Non-admissible 72 7 & R LIZ DWW T

KBKRY: REEBEEMAR BUEEKR
FrHfrist (Katsunori ARAI) *

T

# > i Reidemeister ZICIIE T 2 0N ERE2 b OREERTH D, HMOEHAEEDOHKIC
HHETHS. —T, admissible 725 > FIZ & 2 EEEAELRIXIEABED S OUEREI OEENIC
IFE L, SoN2EMMPRHNSE. ZHxt L, non-admissible 724 >~ RADOEEAE R, &
HEBDRFRIEABZ XA LIE 2. RBFFETIE, &> FH non-admissible ¥ 723 720D+
D&M EE L, FHUCHE-I < non-admissible & >~ KL DFH, - R EITS.

AWFSEE, FERRK CRIRIRYE - RREBEKRY) |, EFEGER (RERF) | NEGRFIK
(BT r oHEMEFIcHE <.

1 #4&
1.1 AR

71 v FVEHE O H RIS BT % Reidemeister 2GS 2 NBRZ B OREETH Y, M H
FEBOWMIUCB VW TEERKE Z R L TWD. X512 [14, 18] BFHi & LT, iEFE TIIM o %
BT B NFREB OB S S Y RALDIFER T ThAT\3.

Definition 1.1 ([10, 15]). & X (#0) e ZHERE . X x X > X Ol X = (X, <) DAV R
(quandle) T» % L IFRDSEM (i)-(ili) 2T I TH 5:

(i) FED e X ML T, <z =o &2z,
(i) HEED y e X LT, B8 S, : X = X, 5,(2) = x4y, ERHUHTH 3.
(iii) FFED z,y,2 € X LT, (x<4y)<dz=(z<2)<(y<z).

AT EVX = (X, ZBWT, SN z) 2 23y ERT (z,y € X). 5T, KIFFETIZRD Fenn-
Rourke Notation % Fi\v2 (B£L <1 [13, Section 8.5] #BHE &): 2v := z<ay, 2¥ = ady
(x,y € X).

Remark 1.2. 7Y FL (X, IZHLT, (X,Q) bAYFLeRb. ZOHY L (X, Q) ZhVR
(X, <) OWXFH > RIL (dual quandle) & W, ZIHEE I % < OIHESE (dual operation)
LI,
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ZODAY FNVOBDERD T FAOERERO L 2H Y RILEFRE (quandle homomor-
phism) &\, 2HGS Y FLERRZ DY RILEER (quandle isomorphism) W5, =20
B RILVOBNCH Y RARBENFET 2 2 ZNOBRABTHLI VS, AV FIL X IZBWT, B4
Sy: X =X (yeX) @AY FARBTHZ*. HY R (X,<) DESBH > RIL (subquandle) &
X OHBEATALITHETOWEZHDENVWS™2. AV PV X, Y IiT LT, Hbth > RVHERAR
FX DY REETHEE & F(X)E X LARAY OfHh Y FATHS.

Example 1.3 (%A > FL), G235, G LOZHER . GxG - G2 oy =y tay
TEHRTS. ZOLE Conj(G) = (G, IZAYELTHY, ZOHY RAE GORBAVRI
(conjugation quandle) & FEA.

HZ8 GOV O0OEBRHEOMES, 7205, H=[],C\ (C) 38 G OHRHE) &7
5. ZOLE HBHGOILOE»LOHZEHTHETWS. EoT, Conj(H) = (H,<) &
Conj(G) DA~ FATHY, ZOH Y FABHEH RV EMER. i 2n (n € Zso) DM
1KBE Doy, DEIMZEIR RN 72 3 HIME H 0% H >~ FAIZZEEH > FIL (dihedral quandle)
R, :=(Zp,xaqy=2y—x) LABTH 3.

EEORED Y FAMTH LT, ZOERT A Y FAVEH 2 OB OMES Lok > FaT
H5.

H Y BV (X, iR LT, B As(X) = (ex(z € X) | epay = €, eaey(x,y € X)) & X OfIHEEE
(associated group) W53, B ny : X — As(X), nx(z) = e, ZBRBREH/R (natural

map) ¥ ER*,

Remark 1.4. HAREBIIFICHFITR 2 2 IER S 0. FEEE 83 O H > L THRZRESD
HETIER WD DBFEET 5.

