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概要
本稿では，解自身にも依存し得る凸かつリプシッツ連続なハミルトニアンをもつ 1階放物型

Hamilton–Jacobi 方程式の粘性解に対する下からの勾配評価に関する結果を紹介する．我々
は二つの異なる方法によって勾配評価を導く．第一の方法は偏微分方程式に基づく手法であ
り，粘性解と Barron–Jensen 解の同値性，解の下限畳み込みの性質，そして局所比較原理を
用いる．この方法により，[Ley, 2001]の結果を改良し，より鋭い評価を得るとともに，その有
効範囲をより大きな領域へ拡張する．第二の方法は力学的手法であり，ハミルトン系の軌道に
沿って初期勾配の発展を追跡するものである．この考え方は [Hamamuki-H., 2023] で導入さ
れたものであり，本研究ではこれを Herglotz の変分原理に基づいて接触ハミルトン系へと拡
張する．なお，本研究の一部は，浜向直氏（北海道大学）との共同研究によるものである．

1 序
1.1 方程式と目的
本稿では，1階放物型 Hamilton–Jacobi方程式に対する次の初期値問題を考える：{

ut(x, t) +H(x, t, u(x, t), Dxu(x, t)) = 0 in Rn × (0, T ),

u(x, 0) = u0(x) in Rn.
(HJ)

ここで u : Rn × [0, T ) → Rは未知関数，ut = ∂tu, Dxu = (∂xi
u)ni=1 はその微分を表す．さらに，

ハミルトニアンH : Rn × [0, T ]×R×Rn → Rは連続，初期関数 u0 : Rn → Rはリプシッツ連続
とする．
粘性解に対する上からの勾配評価については，これまでに多くの研究がなされている．これらの
評価は，非線形楕円型および放物型方程式の解の存在や正則性の解析，特異摂動問題など，様々な
文脈に応用されている．上からの勾配評価は，粘性解に対する弱いベルンシュタイン法 [2, 3] や
Ishii-Lions法 [13]などの手法を用いて導出される．
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一方で，粘性解に対する下からの勾配評価は，これまでほとんど知られていない．その主な
理由の一つは，下からの勾配評価を導くために，粘性解に対する弱いベルンシュタイン法を適
用することが難しいからである．さらに，[12, 例 7.5] で示されているように，ハミルトニアン
H = H(x, t, u, p)が pについて凸でない場合には，下からの勾配評価が成り立つとは限らない．し
たがって，下からの勾配評価を導くためには，ハミルトニアン H の凸構造をどのように利用する
かが非常に重要である．
ハミルトニアンが H = H(x, t, p)の形をとる場合には，粘性解に対する下からの勾配評価に関
する結果がすでに [12, 15]で得られている．これらの結果は，転位力学に現れるような非局所項を
もつ界面発展方程式の解の一意性を示すために応用されている [4, 5]。また，界面の肥大化現象が
生じないこと，および界面が局所的にリプシッツ連続性を保つことも示されている [15]。しかしな
がら，著者の知る限りでは，(HJ)の粘性解に対する下からの勾配評価に関する結果はこれまで存
在しない．
本稿の目的は，ハミルトニアン H = H(x, t, u, p)が pについて凸であるときに，いくつかの仮
定の下で (HJ)の粘性解 uに対する下からの勾配評価を導くことである．より具体的には，初期関
数について |Du0| ≧ θ > 0 in Br(x0)が粘性解の意味で成り立つと仮定したときに，次の不等式が
粘性解の意味で成り立つことを示す：

|Dxu(x, t)| ≧ M(t; θ) in E(x0, r). (1.1)

ここで E(x0, r)は Rn × (0, T )の部分集合である（詳細は (1.2)を参照）．また，| · |は通常のユー
クリッドノルム，Br(x0)は中心 x0，半径 r の開球を表す．
(1.1)の結果を得るために，二つの異なる手法を用いる．第一の方法は，[15]に基づく偏微分方程
式的手法であり，解の下限畳み込みと比較定理を組み合わせることで勾配評価を導く（定理 1.1）．
第二の方法は，[12] によって導入された力学的手法であり，接触ハミルトン系に対する Herglotz

