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Abstract

The (k, a)-generalized Fourier analysis is a far-reaching generalization of classical Fourier
analysis developed by S. Ben Säıd, T. Kobayashi and B. Ørsted, where the parameter k
comes from Dunkl theory, and the parameter a comes from the “interpolation” of the two
sl(2,R) actions on the Weil representation of the metaplectic group and the minimal unitary
representation of the conformal group. We will investigate the support of the generalized
translation in (k, a)-generalized Fourier analysis of the functions supported in the balls cen-
tered at the origin for a = 1 and 2 respectively, as well as the support of the measure
associated to the spherical mean of the generalized translation operator.

1 Introduction

Dunkl theory is a far-reaching generalization of Fourier analysis and special function theory
about root system R with a rich structure parallel to ordinary Fourier analysis and (k, a)-
generalized Fourier analysis is a further far-reaching generalization of Dunkl theory. The study
of Dunkl theory originates from a generalization of spherical harmonics, in which the finite
reflection groups G play the role of orthogonal group O(N) in the classical theory of spherical
harmonics. The Lebesgue measure dx, which is invariant under O(N), is substituted by the
Dunkl weight measure dmk(x) = hk(x)dx which is invariant under the finite reflection group G
and parameterized by a multiplicity function k, where

hk(x) =
∏
α∈R

| ⟨α, x⟩ |k(α).

The Dunkl operator Ti (see [4]) was constructed in such a way that the intersection of space of
the homogeneous polynomials Pm of degree m with the kernel of the corresponding Laplacian
△k =

∑N
j=1T

2
j is orthogonal to that of lower degree with respect to the Dunkl weight measure

dmk. And the restrictions of the spaces Hm
k

(
RN

)
:= Pm ∩ ker△k, m = 0, 1, · · · to the unit

sphere SN−1 are called spherical h-harmonics. For the normalized root system R such that
⟨α, α⟩ = 2 for all vectors α ∈ R, the Dunkl Laplacian △k has the following explicit expression
△k = Dk − Ek, with

Dk = △f (x) + 2
∑
α∈R+

k (α)
⟨∇f, α⟩
⟨α, x⟩

,

where ∇ is the Euclidean gradient and R+ is any fixed positive subsystem of R, and

Ek = 2
∑
α∈R+

k (α)
f (x)− f (σα (x))

⟨α, x⟩2
.

Dk is the G-invariant part of the Dunkl Laplacian. The Dunkl operators commute pairwise
and they are in substitute of the ordinary partial derivatives in classical analysis. The joint



eigenfunctions of Dunkl operators (or the eigenfunctions of the Dunkl Laplacian △k) take the
place of the exponential functions in classical Fourier transform. The Dunkl transform was then
defined correspondingly (see [5]) and has many similar properties with Fourier transform. The
discovery of Dunkl operators also gave an explicit expression of the radial part of the Laplacian
operator on a flat symmetric space unintentionally. Moreover, Dunkl theory has extensive
application in algebra, probability theory and mathematical physics.

More recently, S. Ben Säıd, T. Kobayashi and B. Ørsted [2] gave a further far-reaching
generalization of Dunkl theory by introducing a parameter a > 0 arisen from the “interpolation”
of two sl(2,R) actions. The generalization was motivated by the definition of the classical Fourier
transform on L2

(
RN

)
given by Howe [8], where the Fourier transform was defined using the

harmonic oscillator H =: (△− ∥x∥2)/2 as

F := eiπN/4 exp

(
πi

2
H

)
.

In [2], the authors deformed the Dunkl harmonic oscillator △k − ∥x∥2 via the parameter a
such that the (k, a)-generalized harmonic oscillator △k,a := ∥x∥2−a△k − ∥x∥a is symmetric on
the Hilbert space L2

(
RN , ϑk,a (x) dx

)
, where ϑk,a (x) = ∥x∥a−2hk(x). In the case of k ≡ 0,

such a-deformed harmonic oscillator is also a deformation of the operator ∥x∥△ − ∥x∥ studied
by Kobayashi and Mano [9, 10]. The generalized Fourier transform was then defined via the
(k, a)-generalized harmonic oscillator as

Fk,a = eiπ(
2⟨k⟩+N+a−2

2a
) exp

(
πi

2a
△k,a

)
.

