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概要
虚 2次体 K の類数 hK と素数生成多項式の値の素因子の個数 ΩK との関係は古くからよく知
られている（hK = 1 ⇐⇒ ΩK = 1）． この事実は，類数が 2, 3の場合にも同様の定式化がな
されている． 本稿では, 類数が 4の場合の定式化を試みる．種の理論により，類数が 4ならば，
判別式 dK のもつ異なる素因子の個数は 2個または 3個である. 主結果は一般リーマン予想の仮
定の下で，dK が異なる素因子を 3個もつとき，

hK = 4 ⇐⇒ ΩK = 3

である．また，ΩK = 4の場合の類数の 3, 5, 7, 8に関する整除性の予想も述べる．

1 導入
虚 2次体K の判別式 dK を

dK =

{
1− 4q dK ≡ 1 (mod 4)

−4q dK ̸≡ 1 (mod 4)

と表すことにより, 自然数 q を定め, 素数生成多項式 f(X)を

fK(X) =

{
X2 +X + q dK ≡ 1 (mod 4)

X2 + q dK ̸≡ 1 (mod 4)

と定める*1. ΩK を

ΩK =

{
1 (q = 1)

max
0≤n≤q−2

{Ω(fK(n))} (q ≥ 2)

と定義する*2. ただし, 整数 n ̸= 0の重複を許した素因子の個数を Ω(n)と表す. また, 異なる素因子
の個数を ω(n)と表す. 虚 2次体の類数 hK に対して, 以下の結果が古くから知られている:

定理 1.1 (フロベニウス・ラビノヴィッチ). 平方因子をもたない負の有理整数mに対して,

hK = 1 ⇐⇒ ΩK = 1.

は同値である．

∗ ayu.deguchi@nagoya-u.jp
*1 虚 2次体K に対して, 特に断りがなければ q および fK(X)は, 上で定義された自然数および多項式を意味するものと
する. また, 体K が明確であるときは添え字K を省略する.

*2 q = 1となる虚 2次体K は Q(
√
−1)または Q(

√
−3)のみである.



また, 類数 2, 3の場合も同様の同値性が証明されている:

定理 1.2 (佐々木). 平方因子をもたない負の有理整数mに対して, hK = 2 ⇐⇒ ΩK = 2.

定理 1.3 (山川). 一般リーマン予想を仮定して, 平方因子をもたない負の有理整数mに対して,

hK = 3 ⇐⇒ m = 1− 4q は有理素数かつΩK = 3.

西来路と清水 [SS02]は, 一般リーマン予想下でバッハ [Bac90]が証明した：

K で惰性しない最小の有理素数は 6 log2 |dK |以下である.

という結果を用いて
ΩK ≥ log log 163

log 163

log |dK |
log log |dK |

を示した．これは, ΩK = 3ならば q ≤ 4.169 · · · × 1013 であることを意味する．したがって, この範
囲の q に対して, 4q − 1が有理素数のとき, ΩK = 3ならば hK = 3であることを確かめることがで
きれば, 定理 1.3の⇐ができたことになる. しかし, 実際にはこの検証に膨大な計算量を必要とする.

山川 [山 24]はこの範囲のすべての q を検証する必要はなく特定の q のみを検証すれば良いことを示
し計算量を大幅に減らすことに成功し, PARI/GPを用いて検証に成功した. 講演者は山川の技法を
拡張し, 一般リーマン予想下での ΩK = 3となる虚 2次体の決定, および類数 4の一部の場合の定式
化に成功したので報告する.

定理 1.4 (主定理). 一般リーマン予想を仮定して, 平方因子をもたない負の有理整数mに対して, 虚
2次体K = Q(

√
m)の判別式 dK が 3つの異なる素因子をもつとき,

hK = 4 ⇐⇒ ΩK = 3.

は同値である.

2 準備
定義 2.1. a を整数環 oK のイデアルとする. |oK/a| をイデアル a のノルムといい, Na と表す. ま
た, K ∋ αに対して, αのノルムを Nα = α · α′ と定義する.

