
Solvability and nilpotency for finite quantum groups

Graduate School of Mathematics, Nagoya University
Masato TANAKA ∗

Abstract

Examples of nilpotent or solvable finite quantum groups are studied. We classify the
solvable series of maximal length which show the nilpotency of Kac–Paljutkin’s 8-dimensional
finite quantum group. We show that Kac–Paljutkin’s 8-dimensional finite quantum group
and Sekine quantum groups are nilpotent.

1 Introduction

Finite quantum groups are finite dimensional Hopf algebras which are C˚-algebras at the same
time. For example, algebras of continuous functions on finite groups and group algebras of finite
groups are finite quantum groups. The former are commutative and the latter are cocommu-
tative. In fact commutative or cocommutative ones always arise from genuine finite groups.
In 1966, Kac–Paljutkin found a non-commutative and non-cocommutative example ([KP66]),
which is called Kac–Paljutkin’s (8-dimensional) finite quantum group today. In 1996, Sekine
found a family of non-commutative and non-cocommutative finite quantum groups ([Sek96]),
which are called Sekine quantum groups today. Many talented mathematicians have studied
them from many points of view. For example, McCarthy and Zhang studied the probability the-
oretical aspects ([McC17, Zha19]), Tambara–Yamagami studied them from categorical points of
view ([TY98]) and Suzuki and Wakui revealed the quasitriangular structures ([Suz98, Wak10]).

In 2009, Etingof–Nikshych–Ostrik formulated the nilpotency and the solvability for fusion
categories. If we define the nilpotency and the solvability for finite dimensional Hopf algebras
via this language, the nilpotency does not imply the solvability in general ([ENO11]). In 2016,
Cohen–Westreich proposed intrinsic definitions of the nilpotency and the solvability via integrals
([CW17]). Their definitions are satisfactory in that the nilpotency implies the solvability and
the analogue of Burnside’s paqb theorem holds.

In 2023, the author of the present notes and his coauthor showed that Kac–Paljutkin’s finite
quantum group and each of Sekine quantum groups are nilpotent (and hence solvable) and
they also studied the quasitriangular structures of Kac–Paljutkin’s finite quantum group by
giving direct computations of the universal R-matrices. This research gives examles of Cohen–
Westreich’s general theory, which do not arise from genuine groups.
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2 Preliminaries

We review some items needed to state and prove our results. The best general references here
are [CW17], [FG06], [Kas95] and [Mur90].

2.1 Finite quantum groups

Definition 2.1. A vector space A over C is called an unital algebra if it has an associative and
bilinear multiplication AˆA Q pa, bq ÞÑ ab P A and an element 1 satisfying a1 “ 1a “ a for each
a P A. A unital algebra is called a ˚-algebra if it has a conjugate linear and involutive operation
A Q a ÞÑ a˚ P A satisfying pabq˚ “ b˚a˚ for all a, b P A, which is called a ˚-operation.

Example. Let Mn denote the algebra of n ˆ n-matrices whose entries are complex numbers.
With the usual multiplication of matrices, this vector space is a ˚-algebra.

Example. LetG be a finite group. The algebra CpGq of continuous functions onG is a ˚-algebra.
Its multiplication is given by fgpxq “ fpxqgpxq pf, g P CpGq, x P Gq its unit is the constant
function 1: G Q x ÞÑ 1 P C and the ˚-operation is given by f˚pxq “ fpxq pf P CpGq, x P Gq.

Example. Let G be a finite group. The group algebra CrGs “ spantδx | x P Gu is a ˚-algebra.
Its multiplication is given by p

ř

xPG axδxqp
ř

yPG byδyq “
ř

x,yPG axbyδxy pax, by P Cq and its
˚-operation is given by p

ř

xPG axδxq˚ “
ř

xPG axδx´1 .

Definition 2.2. Let A be a unital algebra. We say A is a Hopf algebra if it has the following
algebra homomorphisms ∆: A Ñ A b A, ϵ : A Ñ C (i.e. linear maps preserving multiplication)
and anti-multiplicative linear map S : A Ñ A (i.e. Spxyq “ SpyqSpxqwherex, y P A) satisfying

p∆ b idq∆ “ pid b ∆q∆;

pϵ b idq∆ “ id “ pid b ϵq∆;

mpS b idq∆ “ ϵp‚q1 “ mpid b Sq∆

where m denotes the map mpxb yq “ xy px, y P Aq. If moreover ∆ and ϵ preserves ˚-operation,
we say A is a Hopf ˚-algebra. We use Sweedler’s sumless notation ∆paq “ ap1q b ap2q pa P Aq.