の変分原理 [7]を利用して勾配評価を導く（定理 1.3）．さらに，両者による評価結果を比較し，い
くつかの側面において力学的手法が偏微分方程式的手法よりも鋭い評価を与えることを示す．

1.2 主定理
ハミルトニアン H = H(x, t, u, p)は連続で pについて凸であり，次を仮定する．

(H1) ある C1 ≧ 0と β ∈ {0, 1}が存在して，任意の (t, u, p) ∈ [0, T ]×R×Rn と x, y ∈ Rn に対
して，

|H(x, t, u, p)−H(y, t, u, p)| ≦ C1(β + |p|)|x− y|

が成り立つ．
(H2) ある A2, B2 ≧ 0が存在して，任意の (x, t, u) ∈ Rn × [0, T ]× Rと p, q ∈ Rn に対して，

|H(x, t, u, p)−H(x, t, u, q)| ≦ (A2|x|+B2)|p− q|

が成り立つ．



(H3) あるK3 ≧ 0が存在して，任意の (x, t, p) ∈ Rn × [0, T ]× Rn と u, v ∈ Rに対して，

|H(x, t, u, p)−H(x, t, v, p)| ≦ K3|u− v|

が成り立つ．

また，初期関数 u0 : Rn → Rはリプシッツ連続であり，以下を仮定する．

(U) x0 ∈ Rn, r > 0を固定したとき，ある θ > 0が存在して，任意の x ∈ Br(x0)と p ∈ D−u0(x)

に対して，|p| ≧ θ が成り立つ．

このとき，次の結果が得られる．これらの結果は [11]に基づく．

定理 1.1. (H1)–(H3)と (U)を仮定する．関数 u ∈ C(Rn × [0, T ))を (HJ)の粘性解とする．こ
のとき，ある t0 ∈ (0, T ]が存在して，任意の (x, t) ∈ E(x0, r)∩ (Rn × (0, t0))と p ∈ D−

x u(x, t)に
対して，次の不等式が成り立つ：

|p| ≧
√

θ2e−(( β
2 +2)C1+2K3)t − 2C1βt.

ここで β,C1 は (H1)，K3 は (H3)に現れる定数であり，

E(x0, r) := {(x, t) ∈ Br(x0)× (0, T ) | R(x, t) + |x− x0| < r}, (1.2)

R(x, t) :=


(
B2

A2
+ |x|

)
(eA2t − 1) (A2 > 0),

B2t (A2 = 0).

O
x

t
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r

図 1: 領域 E(x0, r)．

注意 1.2. E(x0, r)と R(x, t)は [12]で得られた依存領域と半径であり，領域 E(x0, r)を図示する
と図 1となる．[15]では，勾配評価が成り立つ領域は

D(x0, r) := {(x, t) ∈ Br(x0)× (0, T ) | e(A2+B2+A2|x0|)t(|x− x0|+ 1)− 1 < r}

であった．[12, 定理 6.8]より D(x0, r) ⊂ E(x0, r)が成り立つので，定理 1.1は [15, 定理 4.2(i)]の
結果を改良したものである．
定理 1.1は [15]の手法に基づいて証明する (第 3.1節)．まず，uの下限近似が (HJ)の近似方程
式の粘性劣解になることを示し，比較定理を用いて uとの差を評価する．この際，Barron–Jensen

解と粘性解の同値性を利用する．



定理 1.3. (H1)–(H3) と (U) を仮定する．さらに，(HJ) の解は一意であると仮定する．関数
u ∈ C(Rn× [0, T ))を (HJ)の粘性解とする．このとき，任意の (x, t) ∈ E(x0, r)と p ∈ D−

x u(x, t)

に対して，粘性解の意味で次の不等式が成り立つ：{
|p| ≧ θe−(C1+K3)t − C1β

C1+K3
(1− e−(C1+K3)t) ((C1,K3) ̸= (0, 0)),

|p| ≧ θ ((C1,K3) = (0, 0)).