定義 2.2. (i) イデアル a, b ⊂ oK に対し

a ∼ b ⇐⇒ (α)a = (β)bとなる 0でないα, β ∈ oKが存在する

と定義する. この同値類をイデアル類という*3.

(ii) oK のイデアル類の個数をK の類数といい, hK で表す. oK のイデアル類全体は位数 hK の群
をなす. この群をイデアル類群といい CK で表す.

*3 a ∼ oK = (1)のことを a ∼ (1)と略記する. a ∼ (1) ⇐⇒ aは単項イデアル.



定義 2.3 (クロネッカー指標). p ∤ dK に対してクロネッカー指標 χK(p)を平方剰余記号を用いて

χK(p) =


(

dK

p

)
, p ̸= 2(

2
dK

)
, p = 2

と定める. ただし, p | dK に対しては χK(p) = 0とする.

定理 2.1. K = Q(
√
m)を虚 2次体とする. 有理素数は次のように分解する:

(1) χK(p) = 0のとき, (p) = p2 と分解する. pは素イデアルであり, pは K で完全分岐する, と
いう.

(2) χK(p) = 1のとき, (p) = pp′ と分解する. p, p′ は素イデアルかつ, p ̸= p′ をみたす. このと
き, pはK で完全分解する, という.

(3) χK(p) = −1のとき, (p)は素イデアルである. このとき, pはK で惰性する, という.

以下, ω =


1+

√
m

2 , m ≡ 1 (mod 4)
√
m, m ≡ 2, 3 (mod 4)

とおく.

命題 2.1. a = [a, b + ω] を原始イデアルとする. a = a1 · a2 を a の任意の分解とすると, ai =

[ai, b+ ω], i = 1, 2も原始イデアルで a = a1 · a2 が成り立つ.

p が惰性するならば, p 上の素イデアル p は単項であるから, イデアル類群の生成元として必要な
い. すなわち, イデアル類群の生成元になり得るのは, 完全分岐, または完全分解する p上の素イデア
ルのみである. ここで, f(n) =

∏
i pi とおき, pi 上の素イデアルを [pi, n+ ω]とすれば,∏

i

[pi, n+ ω] ∼ (1)

を得る. f(X)がもつ素因子は完全分岐, または完全分解するから, f(n)の素因数分解, およびそれか
ら得られるイデアルの関係式を調べることにより, イデアル類群の構造を決定することができる.

補題 2.1. mに対して, 0 < f(n)のとき, a = [a, n+ ω]とすれば, aは aを割る oK の原始的イデア
ルであり, もし単項ならば Na = a ≥ q である.

f(n) = ab, (0 ≤ n ≤ q − 2)を非自明な分解とし, a = [a, n+ ω], b = [b, n+ ω]がそれぞれ単項で
あったとする. このとき, 補題 2.1よりNaNb ≥ q2 > f(q − 2)となり矛盾である. したがって, f(n)

の非自明は因子はどれも単項でない.

3 主定理
類数が 4 であるためには, 種の理論より ω(dK) = 2 または 3 である. また, 類数が 4 であるとき

ΩK = 3または ΩK = 4である. さらに, ω(dK)と ΩK は以下をみたす:

命題 3.1. 任意の虚 2次体K に対して, ω(dK) ≤ ΩK が成立する.

Proof. dK の偶奇により, 場合分けする:



(i) dK = 1 − 4q のとき，ω(dK) = 1のときは明らかであるから, dK を合成数と仮定して素数 p

を用いて dK = −p(2n+ 1)と分解する. このとき, ω(dK) = ω(2n+ 1) + 1であ. ここで,

4f(n) = (2n+ 1)2 − dK = (2n+ 1)(2n+ 1 + p)

であり, 2n + 1 + p は 4 の真の倍数であるから, Ω(2n + 1 + p) ≥ 3 である. よって,

Ω(f(n)) > Ω(2n+ 1)である. 以上より,

ω(dK) = ω(2n+ 1) + 1 ≤ Ω(2n+ 1) + 1 ≤ Ω(f(n)) ≤ ΩK

が成立する.