It reduces to the classical Fourier transform when k ≡ 0 and a = 2, to the Kobayashi-Mano
Hankel transform [9, 10] when k ≡ 0 and a = 1, and to the Dunkl transform [5] when k ≥ 0 and
a = 2. By Schwartz kernel theorem, the (k, a)-generalized Fourier transform has the following
integral representation (see [2, (5.8)])

Fk,af (ξ) = ck,a

∫
RN

f (y)Bk,a (ξ, y)ϑk,a (y) dy, ξ ∈ RN ,

where ck,a =
(∫

RN exp (−∥x∥a)ϑk,a (x) dx
)−1

and Bk,a (x, y) is a symmetric kernel. The integral
kernel Bk,a(x, y) of the (k, a)-generalized Fourier transform takes the place of the exponential
function e−i⟨x,y⟩ in classical Fourier transform. It is the eigenfunction of the operator ∥x∥2−a△k

for any fixed y (see [2, Theorem 5.7]), i.e.,

∥x∥2−a∆x
kBk,a(x, y) = −∥ξ∥aBk,a(x, y).

So, we can consider the operator ∥x∥2−a∆k as the a-deformed Dunkl Laplacian in (k, a)-
generalized Fourier analysis.

Assume 2 ⟨k⟩ + N + a − 3 ≥ 0. For a = 2
n , n ∈ N, one can define the (k, a)-generalized

translation on L2
(
RN , ϑk,a (x) dx

)
as

Fk,a (τyf) (ξ) := Bk,a (y, ξ)Fk,a (f) (ξ) , ξ ∈ RN .

The above definition makes sense because for a = 2
n , n ∈ N, Fk,a is an isometry on L2(RN ,

ϑk,a (x) dx) from the inversion formula [2, Theorem 5.3], and in this case its integral kernel
Bk,a(x, y) is uniformly bounded by 1 (see [3]). In this case the (k, a)-generalized translation can
also be written via an integral as

τyf (x) = ck,a

∫
RN

Bk,a (x, ξ)Bk,a (y, ξ)Fk,a (f) (ξ)ϑk,a (ξ) dξ



for f ∈ L1
k

(
RN

)
, where L1

k

(
RN

)
:=

{
f ∈ L1

(
RN , ϑk,a (x) dx

)
: Fk,a (f) ∈ L1

(
RN , ϑk,a (x) dx

)}
.

This formula holds true on Schwartz space S
(
RN

)
since S

(
RN

)
is a subspace of L1

k

(
RN

)
.

For the two particular cases when a = 1 and a = 2 (the Dunkl case) assuming that 2 ⟨k⟩+N+
a− 3 ≥ 0 of (k, a)-generalized Fourier analysis, the analytic structure is much richer because we
have the formula of the generalized translation operator for radial functions. The radial formula
for a = 2 was found by Rösler [11] and for a = 1 that was found by S. Ben Säıd [1]. The case
when a = 2 (Dunkl theory) was intensively studied in the last twenty years and the study for
case when a = 1 is still at its infancy. The (k, a)-generalized translation τx corresponds to the
classical translation operator f 7→ f(x − ·) for a = 1, and corresponds to f 7→ f(x + ·) for
a = 2. This is because for a = 1, the inversion formula of the generalized Fourier analysis is

F−1
k,1 (f) = Fk,1 (f), and for a = 2, the inversion formula is

(
F−1
k,2 f

)
(x) = (Fk,2f) (−x) (see [2,

Theorem 5.3]). We will focus on the two particular cases for a = 1 and a = 2 in this report, and
investigate the support of the generalized translation for the two cases respectively.