定理 1.3は [12]の手法に基づいて証明する (第 3.2節)．まず接触ハミルトン系の解の性質を調
べ，uの勾配が接触ハミルトン系の解に沿ってどのように伝搬してくのかを調べる．この際，グロ
ンウォールの不等式を利用して，接触ハミルトン系の解の差を評価する．ただし，接触ハミルトン
系を利用するために，ハミルトニアンを適切に近似する必要がある．
定理 1.1と定理 1.3を比較すると，勾配評価が得られる領域は同じ E(x0, r)である．また，下界
は定理 1.3のものが定理 1.1のものより大きいことが計算により分かる [11, 定理 5.2]．この意味
で，定理 1.3は定理 1.1よりもよい結果であるといえる．

1.3 具体例
(HJ)の具体例として，界面発展問題に現れる等高面方程式がある（[10]を参照）．与えられた界面

Γ(0) ⊂ Rnに対して，その発展 {Γ(t)}t≧0を捉えるために，Γ(t)をある補助関数 u : Rn×[0, T ) → R
の 0-等高面として表現する：

Γ(t) = {x ∈ Rn | u(x, t) = 0}.

今，Γ(t) が一定速度で縮小していると仮定する．つまり，x における Γ(t) の外向き法速度
V = V (x, t) ∈ Rが

V = −c on Γ(t) (1.3)

と書けると仮定する．ただし，c > 0 である．このとき，u が (x, t) の近傍で十分滑らかで
Dxu(x, t) ̸= 0ならば，

V =
ut(x, t)

|Dxu(x, t)|

と表すことが出来るので，(1.3)に代入すると，

ut(x, t) + c|Dxu(x, t)| = 0 (1.4)

が得られる．これはアイコナール方程式と呼ばれる．
ここでは，(1.4)に未知関数を依存させた次の方程式を考える：

ut(x, t) + u(x, t) + c|Dxu(x, t)| = 0. (1.5)

(1.5)を初期条件 u0(x) = max{1− |x|, 0}の下で考える．このとき，粘性解の表現公式より，(1.5)
の解は

u(x, t) = max{e−t(1− ct− |x|), 0}



で与えられる（図 2）．したがって，粘性解の意味で次の関係式が得られる：

|Du0| = 1 in B1(0)であるとき，|Dxu(x, t)| = e−t in B1−ct(0)× (0, T )．

O
x

−1

1

1

(a) u0(x) = max{1− |x|, 0}.

O x−1 + ct

e−t(1− ct)

1− ct

(b) u(x, t) = max{e−t(1− ct− |x|), 0}.

図 2: (1.5)の解．

(1.5)において，ハミルトニアン H(u, p) = u + c|p|は C1 = β = A2 = 0, B2 = c, K3 = 1で
(H1)–(H3)を満たし，(1.2)は

E(0, 1) = {(x, t) ∈ B1(0)× (0, T ) | ct+ |x| < 1} = B1−ct(0)× (0, T )

となる．したがって，定理 1.1と定理 1.3の結果が最適であることがわかる．

2 準備
まず，(HJ)の粘性解を定義する．粘性解とは，1983年に Crandallと Lionsにより導入された
弱解の概念である．粘性解の性質については，[1, 9, 14, 16]などを参照せよ．

定義 2.1 (優微分と劣微分). 関数 f : Rn → R と x ∈ Rn に対して，優微分 D+f(x) と劣微分
D−f(x)をそれぞれ

D+f(x) :=
{
Dϕ(x)

∣∣ ϕ ∈ C1(Rn), f − ϕが xで極大値をとる}
,

D−f(x) :=
{
Dϕ(x)

∣∣ ϕ ∈ C1(Rn), f − ϕが xで極小値をとる}
で定める．さらに，関数 u : Rn × [0, T ) → Rと (z, t) ∈ Rn × (0, T )に対して，

D±
x u(z, t) = {p ∈ Rn | (p, τ) ∈ D±u(z, t)}

と定める．

定義 2.2 (粘性解). 上半連続関数 u : Rn × [0, T ) → Rが (HJ)の粘性劣解 (resp, 下半連続関数 u

が (HJ)の粘性優解)であるとは，次の 2条件を満たすことをいう：

(1) 任意の x ∈ Rn に対して，u(x, 0) ≦ u0(x) (resp, u(x, 0) ≧ u0(x))となる．



(2) 任意の (x, t) ∈ Rn × (0, T )と (p, τ) ∈ D+u(x, t) (resp, D−u(x, t))に対して，

τ +H(x, t, u(x, t), p) ≦ 0 (resp, ≧ 0)