(ii) dK = −4q のとき,

（a）q が偶数のとき, ω(dK) = ω(−4q) = ω(q) = ω(f(0)) ≤ Ω(f(0)) ≤ ΩK である.

（b）q が奇数のとき, ω(dK) = ω(−4q) = ω(q) + 1である.

i. q が素数のとき, ω(dK) = 2 であるから, 2 ≤ ΩK ならば, ω(dK) ≤ ΩK である. 一
方, ΩK = 1ならば, hK = 1であるが, ω(dK) = 2のとき, hK は偶数であるから, 矛
盾である.

ii. q が合成数のとき, q = pa, ただし pは素数で 3 ≤ aと分解する. q は平方因子をもた
ないから, p ∤ aである. よって, ω(q) = ω(a) + 1である. 一方, 0 ≤ a ≤ q − 2であ
り, f(a) = a(a+ p)である. ここで, pと aは奇数であるから, a+ pは偶数かつ合成
数であるから, 2 ≤ Ω(a+ p)である. よって,

ω(dK) = ω(a) + 2 ≤ Ω(a) + 2 ≤ Ω(f(a)) ≤ ΩK

である.

3.1 ΩK = 3となる虚 2次体について
定理 3.1. ΩK = 3となる体は 52個あり, ω(dK)の値により, 次の 3通りに分類される:

(1) dK が素数となる体は 16個あり, その全ての類数は 3である. 逆に類数 3の虚 2次体 16個が
すべて現れる.

(2) ω(dK) = 2となる体は 12個あり, うち 11個の体の類数は 4であり, CK が位数 4の巡回群と
なる虚 2次体 11個がすべて現れる. 残り 1個の体は類数 6である.

(3) ω(dK) = 3となる体は 24個あり, その全ての類数は 4である. 逆に CK が [2, 2]型の虚 2次
体 24個がすべて現れる.

Proof. 山川 [山 24]より ΩK = 3であるとき, q ≤ 4.169 · · · × 1013 でなければならない. したがって,

この範囲に qをもつ虚 2次体K の ΩK を調べる. 山川が定理 1.3の証明で述べた議論と同様に, 検証
すべき q を減らすことができる. 虚 2次体K で完全分解する最小の素数を pK とおく. dK = 1− 4q



のとき,

χK(pK) = 1 ⇐⇒


(

2
dK

)
= 1 ⇐⇒ dK ≡ 1 (mod 23) (pK = 2)(

dK

p

)
= 1 (pK ̸= 2)

より,

f(n) ≡ 0 (mod p3K) ⇐⇒

{
4f(n) ≡ 0 (mod 25) ⇔ (2n+ 1)2 ≡ dK (mod 25) (pK = 2)

4f(n) ≡ 0 (mod p3K) ⇔ (2n+ 1)2 ≡ dK (mod p3K) (pK ̸= 2)

をみたす整数 nが存在する. dK = −4q のときも同様である. ここで, p3K と q の大小比較により 2

通りの場合分けをする.

(i) p3K < q のとき, 0 ≤ n ≤ q − 2とでき, f(n) ≥ f(0) = q > p3K であるから, f(n)は重複を許
して 4個以上の素因子をもつ. すなわち, ΩK ≥ 4である.

(ii) q ≤ p3K のとき, それぞれの体の類数, および ΩK を計算する.

