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概要
擬柱面的線織面（pseudo-cylindrical ruled surface）とは，有限重複度をもつ線織面のことで
あり，柱面を除くすべての解析的線織面を含む．本レポートでは，非柱面的線織面を擬柱面的
線織面へと拡張する．非柱面的線織面においては，交叉帽子（cross cap），カスプ辺（cuspidal

edge），燕の尾（swallowtail）などの特異点が現れ，これらの特異点と密接に関係する締括線
（striction curve）が必ず存在する．一方，擬柱面的線織面では，カスプ嘴（cuspidal beaks）や
Scherbak 曲面のような，非柱面的線織面には現れない特異点が出現し，場合によっては締括線
が存在しないこともある．締括線の挙動と特異点との関係を述べるとともに，フロンタル，波面，
非退化特異点，第 n種特異点といった特異点の基本的性質を紹介する．本内容は [3]に基づく．

1 導入
線織面の基本について述べる．詳しくは [1] を見よ．写像芽 γ : (R, 0) → (R3, 0) を C∞ 級写

像，ξ : (R, 0) → S2 を C∞ 級単位ベクトル場とする．ただし，S2 は単位球面である．このとき，
F : (R, 0)× R → R3;

F (x, t) = γ(x) + tξ(x)

で表される曲面を線織面 (ruled surface) という．曲線 γ(x) を母線 (base curve) といい，ξ(x)

を導線 (director curve) という．任意の x ∈ (R, 0) に対し，ξ′(x) = 0 のとき，その線織面を柱
面 (cylinder)といい，ξ′(x) ̸= 0のとき，その線織面を非柱面的 (non-cylindrical)という．ただ
し，( )′ = d/dx である．線織面の正則な部分でガウス曲率が 0 となるとき，その線織面を可展面
(developable surface)という．よく知られるように線織面が可展面となる必要十分条件は任意の
xについて

det(γ′(x), ξ(x), ξ′(x)) ≡ 0

が成り立つことである．また線織面が非柱面的なとき，曲線

s(x) = F (x, t(x)) = γ(x)− ⟨γ′(x), ξ′(x)⟩
⟨ξ′(x), ξ′(x)⟩

ξ(x) (1.1)

がとれ，この曲線 sを締括線 (striction curve)と呼ぶ．非柱面的な線織面の特異点は締括線上に
現れ，特に非柱面的な可展面のとき，特異点は締括線に一致することが知られている [5]．一方で，
線織面が柱面でも非柱面的でもない場合，締括線が定義できない場合がある．この状況を詳しく調
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べるため，導線 ξ に有限重複度を仮定する．つまり，ある整数 k ∈ Z≥0 と ξ̃ : (R, 0) → R3 が存在
し，ξ′(x) = xk ξ̃(x), ξ̃(0) ̸= (0, 0, 0)を満たす．この線織面を x = 0で k 次擬柱面的 (k-th pseudo

cylindrical)という．k 次擬柱面的線織面は [2]で導入された非柱面的線織面を自然に拡張した概念
である．このとき，締括線が現れる条件を求め，この条件によって振る舞いが異なることを紹介す
る．さらに，特異点の判別条件として，frontal性，非退化性，第 n種特異点があり，これら条件に
ついて調べることによって，非柱面の場合より複雑な特異点が現れるため，それを紹介する．

2 準備
2.1 曲面上の特異点
この節では曲面に現れる特異点の定義と基本的性質について述べる．詳しくは [6] を見よ．開集
合 U ∈ R2 から R3 への滑らかな写像 f : U → R3 に対し，点 p ∈ U で f がはめ込みであるとき p

を正則点 (regular point)，そうでないとき特異点 (singular point) という．また，特異点 pの
像 f(p)を特異値 (singular value)という．f がフロンタル (frontal)であるとは，滑らかな写像
ν : U → S2 が存在し，任意の点 p ∈ (U, (u, v))で⟨

∂f

∂u
(p), ν(p)

⟩
=

⟨
∂f

∂v
(p), ν(p)

⟩
= 0

を満たすときをいう．このとき写像 ν を単位法線ベクトル場 (unit normal vector feild)という．
f をフロンタルであるとする．f が波面 (wave front)であるとは，写像 L = (f, ν) : U → R× S2