Definition 2.3. A finite quantum group is a finite dimensional Hopf ˚-algebra which is a C˚-
algebra at the same time.

We do not define C˚-algebras in these notes. Instead of defining the objects, we introduce
the following well-known proposition.

Proposition 2.4. Any finite dimensioanl C˚-algebra is of the form
ÀN

k“1Mnk
for some positive

integers N and n1, . . . , nN .

For the definition and the proof of the proposition above, see [Mur90] for example. The
following statement is nontrivial. See [VD97] for deatails.

Proposition 2.5. For any finite quantum group A there exists a linear functional h : A Ñ C
such that hpa˚aq ě 0 pa P Aq, hp1q “ 1 and pid b hq∆p‚q “ hp‚q1. In addition such a state is
unique up to a constant multiple and satisfies also the condition ph b idq∆p‚q “ hp‚q1.

The linear functional h in the proposition above is called the Haar state of A.



Example. The algebra CpGq of continuous functions on G is a finite quantum group G. Its
Hopf algebra structure is given by

∆: CpGq Ñ CpGq b CpGq » CpG ˆ Gq, f ÞÑ ∆pfqp : px, yq ÞÑ fpxyqq;

ϵ : CpGq Ñ C, f ÞÑ fp1q;

S : CpGq Ñ CpGq, f ÞÑ fp‚´1q.

Conversely any commutative finite quantum group is of this form.

Example. The group algebra CrGs of a finite group G is a finite quantum group. Its Hopf
algebra structure is given by

∆pδxq “ δx b δx;

ϵpδxq “ 1;

Spδxq “ δx´1

where x P G. In this case ∆ “ ∆op, where ∆op denotes the composition of ∆ and the flip
CrGs b CrGs Q a b b ÞÑ b b a P CrGs b CrGs.

Conversely, any cocommutative finite quantum group is of this form.

We introduce important examples of finite quantum groups. Notice that they are neither
commutative nor cocommutative, which means that they do not arise from genuine groups.

Example. ([KP66]) Let A “ C ‘ C ‘ C ‘ C ‘ M2. Its Hopf ˚-algebra structure is given by

∆pe1q “ e1 b e1 ` e2 b e2 ` e3 b e3 ` e4 b e4

`
1

2
a1,1 b a1,1 `

1

2
a1,2 b a1,2 `

1

2
a2,1 b a2,1 `

1

2
a2,2 b a2,2

∆pe2q “ e1 b e2 ` e2 b e1 ` e3 b e4 ` e4 b e3

`
1

2
a1,1 b a2,2 `

1

2
a2,2 b a1,1 ´

?
´1

2
a1,2 b a2,1 `

?
´1

2
a2,1 b a1,2

∆pe3q “ e1 b e3 ` e3 b e1 ` e2 b e4 ` e4 b e2

`
1

2
a1,1 b a2,2 `

1

2
a2,2 b a1,1 `

?
´1

2
a1,2 b a2,1 ´

?
´1

2
a2,1 b a1,2

∆pe4q “ e1 b e4 ` e4 b e1 ` e2 b e3 ` e3 b e2

`
1

2
a1,1 b a1,1 `

1

2
a2,2 b a2,2 ´

1

2
a1,2 b a1,2 ´

1

2
a2,1 b a2,1

∆pa1,1q “ e1 b a1,1 ` a1,1 b e1 ` e2 b a2,2 ` a2,2 b e2

`e3 b a2,2`a2,2 b e3 ` e4 b a1,1 ` a1,1 b e4

∆pa1,2q “ e1 b a1,2 ` a1,2 b e1 `
?

´1e2 b a2,1 ´
?

´1a2,1 b e2

´
?

´1e3ba2,1 `
?

´1a2,1 b e3 ´ e4 b a1,2 ´ a1,2 b e4

∆pa2,1q “ e1 b a2,1 ` a2,1 b e1 ´
?

´1e2 b a1,2 `
?

´1a1,2 b e2

`
?

´1e3ba1,2 ´
?