Definition 1.5 ([11]). # > F)L X »% admissible T®» % L IZBARGG nx PHEFNTHE I %
W9, X 5 non-admissible TH % & 13 X 2% admissible TRWZ &2 WS,

Remark 1.6. 5> F/L X » admissible TH B Z & LRD - DODEHIIFEETH 5

o BHEEG & H%HHFHERA f: X — Conj(G) HEET 5.
o BBEEGHMHFEELT X & Conj(G) OEHH > RALFETH 5.

Remark 1.7. % ¥ FL23 admissible [11], reducible [9, 17], injective [6], & L T embeddable [1]
BRELZBEZTH 2. 012, #1&A ¥ A DETH >~ Fv % standard [2) EFERZ L HH 5. A
%% ClE admissible & W5 FHEICH—F 5.

Question 1.8. 5% 54724 > KL% non-admissible TH B0 E I DHET S Z L IXTE 3.

*1 Definition 1.1 ®ZfF (iii) 1&, S:(z<qy) = S (x) <S.(y) L HI2DTER S, 3H Y FARFERITHS. X512,
SfF (i) D RHEFTH2HEH Y FARMTH 3.

2 h R (X, q) OEHEAT A THETWSA I TH L TWARWS DATEET 2 [12, Theorem 2].

*3 [10] Tid AdConj(X) ¥ &AM TWVS.

 HRREBRII nx 0 X — Conj(As(X)) ¥ ARTILTHY PAVERRYL EX 3 N TE 3.



2 EHER
01

I ZHABHXM [0,1] 2L, D % 2 XMk 52, (1,1) 2> Flheid7Tu -8k
fIUuSTU---USt = DX T DHBETH-T f(I)H f(0) € Dx {0} 25 f(1) € D x {1} it
WKHR->TW2bDEWS., R#EHTIX, (1,1) 2> ZrEmEffirsh s, f(1) EEIC £(0) 25
fHNAPSHEEDDO2BDOETS. (1,1) R I7LORRBECH  FAMICER SN S. D 26N
#wAHAEH L ONAE$5. D LOMOARZ 1 DUID Z ik b, Fig. 10k512 (1,1) X7
LORR D #18%. LIFTE, £(0) ICHET 2 82 E&0% ay, f(1) ICHIST 282 E00% a; &

1 DH»sEshz3RRA D

5.

Definition 2.1. X Z# > F, D 2 HAKAEH L ORRNE721F (1,1) 2> 270 L ORI T
5. Arc(D) % D OilER0EEL T 2. BIRC : Arc(D) - X D D X ¥BTH2 X
D OERZHZIBOTROEMN 2T 2 TH%: Fig. 2 O a;,a;,a, € Arc(D) XL T,
C(a;) < C(a;) = C(ar). D ® X Bta2kDE &% Colx(D) £&EHK.

a; \ a;
\ .

C(ai) < C(az) = Clax)

A ASESEE

Lemma 2.2 (cf. [3, Lemma 4.4], [16, Lemma 5.6]). X ZAZ > NLve$5%. 5 (1,1) x> 7n



L LO®HAHRD, 2L TD0OH5 X ¥ta C BIFELT, Cla,) # Clay) Zilir=372 5613 X 1&
non-admissible TH 5.

Remark 2.3. 7> MV X OWNEIECHEESE (Inner automorphism group) Inn(X) &%, &
%S, (x€ X) WERTBHDZLTHS. H> KL X 25 faithful TH2 213, Fi% X — Inn(X),
T Sy, DHHTHZZ %2 WVS. [3, Lemma 4.4], [16, Lemma 5.6] TIERIIRINAT WS H ¥
KL X A3 faithful 72 51 3EED (1,1) x> 74 L, L OfFEORK D, 2L T D OfFED X ¥t C
R LT, Clas) = Clay) %77

2.2 Hopf#&AHBE (1,1) 2> J L EBAWVWIHIEZL

Proposition 2.4. X 2 > Ve 3%, b,y X BDHFEELTC o<y =z DD ydx # y &l
7257 51X X & non-admissible TH 3.