が成り立つ．

また，関数 u ∈ C(Rn × [0, T ))が (HJ)の粘性解であるとは，uが (HJ)の粘性劣解かつ粘性優解
であることをいう．

次に，定理 1.1の証明で用いる解を定義する．

定義 2.3 (Barron–Jensen解 [6]). 下半連続関数 u : Rn× [0, T ) → Rが (HJ)のBarron–Jensen

解であるとは，次の 2条件を満たすことをいう：

(1) 任意の x ∈ Rn に対して，u(x, 0) = u0(x)となる．
(2) 任意の (x, t) ∈ Rn × (0, T )と (p, τ) ∈ D−u(x, t)に対して，

τ +H(x, t, u(x, t), p) = 0

が成り立つ．

注意 2.4. 定義から，Barron–Jensen解は粘性優解である．
ハミルトニアン H = H(x, t, u, p)が pについて凸であるとき，Barron–Jensen解と粘性解の関
係は次のようになる．

定理 2.5 (Barron–Jensen 解と粘性解の同値性 [11, 定理 2.4]). (H1)，(H3) を仮定する．このと
き，関数 u ∈ C(Rn × [0, T ))が (HJ)の粘性解であることと，uが (HJ)の Barron–Jensen解であ
ることは同値である．

3 主定理の証明の概略
3.1 定理 1.1の証明の概略
関数 u ∈ C(Rn × [0, T ))を (HJ)の粘性解とする．定理 2.5を利用すると，uの下限畳み込み

uε(x, t) := inf
y∈Br(x0)

{
u(y, t) + e−γt |x− y|2

ε2

}
は (HJ)の近似方程式

ut(x, t) +H(x, t, u(x, t), Dxu(x, t)) =
C1β

2
eγtε2 in Br(x0)× (0, T ).

の粘性劣解となる [11, 系 3.5]．ここで，ε, γ > 0 は定数であり，Br(x0) は Br(x0) の閉包を表
す．uε を粘性劣解，u を粘性優解として局所比較定理（[11, 定理 3.6]）を適用すると，任意の



(x, t) ∈ E(x0, r)に対して，

uε(x, t)− u(x, t) ≦ sup
y∈Br(x0)

e−K3t(uε − u)(y, 0) + e−K3t

∫ t

0

eK3s · βC1

2
eγsε2 ds

が得られる．ここで，

e−K3t

∫ t

0

eK3s · βC1

2
eγsε2 ds ≦ eγt

∫ t

0

βC1

2
ε2 ds =

βC1

2
eγttε2

であり，[15, 補題 4.1]より，

sup
y∈Br(x0)

(uε − u)(y, 0) ≦ −θ2

4
ε2

が成り立つので，次の不等式を得る：

uε(x, t)− u(x, t) ≦ −θ2

4
e−K3tε2 +

βC1

2
eγttε2. (3.1)

一方で，(x, t) ∈ E(x0, r)と p ∈ D−
x u(x, t)を任意にとる．yε ∈ Br(x0)を uε(x, t)の最小点と

すると，粘性解の基本的な性質から，lims→+0 ω(s) = 0 となるある ω ∈ C([0,∞)) とある定数
M > 0が存在して，

uε(x, t)− u(x, t) ≧ −|p|2

4
eγtε2 −Mε2ω(Mε2) (3.2)

が成り立つ．(3.1)と (3.2)の不等式を組み合わせて整理すると，

|p|2 ≧ θ2e−(γ+K3)t − 2βC1t− 4Me−γtω(Mε2)

であるから，ε → +0として γ =
(

β
2 + 2

)
C1 +K3 と定めれば，定理 1.1を得る．

3.2 定理 1.3の証明の概略
まず，(HJ)の粘性解 uに対して，次の接触ハミルトン系を考える：

ξ′(s) = DpH(ξ(s), s, uξ(s), η(s)),

η′(s) = −DxH(ξ(s), s, uξ(s), η(s))−DuH(ξ(s), s, uξ(s), η(s))η(s),

u′
ξ(s) = ⟨η(s), ξ′(s)⟩ −H(ξ(s), s, uξ(s), η(s)).