この場合分けにより, ΩK = 3をみたす K を決定するためには (ii)の場合のみを考察すればよく, 計
算量を大幅に減らすことができる. さらに, 計算量を減らすために 2 ≤ pK ≤ 31 をみたす K に対
して, 予め類数および ΩK を求めておき, その後は pK ≥ 37 となる場合のみを考察する. このとき,

2 ≤ p ≤ 31に対して χK(p) = 0または− 1であるから, q は公差∏2≤p≤31 p = 200560490130の等
差数列上に分布し, 初項は中国の剰余定理により, χK(p) = 0 または − 1 (2 ≤ p ≤ 31) から決定さ
れる. さらに, dK が異なる素因子を高々 3個もつという条件を考慮することにより考察すべき q の
数を判別式が奇数の場合は 241363902

200560490130 = 0.00120 · · · , 偶数の場合は 387943417
200560490130 = 0.00193 · · · に

減らすことができる. 計算を行った結果, 判別式 dK が奇数, かつ異なる 2個の素因子をもつ場合に,

hK ≥ 5 =⇒ ΩK ≥ 4 が唯一の例外 q = 941 (類数 6,ΩK = 3) を除いて成立していることがわか
る. したがって, 定理 1.1, 1.2, および定理 1.3より, 2 ≤ ω(dK) ≤ 3かつ ΩK = 3となる虚 2次体は
q = 941の場合を除いて類数 4であることがわかった. 一方, 類数 4の虚 2次体は 54個あり,

(2) ω(dK) = 2となる体は 30個あり, そのうち 11個が ΩK = 3, 19個が ΩK = 4である.

(3) ω(dK) = 3となる体は 24個あり, そのすべてが ΩK = 3である.

であるから, 定理 3.1が証明された.

定理 3.1より, 次の系（本講演の主定理）を得る.

系 3.1. 一般リーマン予想を仮定して, 平方因子をもたない負の有理整数 m に対して, 虚 2 次体
K = Q(

√
m)の判別式 dK が 3つの異なる素因子をもつとき,

hK = 4 ⇐⇒ ΩK = 3.

は同値である.

定理 3.1における唯一の例外であった q = 941, K = Q(
√
−3763)を除外するために 4 | hK とな

るための条件を考察する.



定義 3.1. 自然数 n ≥ 2 の素因数分解が n =
∏k

i=1 p
ei
i (e1 ≤ · · · ≤ ek) であるとき, (e1, . . . , ek)

を n の型という. また,
∏

pi|dK
peii を n の分岐部分といい nr と表す. nr ̸= 1 のとき, n は分岐す

る, または分岐的, 分岐 (e1, . . . , ek) 型という. また,
∏

pi∤dK
peii を n の不分岐部分といい, nur と

表し, Ω(nur) を n の不分岐重みという. nr = 1 のとき, n は不分岐する, または不分岐的, 不分岐
(e1, . . . , ek)型という.

補題 3.1. (i) f(n) = ab2 (0 ≤ n ≤ q− 2)となる nが存在すれば, CK は 2基本 abel群ではない.

(ii) f(n) = ab2 (a | dK , 0 ≤ n ≤ q − 2)となる nが存在すれば, 4 | hK

Proof. (i) CK が 2基本 abel群ならば, f(n) = ab2のとき, [b, n+ω]2は単項であるから [a, n+ω]

も単項となるが, これは矛盾である.

(ii) a | dK より [a, n+ ω]2 は単項である. よって [b, n+ ω]4 も単項である. 一方, [b, n+ ω]2 は単
項でないから, [b, n+ ω]が代表するイデアル類の位数は 4である.

定理 3.1と補題 3.1より, 次の定理を得る.

定理 3.2. 一般リーマン予想を仮定して, 平方因子をもたない負の有理整数mに対して, K = Q(
√
m)

を虚 2次体とする. ΩK = 3であるとき,

(1) 分岐 (1, 2)型の f(n)が存在する ⇐⇒ CK は位数 4の巡回群.

(2) (1, 2)型の f(n)が存在しない ⇐⇒ CK は [2, 2]型の abel群 ⇐⇒ ω(dK) = 3.

ただし, nはすべて 0 ≤ n ≤ q − 2の範囲とする.

Proof. CK が [2, 2]型の abel群となる体において, Ω(fK(n)) = 3 を与える任意の nに対して f(n)

は (1, 1, 1)型であり, (1, 2)型の f(n)は存在しない.