2 The support of the generalized translation of f , suppf = B(0, r)

2.1 The case of a = 2 (the Dunkl case)

The following is the formula of the Dunkl translation (the case of a = 2) for radial functions

τxf(−y) =

∫
RN

(f̃ ◦A)(x, y, η)dµx(η), x, y ∈ RN , (1)

where f(x) = f̃(∥x∥) and

A(x, y, η) =

√
∥x∥2 + ∥y∥2 − 2 ⟨y, η⟩ =

√
∥x∥2 − ∥η∥2 + ∥y − η∥2,

It was first proved by Rösler [11] for Schwartz functions, and was then extended to all continuous
radial functions in [6].

Denote B(x, r) to be the closed ball {y ∈ RN : ∥x− y∥ ≤ r}. We characterize the support of
the the Dunkl translation of nonnegative radial functions on L2(mk) in the following theorem.

Theorem 2.1. ([12]) If the multiplicity function k > 0 and let f be a nonnegative radial function
on L2(mk), suppf = B(0, r), then for any x ∈ RN ,

suppτxf(−·) =
⋃
g∈G

B(gx, r).

Proof. Define the distance between the two orbits G.x and G.y for a = 2 as dG(x, y) := min
g∈G

||g ·

y − x||. For the proof of suppτxf ⊆
⋃

g∈GB(gx, r), we only need to notice that

A (x, y, η) ≥ dG(x, y), η ∈ co(G.x).

For the converse part
⋃

g∈GB(gx, r) ⊆ suppτxf , we prove the theorem for continuous nonnega-
tive radial functions from the radial formula (2) first, and then prove for all nonnegative radial
function on L2

(
RN , ϑk,1 (x) dx

)
.



2.2 The case of a = 1

The following is the formula of the generalized translation for the case of a = 1 for radial
functions For any radial function f ∈ S

(
RN

)
, i.e., τy can be expressed as follows (see [1])

τyf(x) =
Γ
(
N−1
2 + ⟨k⟩

)
√
πΓ

(
N−2
2 + ⟨k⟩

)×
Vk

(∫ 1

−1
f0

(
∥x∥+ ∥y∥ −

√
2 (∥x∥ ∥y∥+ ⟨·, y⟩)u

) (
1− u2

)N
2
+⟨k⟩−2

du

)
(x) , (2)

where f(x) = f0 (∥x∥) and ⟨k⟩+ N−2
2 > 0. This radial formula was prove for Schwartz dunctions

in [1] and was then extended to all continuous radial functions in [13].
For x, y ∈ RN , define a function d from RN ×RN to R as

d (x, y) : =

√
∥x∥+ ∥y∥ −

√
2 (∥x∥ ∥y∥+ ⟨x, y⟩)

=

√
∥x∥+ ∥y∥ − 2

√
∥x∥ ∥y∥ cos θ

2
≥

∣∣∣√∥x∥ −
√

∥y∥
∣∣∣ ,

where θ = arccos ⟨x,y⟩
∥x∥∥y∥ , 0 ≤ θ ≤ π. It was shown in [13] that the function d (x, y) is a

metric and
(
RN , d

)
is a complete metric space. Denote B(x, r) to be the ball B (x, r) :={

y ∈ RN : d (x, y) ≤ r
}
. We can then give a characterization of support of the (k, 1)-generalized

translation of a function supported in B(0, r) =
{
y ∈ RN :

√
∥y∥ ≤ r

}
via the metric d(x, y).

Theorem 2.2. ([13]) Let f = f0 (∥·∥) be a nonnegative radial function on L2
(
RN , ϑk,1 (x) dx

)
,

suppf = B(0, r), then

suppτxf =
⋃
g∈G

B(gx, r).