Proof. D % Fig. 3 DMK §%. D OEED X ¥tuld Fig. 3 T5 2 5NWROBEGRR 2 iz S k)

URTR BT
ra(y<z) =z, 3485 ray==zx.

Hbrye X BPEELT, zqy=ahDy<x £y Ril3%2513H2 D D X Bt C BEFEL

Clas) =y

YC(a) =y a
3 X ®gxhizKKX D

T C(as) =y 22 C(ay) = y <z %ii7=F. f-> T Proposition 2.2 & D, X i3 non-admissible T®

5. Ol

Theorem 2.5. G z#f, N C G ZIERERTRIE 5. 2o &, “HER <: (GXN)x(GxN) —
G x N ZRXRCELT 5:

(g91,m1) < (g2,m2) = ((92n2) " (g1m1)g1(91m1) " (g2n2), (92n2) "' (g1n1)na (g1n1) ~ (g2n2)).

(i) X = (G x N,<) 35> FLTHS.
(i) N ¢ Z(G) 7513 X 13 non-admissible TH 5.



Proof. (i) E#&GFTRTUT I V.
(i) N ¢ Z(G) #iET 2. 2O %, % AcGY¥ Be NHWBHEELTAB £ BA 277
r=(ee),y=(A,B)e X Bk,

AB # BAT®»2%2DT, ABA™' +# B Th3. it>T, y<dx # y. Proposition 2.4 kb, X &
non-admissible T®H 5. O

G xR L, oc Aut(G) ZHHECHAR L T2, Z0r %, GAlex(G,0) = (G,x <y = o(zy~1)y)
Z—ii{t iz Alexander 71>~ FJL (generalized Alexander quandle) &\ 5. —ffbXh
7z Alexander 77 > RLIZDOWTIX, admissibility (2R3 2 /TR0 H 5.

Proposition 2.6 ([1, Corollary], [4, Proposition 3.12]*®). X = GAlex(G,0) % — b Xz
Alexander 77~ Fr e §5%.

(i) o OREIEREEDVHRNITTDO AP S 574 61F X 1 admissible TH 5.
(ii) X 2% Alexander 1> Fb, 7205, G237 —~VEEZ 51X X 1 admissible TH 5.

Proposition 2.6 & b, JEAJ#EE G LO—{b.x 17z Alexander # > F /L3 non-admissible T &
I EHETZ I ERCMYMOREMETDH 2. X512 [7) TlE GAP*® Z W Thi
127 F TO— b &7z Alexander 7 ¥ FADFEBFEHDTLER Y X PRGN TWS. iEoT, Z
DY R MHNO—(L X7z Alexander 7 > KL D admissibility ZIRET 2 2 & ED IR = RE
ThH5.

Remark 2.7. Proposition 2.4 1&—f%{t X417z Alexander % > K23 non-admissible TH % Z &
BRGNP TER. FEFE Proposition 2.4 OF5M 2723 o,y DEE LRV & ZEHEHE T
DD EMNTES. {itoT, Theorem 2.5 D (ii) BT 2 7 ¥ FoUI—t. 7z Alexander 71 >
FLTIE7Z.

23 ZDOEFHUHE (1,1) 227N ZBAVHIESRMY

AYELX = (X,<9) BT, Inn(X) &2 X NOffHOMELZ X ORNBHERZR S
(algebraic connected component) & M3, X 23UEB)ERE (algebraically connected) T
H2elFInn(X)I2k2 X NOIEAPHERBNTHLZ 2 WS,

*5 2 DOFCH TR, &S Y FLE Dehn &Y RALIEATWS D, 20 X5 RIECFETETICELNR .
*6 https://github.com/Kuriharal90/Classification_of_Generalized_Alexander_Quandles



fiit87 > KL (topological quandle) (resp. BS5HHRA Y FIL (smooth quandle)) X =
(X,<) IXAAHZEM (resp. ZHRIK) X LOA Y FAMETHHHEED y € X T L TS, 23
HORMEESR (resp. HEMPFEMEER) TH2zWwS. ML PV X BIANT XL
IHhORary 7 bR ER S X - Inn(X), S(x) = S, 3EHEBRTHS. 22T
Inn(X) &2 > %7 FBAMAIC & D RIAHZER & A2 3 (B [5]) 2 SHT). H ¥ R X i LT,
Dis(X) = (Sy 0 S, ' |,y € X) & X @ displacement B ¥ ..