定理 3.3. 一般リーマン予想を仮定して, 平方因子をもたない負の有理整数mに対して, K = Q(
√
m)

を虚 2次体とする. ΩK = 3かつ dK が異なる素因子を 2個もつ体は 12個存在し,

hK =

{
4 (分岐 (1, 2)型の f(n)が存在する)

6 (分岐 (1, 2)型の f(n)が存在しない)

である. すなわち, 類数が 4であるか否かは分岐 (1, 2)型の f(n)の有無で特徴付けられる.

Proof. Q (
√
−3763) (q = 941, hK = 6)に現れる (1, 2)型の f(n)はすべて不分岐的である.

4 ΩK = 4となる虚 2次体について
−1000000 ≤ m ≤ −1のとき, ΩK = 4 をみたす虚 2次体は 186個存在し, 3, 5, 7, 8の倍数となる

類数が存在する. 類数 4の体を特徴づけるため, この節では 3 | hK , 5 | hK , 7 | hK , 8 | hK となる
ための条件について考察する.



補題 4.1. (i) f(k) = ab, (a, b) = 1のとき,

n ≡ k (mod a), n ≡

{
−k − 1 (mod b) (m = 1− 4q)

−k (mod b) (m = −q)

により nを定めれば, [a, n+ ω] ∼ [b, n+ ω]である. さらに, ab | f(n)ならば, f(n) = abcと
すれば, [a, n+ ω]2[c, n+ ω] ∼ (1)である*4.

(ii) 正の素数 a, b, c (a ̸= b, a ̸= c)に対して, f(k) = ab, f(l) = ac, f(n) = abcd3 (0 ≤ n ≤
q − 2)をみたす非負整数 d, k, lおよび nが存在すれば, 3 | hK である.

例 4.1. 定理 3.3において, K = Q(
√
−3762) (q = 941, dK = −3762)が ΩK = 3, かつ判別式 dK

が合成数であるとき, 類数 hK (= 6)が 4でない唯一の体であった. この補題を用いれば,

f(307) = 29 · 37 · 89, f(11) = 29 · 37, f(40) = 29 · 89

であるから, 補題 4.1(iii)より 3 | hK である.

注意 4.1.

f(n)− f(k) =

{
(n− k)(n+ k + 1) (m = 1− 4q)

(n− k)(n+ k) (m = −q)

であるから, p | f(n), p | f(k) ならば, n ≡ k (mod p) または n ≡ −k − δ (mod p) である. ただ
し, m = 1 − 4q のとき δ = 1であり, m = −4q のとき δ = 0とする. よって, f(n)と f(k)の素因
数分解が定めるイデアル類の等式に現れる素イデアル, およびその共役イデアルの現れ方は, 上の合
同式により決定される.

注意 4.1で述べた概念を, 以下で定義する.

定義 4.1 (共役的素因数分解). f(n), f(k) =
∏

pe に対して, p | f(n), p | f(k)のとき,

εp =

{
1 (n ≡ k (mod p))

−1 (n ̸≡ k (mod p))

とし,
∏

pεpe を f(k)の f(n)に対する共役的素因数分解という. 3個以上の f(ni)が与えられたとき
は, 適当に順番を定めて共役的素因数分解を定義する.

定義 4.2 (推移的・原始推移的). f(n1) = a1a2, f(n2) = a2a3, . . . , f(nk−1) = ak−1ak (1 < k)の
とき, a1 と ak は推移的であるという. 特に a1, . . . , ak がすべて素数のとき, a1 と ak は原始推移的
である, あるいは原始的に推移するという.

補題 4.2. p, q が原始的推移すれば, その上の素イデアル p, qは p ∼ qまたは p ∼ qをみたす.

定義 4.3 (巡回的・原始巡回的). f(n1) = as11 at22 , f(n2) = as22 at33 , . . . , f(nk) = askk at11 のとき, a1

は（したがって各 ai は）(s, t)型巡回的であるという. ただし, s =
∏k

i=1 si, t =
∏k

i=1 ti である. ま

*4 対称性より, 法を入れ替えても同じ結果が得られる.