´1a1,2 b e3 ´ e4 b a2,1 ´ a2,1 b e4

∆pa2,2q “ e1 b a2,2 ` a2,2 b e1 ` e2 b a1,1 ` a1,1 b e2

`e3 b a1,1`a1,1 b e3 ` e4 b a2,2 ` a2,2 b e4

ϵpe1q “ 1, ϵpe2q “ ϵpe3q “ ϵpe4q “ 0

Speiq “ ei pi “ 1, 2, 3, 4q, Spai,jq “ aj,i pi, j “ 1, 2q



Here ei and ai,j denote the following elements:

e1 “ 1 ‘ 0 ‘ 0 ‘ 0 ‘

„

0 0
0 0

ȷ

, e2 “ 0 ‘ 1 ‘ 0 ‘ 0 ‘

„

0 0
0 0

ȷ

e3 “ 0 ‘ 0 ‘ 1 ‘ 0 ‘

„

0 0
0 0

ȷ

, e4 “ 0 ‘ 0 ‘ 0 ‘ 1 ‘

„

0 0
0 0

ȷ

ai,j “ 0 ‘ 0 ‘ 0 ‘ 0 ‘ Ei,j pi, j “ 1, 2q

where the Ei,j ’s are matrix units. We call this A the Kac–Paljutkin’s (8-dimensional) finite
quantum group.

Example. ([Sek96]) Let k be a positive integer. Let η “ expp2π
?

´1{kq. Let

Ak “
à

i,jPZk

Cdi,j ‘ Mk,

where the di,j ’s are projections (i.e. d˚
i,j “ di,j “ d2i,j) such that di,jdk,l “ δi,kδj,ldi,j . Its Hopf

˚-algebra structure is given by

∆pdi,jq “
ÿ

m,nPZk

dm,n b di´m,j´n `
1

k

ÿ

m,nPZk

ηipm´nqam,n b am`j,m`j ,

∆pai,jq “
ÿ

m,nPZk

ηmpi´jqd´m,´n b ai´n,j´n `
ÿ

m,nPZk

ηmpj´iqai´n,j´n b dm,n,

ϵpdi,jq “ δi,0δj,0, ϵpai,jq “ 0,

Spdi,jq “ d´i,´j , Spai,jq “ aj,i

where i, j P Zk and the ai,j ’s are defined in the same way as the Kac–Paljutkin’s finite quantum
group. Each algebra Ak is called a Sekine qantum group.

Next we introduce universal R-matrices for Hopf algebras. Simply put, universal R-matrices
are solutions of some important equation in Physics, which is called quantum Yang–Baxter
equation (QYBE). For details, see [Kas95] and references therein.

Definition 2.6. A Hopf algebra A is called quasitriangular if there exists an invertible element
R P A b A such that R∆p‚qR´1 “ ∆opp‚q, p∆ b idqR “ R13R23 and pid b ∆qR “ R13R12. Here
we used the leg-numbering notation: pa b bq13 :“ a b 1 b b, pa b bq12 :“ pa b b b 1q and so on.
Such an R is called an universal R-matrix.

2.2 Nilpotency and solvability for finite quantum groups

In the paper [CW17], Cohen–Westreich introduced intrinsic definitions of solvability and nilpo-
tency for semisimple finite dimendional Hopf algebra. First we define coideals.

Definition 2.7. Let A be a Hopf algebra. An unital subalgebra I is called a left coideal
subalgebra if ∆pIq Ă A b I. In a similar way, we define right coideals. When A is a Hopf
˚-algebra, we say I is a left (resp. right) coideal ˚-subalgebra if I is a left (resp. right) coideal
subalgebra and ˚-algebra.

Example. Let G be a finite group and H a subgroup. Then the algebra CpG{Hq of continuous
functions on the homogeneous space G{H is a left coideal ˚-subalgebra.

Example. Let G and H be as above. Then the group algebra CrHs of H is a left coideal
˚-subalgebra.



Example. (cf. [FG06]) It is not difficult to see that the left coideal ˚-subalgebras of Kac–
Paljutkin’s finite quantum group A are the following.

1. L1 “ A

2. L2 “ spante1 ` e2, e3 ` e4, a1,1 ` a2,2, a1,2 ´
?

´1a2,1u

3. L3 “ spante1 ` e4, e2 ` e4, a1,1 ` a2,2, a1,2 `
?

´1a2,1u

4. L4 “ spante1 ` e4, e2 ` e3, a1,1, a2,2u

5. L5 “ spante1 ` e2 ` e3 ` e4, a11 ` a2,2u

6. L6 “ spante1 ` e4 ` a1,1, e2 ` e3 ` a2,2u

7. L7 “ spante1 ` e4 ` a2,2, e2 ` e3 ` a1,1u

8. L8 “ C1

Definition 2.8. An element λ in a Hopf algebra A is called an integral if λa “ ϵpaqλ “ aλ for
each a P A.