Proof. Define the distance between the two orbits G.x and G.y for a = 1 as dG (x, y) :=
min
g∈G

d (gx, y) . For the proof of suppτxf ⊆
⋃

g∈GB(gx, r), we only need to notice that

√
∥x∥+ ∥y∥ −

√
2 (∥x∥ ∥y∥+ ⟨η, y⟩)u ≥ dG (x, y) , η ∈ co(G.x), u ∈ [−1, 1].

For the converse part
⋃

g∈GB(gx, r) ⊆ suppτxf , we prove the theorem for continuous nonnega-
tive radial functions from the radial formula (2) first, and then prove for all nonnegative radial
function on L2

(
RN , ϑk,1 (x) dx

)
.

3 The support of the measure associated to spherical mean

We conjecture the product formula of the integral kernels of the (k, a)-generalized Fourier trans-
form

Bk,a(x, z)Bk,a(y, z) =

∫
RN

Bk,a(ξ, z)dν
k,a
x,y (ξ), z ∈ CN ,

where the measures dνk,ax,y are signed Borel measures on RN . This implies the following integral
representation of the (k, a)-generalized translation

τxf(y) =

∫
RN

f(ξ)dνk,ax,y (ξ).



In the following we denote τxf(y) =: f(x ∗ y) for convenience because it has the property
τxf(y) = τyf(x) . Then we can define

Bk,a(x ∗ y, z) := Bk,a(x, z)Bk,a(y, z)

from the above.
The generalized spherical mean operator f 7→ Mf on C∞(RN ) is defined as

Mf (x, t) :=
1

dk,a

∫
SN−1

f(x ∗ ty)ϑk,a(y)dσ(y), (x ∈ RN , t ≥ 0),

where dσ is the spherical measure and dk,a =
∫
SN−1 ϑk,a (x) dσ(x).

Proposition 3.1. ([7, Proposition 5.7]) If x, y ∈ Rd, x = ρx′, y = vy′, then

1

dk,a

∫
Sd−1

Bk,a(x, vy
′)p(y′)ϑk,a (x) dσ(y

′) =
e−

iπm
a Γ(λa + 1)

a2m/a Γ(λk,a,m + 1)
vmjλk,a,m

(
2

a
(ρv)a/2

)
p(x),

where p is a polynomial of degree m and jλk,a,m
(z) is the Bessel function.

For f to be Bk,a(·, z) with z ∈ RN , from Proposition 3.1,

Mf (x, t) = Bk,a(x, z)jλa

(
2

a
|tz|a/2

)
. (3)

And for f ∈ S(RN ),

Mf (x, t) =
ck,a
dk,a

∫
SN−1

(∫
RN

Bk,a (x, ξ)Bk,a (ty, ξ)Fk,a (f) (ξ)ϑk,a (ξ) dξ

)
ϑk,a(y)dσ(y)

=
ck,a
dk,a

∫
RN

Bk,a (x, ξ)Fk,a (f) (ξ)ϑk,a (ξ) dξ

∫
SN−1

Bk,a (ty, ξ)ϑk,a(y)dσ(y)

= ck,a

∫
RN

Bk,a (x, ξ) jλa

(
2

a
|tξ|a/2

)
Fk,a (f) (ξ)ϑk,a (ξ) dξ. (4)

For α ≥ −1/2, denote by At
α the singular Sturm-Liouville operator

At
α := ∂2

t +
2α+ 1

t
∂t, t > 0.

For fixed z ∈ C, the Bessel functions jα(tz) are eigenfunctions of the Sturm-Liouville operator

(see [11]). By substituting t by
√

2
a t

a
2 , we get the a-deformed Sturm-Liouville operator

At
a,α =

2

a

(
1

ta−2∂
2
t +

(
1− a

2

) 1

ta−1∂t

)
+

2α+ 1

ta−1 ∂t

=
2

a

(
1

ta−2∂
2
t +

aα+ 1

ta−1 ∂t

)
.