た, k を長さという. 特に, a1, . . . , ak がすべて素数のとき, 共役的素因数分解により各 si, ti に符号
情報を与え, その積をそれぞれ s̄, t̄とする. すなわち,

s̄ = s

k∏
i=2

εi, εi =

{
1 (ni−1 ≡ ni (mod ai))

−1 (ni−1 ̸≡ ni (mod ai))
, t̄ = tε1, ε1 =

{
1 (n1 ≡ nk (mod a1))

−1 (n1 ̸≡ nk (mod a1))

とし, a1 は（したがって各 ai は）原始 [s̄, t̄]型巡回的である, あるいは原始的に [s̄, t̄]型巡回するとい
い, |s̄+ (−1)k−1t̄|を巡回の位数という.

補題 4.3. 素数 pが長さ k, 位数 lで原始的に [s̄, t̄]型巡回すれば, p上の素イデアル pは pl ∼ (1), す
なわち ps̄+(−1)k−1 t̄ ∼ (1)をみたす.

Proof. p = p1, p2, . . . , pk を素数とし, f(n1) = ps11 pt22 , f(n2) = ps22 pt33 , . . . , f(nk) = pskk pt11 とする.

さらに, si, ti の符号調整後の値をそれぞれ s̄i, t̄i とする. このとき, s̄ =
∏k

i=1 s̄i, t̄ =
∏k

i=1 t̄i = tε1

であり,

ps̄+(−1)k−1 t̄ =

(
· · ·
((

ps̄11 pt̄22

)s̄2(
ps̄22 p−t̄2

3

)s̄3(
ps̄33 pt̄44

)t̄2 t̄3)
· · ·

)s̄k(
ps̄kk pt̄11

)(−1)k−1 t̄2 t̄3···t̄k−1

∼ (1)

が成り立つ.

例 4.2. q = 281, dK = 1− 4q = −1123, hK = 5のとき,

f(72) = 72 · 113, f(153) = 113 · 211, f(268) = 211 · 73

を選べば, s̄ = s · (−1)2 = 2, t̄ = t · 1 = 3と計算できる. したがって, 7は長さ 3で原始的に [2, 3]

型巡回する. このとき, 位数は |2 + (−1)2 · 3| = 5である. よって, 補題 4.3より 5 | hK を得る.

例 4.3. −1000000 ≤ m ≤ −1の範囲で ΩK = 4をみたす K のうち, 5 | hK をみたす K は 24個あ
り, すべて位数が 5の原始的に巡回する素数が存在する. また, 7 | hK をみたす K は 11個あり, す
べて位数が 7の原始的に巡回する素数が存在する.

定義 4.4 (原始集約的). aの不分岐部分 aur のすべての素因子が aur の 1つに素因子 pに aur の素
因子のみを辿りながら原始的に推移するとき, aは pに原始集約的であるという. さらに, aur が素べ
き（指数 1の場合も含む）のときも原始集約的であるという.

定義 4.5 (w 位集約的). aの不分岐部分を aur とする. 不分岐重みがすべて w の倍数である原始集
約的 ai (1 ≤ i ≤ l), および自然数 bを用いて aur = a1ur · · · alurbw と表示されるとき, aは w 位集
約的, あるいは単に集約的であるという*5. また, ai が素数 pi に集約し, Ω(ai) = wei のとき, a は∏

peii bに w 位集約するという*6.

補題 4.4. w 位集約的 f(n) (0 ≤ n ≤ q − 2)が存在するとき, f(n)が不分岐ならば w | hK であり,

f(n)が分岐ならば, 2w | hK である.

*5 任意の自然数 aは aur に 1位集約的である.
*6 補題 4.1の (iii)の f(n)は 3位集約的である.