Example. (cf. [FG06]) Let

1. p1 “ e1,

2. p2 “ e1 ` e2,

3. p3 “ e1 ` e3,

4. p4 “ e1 ` e4,

5. p5 “ e1 ` e2 ` e3 ` e4,

6. p6 “ e1 ` e4 ` a1,1,

7. p7 “ e1 ` e4 ` a2,2 and

8. p8 “ e1 ` e2 ` e3 ` e4 ` a1,1 ` a2,2.

Then pi is the integral of the left coideal ˚-subalgebra Li for each i.

Example. ([Zha19]) We give examples of left coideal ˚-subalgebras of a Sekine quantum group
Ak and their integrals. Let Γ1 “ tpi, iq | i P Zku. Let q1 “

ř

pi,jqPΓ1
di,j and qk “

ř

pi,jqPZkˆZk
di,j .

Then q1 is the integral of the left coideal ˚-subalgebra pid b h1q∆pA1q and qk is the integral

of the left coideal ˚-subalgebra pid b hkq∆pAkq, where h1p‚q “
hp‚q1q

hpq1q
, hkp‚q “

hp‚qkq

hpqkq
and h

denotes the Haar state of Ak.

Definition 2.9. ([CW17, Definition 3.5]) Let A be a semisimple Hopf algebra. A chain of left
coideal subalgebras of A

I0 Ă I1 Ă ¨ ¨ ¨ Ă Ii

is called a solvable series if the following conditions are satisfied for all 0 ď j ď i ´ 1:

1. λj P ZpIj`1q, where λj denotes the integral of Ij and ZpIj`1q denotes the center of Ij`1.



2. pa ‚
ad

bqλj “ ϵpaqbλj for all a, b P Ij`1.

If there is a solvable series such that I0 “ C1 and Ii “ A then the Hopf algebra is called solvable.
Here a ‚

ad
b :“ ap1qbSpap2qq pa, b P Aq.

A left coideal subalgebra I of a Hopf algebra A is called normal if a ‚
ad
x P I for all a P A, x P I.

Definition 2.10. ([CW17, Proposition 3.8]) A semisimple Hopf algebra A is called nilpotent if
it has a chain of normal left coideal subalgebras

C “ I0 Ă I1 Ă ¨ ¨ ¨ Ă Ii “ A

satisfying Ij`1λj Ă ZpAλjq for all 0 ď j ď i ´ 1.

Remark 2.11. Cohen–Westreich defined the nilpotency in a different way. By [CW17, Proposi-
tion 3.8], the definition above is equivalent to the original definition.

The following theorems are surprising. The latter is an analogue of the well-known theorem
by Burnside.

Theorem 2.12. ([CW17, Corollary 3.9]) A semisimple Hopf algebra is solvable if it is nilpotent.

Theorem 2.13. ([CW17, Theorem 3.11]) Let p and q be prime numbers. Let a and b be non-
negative integers. Let A be a quasitriangular semisimple Hopf algebra of dimension paqb. Then
A is solvable. In addition, if I is a left coideal subalgebra, then A has a solvable series containing
the left coideal subalgebra I.

3 Main Results

We state our main results.

Theorem 3.1. ([GHT24, Theorem 3.2]) Any solvable series for Kac–Paljutkin’s finite quantum
group of length 4 is one of the following.

1. C Ă L5 Ă L2 Ă A

2. C Ă L5 Ă L3 Ă A

3. C Ă L5 Ă L4 Ă A

4. C Ă L6 Ă L4 Ă A

5. C Ă L7 Ă L4 Ă A

The theorem above can be shown by direct computations.

Theorem 3.2. ([GHT24, Theorem 3.4 and Theorem 3.5]) Kac–Paljutkin’s finite quantum group
and Sekine quantum groups are nilpotent.

The series C Ă L5 Ă L4 Ă A shows the first part of this theorem. We can prove the
nilpotency of Sekine quantum groups by observing the series of unital left coideals subalgebras
C Ă pid b hkq∆pAkq Ă pid b h1q∆pAkq Ă Ak.