がはめ込みのときをいう．
写像 f をフロンタルとし，ν を単位法線ベクトル場とする．このとき，次の関数

λ(u, v) = det

(
∂f

∂u
(u, v),

∂f

∂v
(u, v), ν(u, v)

)
を定義できる．この λ を f の符号付き体積密度関数 (the signed area density function) と呼
ぶ．点 p で f が特異点を持つことと λ(p) = 0 であることは同値である．さらに特異点 p が非退化
特異点 (non-degenerate singular point) であるとは，dλ(p) ̸= 0 を満たすときをいう．また，
df(v) = 0となる零でないベクトル v を退化ベクトル (null vector)といい，特異点上で退化ベクト
ルになるようなベクトル場 ηを退化ベクトル場 (null vector field)という．写像 f の特異点 p ∈ U

が第 n種特異点 (singular point of the n-th kind)であるとは次を満たすときをいう [6]．

ηλ(p) = ηηλ(p) = · · · = η(n−1)λ = 0, η(n)λ ̸= 0.

2.2 線織面の特異点
非柱面的な線織面の特異点についてはよく知られている．この節では，非柱面的な線織面に現れる
特異点の基本的性質について述べる．写像芽 γ : (R, 0) → (R3, 0)を C∞ 級写像，ξ : (R, 0) → S2 を
C∞ 級単位ベクトル場とする．ただし，S2 は単位球面である．このとき，線織面 F (R, 0)×R → R3;

F (x, t) = γ(x) + tξ(x)



とする．このとき点 (x0, t0)で特異点となるとき，

∂F

∂x
(x0, t0)×

∂F

∂x
(x0, t0) = (γ′(x0) + t0ξ

′(x0))× ξ(x0) = 0

を満たす．線織面 F 上の曲線 s(x) = F (x, t(x)) = γ(x) + t(x)ξ(x) を考える．このとき曲線 s が，
任意の x ∈ (R, 0) について，⟨s′(x), ξ′(x)⟩ = 0 を満たすとき F の締括線 (striction curve) とい
う．F を非柱面的とする．このとき上記の条件から t(x)が定まり，式 (1.1)が得られる．また，締括
線と特異点の関係として次の事実が知られている．

事実 2.1. 線織面が非柱面的であるとする．このとき線織面の特異値は締括線上に存在する．さらに
線織面が可展面のとき，特異値集合は締括線と一致する．

また線織面が非柱面的なとき，フロンタルの性質として次が知られている [4]．

事実 2.2. 線織面 F が非柱面的であるとする．このとき，F が可展面であるならば F はフロンタル
である．また，F が特異点を持つとする．このとき F がフロンタルならば F が可展面であることが
成り立つ．

事実 2.3. 線織面 F を非柱面的で可展面とする．このとき，F が波面であることの必要十分条件は
det(ξ(x), ξ′(x), ξ′′(x)) ̸= 0

を満たすことである．

さらに，非退化特異点や第 n種特異点となる条件として次が知られている．

事実 2.4. 線織面が非柱面的で可展面とし，締括線を sとし，α(x) = ||s′(x)||とおく．このとき現
れる特異点 pは全て非退化特異点であり，第 n種特異点であるための必要十分条件は，

α(p) = α′(p) = · · · = α(n−1)(p) = 0, α(n−1)(p) ̸= 0

を満たすことである．

以上の事実から可展面には次の基本的な特異点が現れる．カスプ辺（cuspidal edge）は波面で非
退化な第 1種特異点であり，燕の尾（swallowtail）は波面で非退化な第 2種特異点である

図 1: 線織面が非柱面的な例 (cuspidal edge (left) and swallowtail (right))