And for fixed z ∈ C, the Bessel functions jα

(
2
a (tz)a/2

)
are eigenfunctions of the a-deformed

Sturm-Liouville operator, i.e.,

At
a,αjα

(
2

a
(tz)a/2

)
= −2

a
zajα

(
2

a
(tz)a/2

)
.



Therefore, u = Mf (x, t) is the solution of the equation for the Darboux-type differential-
reflection operator 2 ∥x∥2−a∆x

k − aAt
a,λa

,

(2 ∥x∥2−a∆x
k − aAt

a,λa
)u = 0 in RN ×R+ ; (5)

u(x, 0) = f(x), ut(x, 0) = 0 for all x ∈ RN .

as Bk,a (x, ·) is eigenfunction of the operator ∥x∥2−a△x
k.

For fixed x ∈ RN and t ≥ 0, consider the linear functional

Φx,t : f 7→ Mf (x, t).

It is represented by a compactly supported measure σk,a
x,t ∈ M1(RN ), where M1(RN ) stand for

the spaces of regular bounded complex Borel measures on RN ,

Mf (x, t) =

∫
RN

f dσk,a
x,t for all f ∈ C∞(RN ). (6)

From (3) and (4), (6) is equivalent to the following product formula

Bk,a(x, z)jλa

(
2

a
t |z|a/2

)
=

∫
RN

Bk,a(ξ, z) dσ
k,a
x,t (ξ).

We will investigate the support of the measure for σk,a
x,t the case of a = 2 and a = 1 respectively.

3.1 The case of a = 2 (the Dunkl case)

We consider the domain of dependence of the wave equation associated to the G-invariant part
Dk of the Dunkl Laplacian △k. Denote

C(x0, t0) = {(x, t) ∈ RN ×R+ : |x− x0| ≤ t0 − t}

to be the wave cone. The following theorem shows that C(x0, t0) is the domain of dependence
of the wave equation. That is to say, the values in C(x0, t0) of the solution u depend only on
the initial values for t = 0 of u and ut in |x − x0| ≤ t0, regardless of the perturbation of the
values outside of |x− x0| ≤ t0.

Theorem 3.2. (see [11, Theorem 4.4]) Suppose that u is a C2-solution of the wave equation
(Dk − ∂2

t )u = 0, defined in the cone C(x0, t0) and satisfying

ut(x, 0) = u(x, 0) = 0 for all x ∈ RN with |x− x0| ≤ t0.

Then u vanishes in C(x0, t0).

Proof. Energy method.

We can then characterize the support of the measure associated to the spherical mean for
a = 2.

Theorem 3.3. (see [11, Theorem 4.1] For a = 2, the support of the measure σk
x,t associated to

Mf (x, t) satisfies

suppσk
x,t ⊆ K(x, t) :=

⋃
g∈G

{ξ ∈ RN : |ξ − gx| ≤ t}.



Sketch of the Proof. We involve the Riemann-Liouville transform with parameter α > −1/2
on R+. It is given by

Rαf(t) =
2Γ(α+ 1)

Γ(1/2)Γ(α+ 1/2)

∫ 1

0
f(st)(1− s2)α−1/2ds (7)

for f ∈ C∞(R+), see [?]. The operator Rα satisfies the intertwining property

AαRα = Rα
d2

dt2
. (8)

Put uf (x, t) := (Rt
λ)

−1Mf (x, t), which is still G-invariant with respect to x. Then according to
(5) and the above intertwining property, u = uf belongs to C∞(RN ×R+) and solves the initial
value problem

(Dk − ∂2
t )u = 0 in RN ×R+;

u(x, 0) = f(x), ut(x, 0) = 0 for all x ∈ RN . (9)

Now suppose in addition that supp f ∩K(x, t) = ∅. Then Theorem 3.4 implies that uf (x, s) = 0
for all 0 ≤ s ≤ t. From the explicit form (7) of the Riemann-Liouville transform Rλ we further
deduce that ∫