Proof. f(n) = a · (a1)ur · · · (al)urbw, (a | hK)とおく. ただし, ai は素数 pi に原始集約的であり, ai

の不分岐重みを wei とする. このとき,

[a, n+ ω]

(
l∏

i=1

[pi, n+ ω]ei

)w

[b, n+ ω]w ∼ (1)

が成り立つ. ここで, 素数 p, qに対して, pq | f(n)ならば, [pq, n+ω]は単項でない. 原始集約的の定
義より,各 piに対し, f(ki) = piqiとなる kiが存在する. よって,補題 4.2より [pi, n+ω] ∼ [qi, n+ω]

となるから, 左辺の非自明な因子はどれも単項でない. 以上より, 左辺が代表するイデアル類の位数
は, f(n)が不分岐ならば w であり, f(n)が分岐するならば, 両辺を 2乗して位数 2w を得る.

定義 4.6 (準同型変位・同型変位). 素数 pと q が原始的に推移し,

f(n) = aps, f(k) = qbt, (a | dK , 21−δa1 | st, 1 < t)

と表示される n, k が存在するとき, f(n)は原始的に変位するという. 特に, s = tのとき, 原始的に
準同型変位するといい, さらに f(n)と f(k)が同型のとき, 原始的に同型変位するという.

補題 4.5. s = t = 2の準同型変位が存在すれば, すなわち,

(i) 素数 pに対して f(n) = ap2(a | dK), f(k) = pc2 と表示される n, k (0 ≤ n, k ≤ q − 2)が
存在すれば, CK は位数 8の元をもつ. すなわち 8 | hK である.

(ii) 素数 p と q が原始的に推移するとき, f(n) = ap2(a | dK), f(k) = qb2 と表示される
n, k (0 ≤ n, k ≤ q − 2)が存在すれば, CK は位数 8の元をもつ. すなわち 8 | hK である.

Proof. (i) f(n)の素因数分解より, [p, n+ω]4 ∼ (1)を得る. 注意 4.1より, [q, k+ω]は [p, n+ω]

または [p, n+ ω]と一致するから, [q, k+ω]が代表するイデアル類の位数は 4である. よって,

f(k)の素因数分解より [c, k + ω]8 ∼ (1)を得るから 8 | hK .

(ii) 注意 4.1より, [p, n+ ω]と [q, k + ω]が代表するイデアル類の位数は等しい. よって, (i)と同
様にして [b, k + ω]8 ∼ (1)を得るから, 8 | hK .

例 4.4. q = 647, dK = 1− 4q = −13 · 199, hK = 8のとき,

f(370) = 13 · 1032, f(464) = 23 · 972, f(41) = 103 · 23（単純推移）

であるから, f(n)は同型変位しており, 補題 4.5より 8 | hK である.

以下に述べる予想は虚 2次体K = Q(
√
m) (−1000000 ≤ m ≤ −1)に対して成立している:

予想 4.1. 一般リーマン予想を仮定して, 平方因子をもたない負の有理整数mに対して, K = Q(
√
m)

を虚 2次体とする. また, nはすべて 0 ≤ n ≤ q − 2とする. ΩK = 4であるとき,



(i)

3 | hK ⇐⇒

 (3) 型の f(n)が存在する, または
分岐 (1, 3) 型の f(n)が存在する, または
同じ素因子をもつ (1, 2)型の f(n)と (1, 1) 型の f(k)が存在する

⇐⇒ 不分岐重み 3の原始集約的 f(n)が存在する

(ii) 5 | hK ⇐⇒ 位数が 5の倍数の原始的に巡回する素数が存在する
(iii) 7 | hK ⇐⇒ 位数が 7の倍数の原始的に巡回する素数が存在する
(iv) dK が異なる素因子を 2個もつとき,

4 | hK ⇐⇒ 分岐 (1, 2)型の f(n)が存在する

(v) dK が異なる素因子を 2個もつとき,

8 | hK ⇐⇒ 原始的に同型変位する分岐 (1, 2)型の f(n)が存在する

(vi) dK が異なる素因子を 2個もつとき,

hK = 4 ⇐⇒

 不分岐重み 3の原始集約的 f(n)が存在しない
位数が 5の倍数の原始的に巡回する素数が存在しない
分岐 (1, 2) 型の f(n)が存在し, かつどれも原始的に同型変位しない
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