Lemma 2.8. ¥ F)L X @ displacement #f Dis(X) (X% {7z 3

(i) Inn(X) & Dis(X) I2& % X NOEHO#EL2ADEESIZT—HT 5.

(i) X BANTRRAVTZhDRATa s 7 Mgt > P53 X O displacement #f Dis(X)
3oy FEGIHNC KD RS AR L 72 5. RS X OB ERE AR o0 3 0ERS e (A AH 22 R
TH5.

Remark 2.9. (i) OFEBHIZ [8] I &k 5. FHMlIZRAERRIZENE T 5.

H 2P ekofs, $xbb, ROBGR LM T {1,4,5,k} 29k R EiREZER L 3 5.
==k =-1,ij=k, jk=1, ki=j.

g=a+bi+cj+dkeH (a,b,c,deR) D/ NV L%

lgll == Va2 + b2 + ¢ + a2

TERTZ. HO/ VLAZROBBFAMER H - H 2RORELRITHES YT LT v I8
(symplectic group) W\, Sp(1) &<, Sp(l) FHAY —#FTH 5. o T, Sp(1) IFERERIE
BB 2Rz 720, 0 € Sp(1) &

0(1) =1, U(Z) =7 U(J) =k, U(k) =1
TERINZECHAB T2 o 1ZHCAE 0 : Sp(1) — Sp(1) 2FET 3. Zor &, —~fbxh
7z Alexander # > FJL GAlex(Sp(1),0) i3S RA Y AL TH 5.

Proposition 2.10. —f#{t 17z Alexander # >~ FJL GAlex(Sp(1), o) 13RI HYHE K T non-
admissible T® %.

Proposition 2.10 Z7~3 72812 Proposition 2.11 ZHW\ 3.

Proposition 2.11. X A Y R e 353, 2 z,y € X PEELT (z<y)<z = y »D
(y<x) <y # x Ziifi7z 372 51F X 13 non-admissible TH 5.

Proof. D % Fig. 4 DAt ¥ 2. D OFEED X ¥tuld Fig. 4 T5 2 5NWROBEGRR 27 S )

USSP AANE:
(xqy)<ax =y.

TR TIEEBOEEMEOAZIEL T Sy AET (M) FHEETS S L BTV, FOMHE I Otz
R L7 uE Sy b 2SEgiic e 3 L I3RS .



SN~

(y<az)Qy

4 X ¥tashzKR D

. C BHFELT Clas) = z 202 Clay) = (y<az) ay Zifiz=3. #-T Proposition 2.2 b, X 1&
non-admissible TH 5. O

Proof of Proposition 2.10. ¥3 GAlex(Sp(1),0) BREMEATH 2 2t Z/RT. BT 1 €
Sp(1) Z & LREBGERER T P A3 Sp(l) & =BT 2 Z e 2mEid v, 20 & Pl Lemma 2.8
D (i) &b, EAEELAHZERTH 2. 56127 £, P& Sp(l) DIEMRETHTDH 5. Sp(1) IFHHM
TH230 5, P=Sp(l) BHES. 1€>T GAlex(Sp(1), o) FREAEETH 5.

I X 7 non-admissible TH 2 Z %2R T. x =1,y = j € GAlex(Sp(1),0) &L &,

(zay)az = (14j) <l = (o(=5)j) a1 =0(0(=j)j) = o(=kj) = 0(i) = j = v,
(yaz)ay=(jal)aj=0(j)aj=0o(o(j)(=5))j=0o(-kj)j=i""=-1#u

Proposition 2.11 £ D, X X non-admissible T®» 5. O]

Remark 2.12. Proposition 2.10 ® > FJL X 1%, [19, Conjecture 1.1] DKHFITH 3.
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