Remark 3.3. It is easy to show that Kac–Paljutkin’s finite quantum since its dimension is 8 “ 23,
it is quasitriangular and we have Cohen–Westreich’s Burnside theorem. For the quasitriangular
structure see [Suz98, Wak10] and see also the proposition below and [GHT24, Appendix A].



Remark 3.4. Note that Theorem 3.2 shows that the converse of Cohen–Westreich’s Burnside
theorem has a counter-example A15.

Proposition 3.5. ([GHT24, Appendix A] cf. [Suz98, Wak10]) The universal R-matrices of
Kac–Paljutkin’s finite quantum group A are of the form

R “A11e1 b e1 ` A12e1 b e2 ` A13e1 b e3 ` A14e1 b e4

`A21e2 b e1 ` A22e2 b e2 ` A23e2 b e3 ` A24e2 b e4

`A31e3 b e1 ` A32e3 b e2 ` A33e3 b e3 ` A34e3 b e4

`A41e4 b e1 ` A42e4 b e2 ` A43e4 b e3 ` A44e4 b e4

`B1e1 b a11 ` B1e1 b a22 ` B2e2 b a11 ´ B2e2 b a22

`B3e3 b a11 ´ B3e3 b a22 ` B4e4 b a11 ` B4e4 b a22

`C1a11 b e1 ` C1a22 b e1 ` C2a11 b e2 ´ C2a22 b e2

`C3a11 b e3 ´ C3a22 b e3 ` C4a11 b e4 ` C4a22 b e4

`D1111a11 b a11 ` D1122a11 b a22 ` D1212a12 b a12 ` D1221a12 b a21

`D1221a21 b a12 ` D1212a21 b a21 ´ D1122a22 b a11 ` D1111a22 b a22,

where
»

—

—

–

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

fi

ffi

ffi

fl

“

»

—

—

–

1 1 1 1
1 ´1 ´1 1
1 ´1 ´1 1
1 1 1 1

fi

ffi

ffi

fl

and other coefficients are given by one of the following four cases:

•

»

—

—

–

B1

B2

B3

B4

fi

ffi

ffi

fl

“

»

—

—

–

1
´1
´1
1

fi

ffi

ffi

fl

,

»

—

—

–

C1

C2

C3

C4

fi

ffi

ffi

fl

“

»

—

—

–

1
1
1
1

fi

ffi

ffi

fl

,

»

—

—

–

D1111

D1122

D1212

D1221

fi

ffi

ffi

fl

“

»

—

—

–

˘1
˘1
0
0

fi

ffi

ffi

fl

•

»

—

—

–

B1

B2

B3

B4

fi

ffi

ffi

fl

“

»

—

—

–

1
1
1
1

fi

ffi

ffi

fl

,

»

—

—

–

C1

C2

C3

C4

fi

ffi

ffi

fl

“

»

—

—

–

1
´1
´1
1

fi

ffi

ffi

fl

,

»

—

—

–

D1111

D1122

D1212

D1221

fi

ffi

ffi

fl

“

»

—

—

–

˘1
¯1
0
0

fi

ffi

ffi

fl

•

»

—

—

–

B1

B2

B3

B4

fi

ffi

ffi

fl

“

»

—

—

–

1
´1
1

´1

fi

ffi

ffi

fl

,

»

—

—

–

C1

C2

C3

C4

fi

ffi

ffi

fl

“

»

—

—

–

1
1

´1
´1

fi

ffi

ffi

fl

,

»

—

—

–

D1111

D1122

D1212

D1221

fi

ffi

ffi

fl

“

»

—

—

–

0
0
λ

´
?

´1λ

fi

ffi

ffi

fl

(λ is a square root of
?

´1.)

•

»

—

—

–

B1

B2

B3

B4

fi

ffi

ffi

fl

“

»

—

—

–

1
1

´1
´1

fi

ffi

ffi

fl

,

»

—

—

–

C1

C2

C3

C4

fi

ffi

ffi

fl

“

»

—

—

–

1
´1
1

´1

fi

ffi

ffi

fl

,

»

—

—

–

D1111

D1122

D1212

D1221

fi

ffi

ffi

fl

“

»

—

—

–

0
0
λ

?
´1λ

fi

ffi

ffi

fl

(λ is a square root of
?

´1.)

For detailed proofs of our main results and other results including direct computations of
the universal R-matrices of Kac–Paljutkin’s finite quantum group, see [GHT24].
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