(3.3)

ただし，⟨·, ·⟩ は通常の内積を表す．(H1)–(H3) の仮定だけでは (3.3) を考えることはできないの
で，ハミルトニアン H を適切に近似する必要がある．その際に，(HJ) の解の一意性が必要とな
る．詳細は，[11, 第 4.1節]を参照せよ．また，ハミルトニアン H を適切に近似すると，粘性解 u

は半凹関数となるので，定理 1.3を示すには，uの微分可能な点 (x, t)のみを考えれば十分である．
(x, t)を uの微分可能な点として，(3.3)に終端条件

ξ(t) = x, η(t) = Dxu(x, t), uξ(t) = u(x, t)



を課す．すると，[7]などにおいて，(HJ)の粘性解 uと接触ハミルトン系 (3.3)の解 (ξ, η, uξ)の関
係がいくつか知られている．特に，[8, 命題 2.4]より，η(s) = Dxu(ξ(s), s) (s ∈ (0, t))となるの
で，勾配評価を導くためには |η(t)− η(0)|と |ξ(t)− ξ(0)|を評価する必要がある．
任意に τ ∈ [0, t)をとり，(3.3)の第 2式の両辺を [τ, t]で積分すると，

|η(t)− η(τ)| ≦
∫ t

τ

|DxH(ξ(s), s, uξ(s), η(s))| ds+
∫ t

τ

|DuH(ξ(s), s, uξ(s), η(s))η(s)| ds

≦
∫ t

τ

C1(β + |η(s)|) ds+
∫ t

τ

K3|η(s)| ds

≦
∫ t

τ

(C1β + (C1 +K3)(|η(t)|+ |η(t)− η(s)|)) ds

= (C1β + (C1 +K3)|η(t)|)(t− τ) + (C1 +K3)

∫ t

τ

|η(t)− η(s)| ds

と変形できる．グロンウォールの不等式を利用して τ = 0をすると，

|η(t)− η(0)| ≦ (C1β + (C1 +K3)|η(t)|)t

+ e(C1+K3)t

∫ t

0

e−(C1+K3)(t−s)(C1 +K3)(C1β + (C1 +K3)|η(t)|)(t− s) ds

= (C1β + (C1 +K3)|η(t)|)
{
t+ (C1 +K3)

∫ t

0

(t− s)e(C1+K3)s ds

}
となる．(C1,K3) ̸= (0, 0)のとき，

(C1 +K3)

∫ t

0

(t− s)e(C1+K3)s ds =
[
(t− s)e(C1+K3)s

]t
0
+

∫ t

0

e(C1+K3)s ds

= −t+
e(C1+K3)t − 1

C1 +K3

となるので，これを元の式に代入すると，

|η(t)− η(0)| ≦
(

C1β

C1 +K3
+ |η(t)|

)
(e(C1+K3)t − 1)

を得る．ここで η(t) = Dxu(x, t)と |η(0)| − |η(t)| ≦ |η(t)− η(0)|より，

|Dxu(x, t)| ≧ |η(0)|e−(C1+K3)t − C1β

C1 +K3
(1− e−(C1+K3)t)

を得る．
また，(3.3)の第 1式の両辺を [τ, t]で積分すると，

|ξ(t)− ξ(τ)| =
∣∣∣∣∫ t

τ

DpH(ξ(s), s, uξ(s), η(s)) ds

∣∣∣∣ ≦ ∫ t

τ

|DpH(ξ(s), s, uξ(s), η(s))| ds

≦
∫ t

τ

(A2|ξ(s)|+B2) ds.



となる．A2 = 0のとき，直接計算により |ξ(t) − ξ(0)| ≦ B2tを得る．A2 > 0のとき，上と同様
の計算により

|ξ(t)− ξ(0)| ≦
(
B2

A2
+ |ξ(t)|

)
(eA2t − 1)

を得る．したがって，|x− ξ(0)| ≦ R(x, t)を得る．今，[8, 命題 2.4]より，
η(0) ∈ D−u0(ξ(0))

が成り立つので，(x, t) ∈ E(x0, r)のとき |η(0)| ≧ θ が成り立つ．これより

|Dxu(x, t)| ≧ θe−(C1+K3)t − C1β

C1 +K3
(1− e−(C1+K3)t)

が従う．
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