RN

f dσ̃k
x,t = Mf (x, t) = Rt

λuf (x, t) = 0

□

3.2 The case of a = 1 (Ongoing work)

Domain of dependence. Consider a class of special second-order linear partial differential
equations of the form

utt + Lu = 0 (x ∈ RN , t > 0), (10)

where L has the special form

Lu = −
N∑

i,j=1

aij(x)Diju,

with smooth symmetric coefficients (aij(x)) satisfying uniform ellipticity condition on RN . In
this case, we say the operator ∂tt + L is uniformly hyperbolic.

Let q(x) be a continuous function on RN , positive and smooth in RN\{x0} and q(x0) = 0,
and assume that

N∑
i,j=1

aij(x)Diq(x)Djq(x) ≤ 1, x ∈ RN\{x0}.

Consider the curved backward cone

C(x0, t0) = {(x, t) ∈ RN ×R+ : q(x) ≤ t0 − t}.

Then it is well known in PDE that C(x0, t0) is the domain of dependence of the hyperbolic

equation (10). Now let L = ∥x∥△ and q(x) =
√

∥x∥+ ∥x0∥ −
√

2 (∥x∥ ∥x0∥+ ⟨x, x0⟩). Then it
can be verified that

N∑
i=1

∥x∥Diq(x)Diq(x) = 1, x ∈ RN\{x0}.



And so
C(x0, t0) = {(x, t) ∈ RN ×R+ : d(x, x0) ≤ t0 − t},

where d(x, x0) =
√

∥x∥+ ∥x0∥ −
√

2 (∥x∥ ∥x0∥+ ⟨x, x0⟩), is the domain of dependence of the

hyperbolic equation (10) for L = ∥x∥△.
Now we consider the domain of dependence hyperbolic equation (10) for the deformed Dunkl

Laplacian ∥x∥△k in (k, 1)-generalized Fourier analysis.

Theorem 3.4. Let u be a smooth solution to the wave equation utt+∥x∥△ku = 0 (x ∈ RN , t >
0). If ut(x, 0) = u(x, 0) = 0 for all x ∈ RN with d(x, x0) ≤ t0. Then u vanishes in C(x0, t0).

Proof. The proof is still ongoing. It will be given via a modification of the energy method for
the hyperbolic equation (10).

We can then characterize the support of the measure associated to the spherical mean for
a = 1.

Theorem 3.5. For a = 1, the support of the measure σk
x,t associated to Mf (x, t) satisfies

suppσk
x,t ⊆ K(x,

√
2t),

where
K(x, t) :=

⋃
g∈G

{ξ ∈ RN : d(ξ, gx) ≤ t}

and d (x, y) =
√

∥x∥+ ∥y∥ −
√

2 (∥x∥ ∥y∥+ ⟨x, y⟩).

Sketch of the Proof. The proof is ongoing. We substitude t by
√
2t (

√
2
a t

a
2 for a = 1) in (8)

A1,αRα = Rα

(
2t

d2

dt2
+

d

dt

)
.

Put uf (x, t) := (Rt
λ)

−1Mf (x, t). It is G-invariant with respect to x. Then according to (5) and
the above intertwining property, u = uf belongs to C∞(RN ×R+) and solves the initial value
problem

(∥x∥△k −
(
2t∂2

t + ∂t
)
)u = 0 in RN ×R+;

u(x, 0) = f(x), (2tutt + ut ) (x, 0) = 0 for all x ∈ RN . (11)

Now suppose in addition that supp f∩K(x,
√
2t) = ∅. Then Theorem 3.4 implies that uf (x, s) =

0 for all 0 ≤
√
2s ≤

√
2t. From the explicit form (7) of the Riemann-Liouville transform Rλ we

further deduce that ∫
RN

f dσ̃k
x,t = Mf (x, t) = Rt

λuf (x, t) = 0

□
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