3 擬柱面的線織面と特異点
2.2節で紹介したように，線織面 F (x, t) = γ(x) + tξ(x)が非柱面的な場合，特異点の性質が簡単

な条件で表すことができ，締括線が特異点と密接に関わっていることがわかる．一方で，非柱面的
でない場合の線織面の特異点の振る舞いについてはあまり知られていない．この状況を詳しく調べ
るため，導線 ξ に有限重複度を仮定する．このとき，ある整数 k ∈ Z≥0 と ξ̃ : (R, 0) → R3 が存在
し，ξ′(x) = xk ξ̃(x), ξ̃(0) ̸= (0, 0, 0) を満たす．このような線織面を x = 0 で k 次擬柱面的 (k-th

pseudo cylindrical)という．
もし線織面 F が解析的（すなわち γ と ξ が解析的）であれば，F は柱面または k 次擬柱面的
線織面のいずれかである．以下では，γ と ξ が解析的であると仮定する．滑らかな単位ベクトル場
ξd : (R, 0) → S2 を

ξd(x) =
ξ̃(x)

∥ξ̃(x)∥

で定義する．∥ξ(x)∥ = 1 であるから，ξ と ξd は直交し，F に沿った正規直交フレーム

{ξ(x), ξd(x), ξ(x)× ξd(x)}

を得る．このとき，次の Frenet–Serret 型の公式が成り立つ： ξ′(x)
ξ′d(x)

(ξ(x)× ξd(x))
′

 =

 0 δ(x) 0
−δ(x) 0 ρ(x)

0 −ρ(x) 0

 ξ(x)
ξd(x)

ξ(x)× ξd(x)

 ,

ただし
δ(x) = ⟨ξ′(x), ξd(x)⟩ = ∥ξ̃(x)∥xk, (3.1)

および
ρ(x) = ⟨ξ′d(x), ξ(x)× ξd(x)⟩ = det(ξ(x), ξd(x), ξ

′
d(x)) (3.2)

である．
また，

γ′(x) = p(x)ξ(x) + q(x)ξd(x) + r(x)(ξ(x)× ξd(x)) (3.3)

とおく．ここで

p(x) = ⟨γ′(x), ξ(x)⟩, q(x) = ⟨γ′(x), ξd(x)⟩, r(x) = ⟨γ′(x), ξ(x)× ξd(x)⟩

である．
γ と ξ は解析的であるから，

p(x) =

{
0,

p̃(x)xP , p̃(0) ̸= 0,
q(x) =

{
0,

q̃(x)xQ, q̃(0) ̸= 0,
r(x) =

{
0,

r̃(x)xR, r̃(0) ̸= 0,

と書ける．ここで p̃, q̃, r̃ : (R, 0) → R，P,Q,R ∈ Z≥0 である．p(x) = 0（同様に q(x) = 0,

r(x) = 0）のとき，次数をそれぞれ P = ∞（同様に Q = ∞, R = ∞）とみなす．



3.1 締括線の存在条件と振る舞い
この節では締括線の振る舞いと特異点との関係について紹介する．線織面が非柱面的な場合では締

括線は常に存在したが k 次擬柱面的な場合だとある罫線上に存在しない場合が存在する．まずその
条件を出す．

命題 3.1. F (x, t) = γ(x) + tξ(x) を解析的な k 次擬柱面的線織面とする．このとき，締括線 s(x)

が x = 0 において存在する必要十分条件は Q ≥ k である．

Proof. 締括線の条件より

⟨s′(x), ξ′(x)⟩ = ⟨γ′(x) + t′(x)ξ(x) + t(x)ξ′(x), ξ′(x)⟩
= (q(x) + t(x)δ(x))δ(x)

が成り立つ．⟨s′(x), ξd(x)⟩ = 0 ならば，

t(x) = −q(x)δ(x)

δ(x)δ(x)
= − q̃(x)

∥ξ̃(x)∥
xQ−k (3.4)

である．したがって，締括線は

s(x) = γ(x)− q̃(x)

∥ξ̃(x)∥
xQ−kξ(x) (3.5)

と表される．よって，s(x) が x = 0 で定義可能となるのは Q ≥ k のときに限る．

また，締括線と特異点の関係として次が得られる．次の命題は事実 2.1を拡張したものである．

命題 3.2. 線織面 F (x, t) = γ(x) + tξ(x) を解析的な k 次擬柱面的線織面とする．このとき F の特
異値集合は，締括線または x = 0 の罫線上に現れる．さらに min{Q, k} ≥ 1 かつ F が可展面のと
き，F の特異値集合は，締括線と x = 0の罫線の和集合と一致する．

