程を中心とする White Noise Delta 超関数 δU(t)(x) によって，
次の半群の作用素情報量の確率表現を与えることができる.

Theorem 2.5 ([5]) 任意の t > 0， x ∈ E∗ と φ ∈ (E) に対して，t の超関数の意味で等式

1

t
Ŝ(e−tN )φ(x) = E

[
δ′(t) ∗ (δU(t)(x) − δx)φ

]
が成り立つ. ここで，δ′(t) は Dirac のデルタ関数 δ(t) の微分を表す.
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[5] Inayoshi, R., Saitô, K. : Operator information quantities of semigroups associated with

functions of the number operator, J.Stochastic Analysis 6(2025), no.2, Article 3 (16 pages).

[6] Nakamura, M. and Umegaki, H.: A note on the entropy for operator algebras, Proc. Jap.

Acad., 37 (1961), 149-154.

[7] Obata, N.: White Noise Calculus and Fock Space, Lect. Notes in Math. Vol. 1577, Springer-

Verlag, 1994.