例 3.3. 写像 f1, f2 : (R2, 0) → (R3, 0)を

f1(x, t) =

(
x,−x3

3
,−x4

4

)
+ t

(
1, x2, x3

)
,

f2(x, t) =

∫ x

0

g(u)du+ tg(x), g(x)
(1, x4, x5)√
1 + x8 + x9

で定義する．このとき線織面 f1, f2 は k = 1で可展面となる例である．図 2は f2 の可展面で x = 0

で締括線が定義できる例である．実際に締括線及び x = 0 の罫線が特異点として現れ，原点では
cuspidal beaksと呼ばれる特異点が現れる．一方，Q < k のとき，締括線は x = 0の罫線に漸近す
るように振る舞う．図 3は f2 の可展面で Q < k を満たす例である．実際，締括線が x = 0の罫線
に漸近する様子が見られる．



図 2: 線織面が擬柱面的な例 (cuspidal beaks)

図 3: x = 0で締括線が存在しない（Q < k）場合の例

3.2 主結果
この節では主結果として事実 2.2，事実 2.3，事実 2.4を拡張したものを紹介する．
線織面 F を解析的で k 次擬柱面的とする．このとき，特異点の条件は，式 (3.1)，(3.3)を用いて，

∂F

∂x
(x0, t0)×

∂F

∂x
(x0, t0) = −(q(x) + tδ(x))(ξ(x)× ξd(x)) + r(x)ξd(x) = 0

とかける．m = min{Q,R, k} とおき，

A(x, t) = −q(x) + tδ(x)

xm
, B(x) =

r(x)

xm

と定義する．事実 2.2 の拡張として，次を得る．

定理 3.4 (フロンタルと波面). F を解析的な k 次擬柱面的線織面とする．

(1) F がフロンタルであるための必要十分条件は，次のいずれかが成り立つことである：
(a) F は可展面，すなわち r(x) = 0；
(b) r(x) = r̃(x)xR，r̃(0) ̸= 0 のとき，k > Q または k ≥ R．



(2) F がフロンタルであると仮定する．このとき，F が波面であるための必要十分条件は次のい
ずれかが成り立つことである：
(a) r(x) = 0 ならば ρ(x) ̸= 0；
(b) r(x) = r̃(x)xR，r̃(0) ̸= 0 のとき，

ρ(x)
(
A(x, t)2 +B(x)2

)
+A(x, t)B′(x)−Ax(x, t)B(x) ̸= 0.

x = 0 の母線上に締括線 s(x) が存在するとき，

σ(x) = δ(x)∥s′(x)∥

と定義する．事実 2.3，事実 2.4 の拡張として次を得る．

定理 3.5 (特異点の分類). F を解析的でフロンタルな k 次擬柱面的線織面とする．

(1) F が非退化特異点をもつための必要十分条件は

min{Q,R, k + 1} = 1

である．
(2) F の特異点が第 n 種特異点であるための必要十分条件は，次のいずれかが成り立つことで
ある：
(a) k > Q，または r(x) = r̃(x)xR で r̃(0) ̸= 0 のとき，

min{Q,R} = n;

(b) Q ≥ k かつ r(x) ≡ 0 のとき，

σ(x) = σ′(x) = · · · = σ(n−2)(x) = 0, σ(n−1)(x) ̸= 0.

例 3.6. 写像 f, g : (R2, 0) → (R3, 0)を

f(x, t) =

(
xn−k

n− k
,
xn+1

n+ 1
,
xn+2

n+ 2

)
+ t(1, xk+1, xk+2)

g(x, t) =

(
xn−k

n− k
,
xn+1

n+ 1
,
xn+3

n+ 3

)
+ t(1, xk+1, xk+3)

と定める．ただし，n, k ∈ Z≥0, n > k とする．このとき f, g は k 次擬柱面的線織面であり，可展面
である．f は原点で特異点を持ち，波面（ρ(x) ̸= 0）で第 n種の特異点を持つ（図 4を見よ）．g は
原点で特異点を持ち，波面でないフロンタル（ρ(x) = 0, ρ′(x) ̸= 0）で第 n種の特異点を持つ（図 5

を見よ）．



図 4: 特異点の分類表（波面）

図 5: 特異点の分類表（フロンタル）
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