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1 Introduction

This presentation is concerned with the barotropic compressible Navier-Stokes system
∂tρ+ div(ρu) = 0, in R>0 × R3,

∂t(ρu) + div(ρu⊗ u)− div(2µD(u) + λdiv(u)Id) +∇p = 0, in R>0 × R3,

(u, ρ)|t=0 = (u0, ρ0), in R3,

(1.1)

where ρ : R3 → [0,∞), and u : R3 → R3 are unknown functions, representing the density and

velocity of a fluid respectively. p : R3 → R is the pressure in the fluid, and the barotropic

assumption gives us p := P (ρ), for some smooth function P . µ, λ are viscosity coefficients, taken

such that

µ ≥ 0, 2µ+ λ ≥ 0.

We define the deformation tensor

D(u) :=
1

2

(
Du+DuT

)
.

In what follows, we shall assume that the density approaches 1 at infinity; and so we are

concerned with strong solutions which are small perturbations from a constant state (ρ, u) =

(1, 0). We shall also assume that µ, λ are constant, and set a := ρ − 1. Our system (1.1) can

thus be rewritten into the following linearised problem:
∂ta+ div(u) = f in R>0 × R3,

∂tu− µ∆u− (λ+ µ)∇div(u) + P ′(1)∇a = g in R>0 × R3,

(a, u)
∣∣∣
t=0

= (a0, u0) in R3.

We apply the orthogonal projections P and Q over the divergence and curl-free fields, respec-

tively (these will be defined later). Then, setting α := P ′(1) and ν := λ + 2µ, we get the



system 
∂ta+ div(Qu) = f in R>0 × R3,

∂tQu− ν∆Qu+ α∇a = Qg in R>0 × R3,

∂tPu− µ∆Pu = Pg in R>0 × R3.

(1.2)

We note that Pu satisfies a simple heat equation, independent of a and Qu. We thus focus on

a and Qu in the first two equations. We set

v := |D|−1div(u), where F
[
|D|su

]
(ξ) := |ξ|sû(ξ).

We note that one can obtain v from Qu by a 0-order Fourier multiplier. Thus, bounding v is

equivalent to bounding Qu (see [1], Lemma 2.2).

Since the following rescaling solves (1.2) with α = ν = 1, we shall set those constants as such:

a(t, x) = ã
(α
ν
t,

√
α

ν
x
)
, u(t, x) =

√
α ũ

(α
ν
t,

√
α

ν
x
)
.

Thus we get that (a, v) solves the following system: ∂ta+ |D|v = f in R>0 × R3,

∂tv −∆v − |D|a = h := |D|−1div(g) in R>0 × R3.

In this presentation, we shall focus on the homogeneous case, where f = g = 0, and afterwards

discuss the inhomogeneous case. We now introduce our main results, which feature some notation

to be explained in the following section. The estimates from above are analogous to those found

in [2, 3]. The estimate from below is original.

Theorem 1.1. Let s ∈ R, p ∈ [2,∞], q ∈ [1,∞], and t > 2. Then∥∥∥∥F−1

[
â(t)

v̂(t)

]∥∥∥∥
Ḃs

p,q

≤ Ct
− 3

2
(1− 1

p
)− 1

2
(1− 2

p
)

∥∥∥∥F−1

[
â0

v̂0

]∥∥∥∥l
Ḃs

1,q

+ Ce−t

∥∥∥∥F−1

[
â0

v̂0

]∥∥∥∥h
Ḃ

s+7/2
1,q

.

For the high-frequency norm, we also have∥∥∥∥F−1

[
â(t)

v̂(t)

]∥∥∥∥h
Ḃs

p,q

≤ Ce−t

∥∥∥∥F−1

[
â0

v̂0

]∥∥∥∥h
Ḃ

s+1/2
p,q

.

Also, there exists initial data such that for all sufficiently large t > 0,∥∥∥∥F−1

[
â(t)

v̂(t)

]∥∥∥∥
∞

≥ Ct−2.



2 Preliminaries

2.1 Lp Spaces

Definition 1. (Lp Space)

Let (Ω,M, µ) be a measure space. The set Lp(Ω), with 1 ≤ p < ∞, is defined as the set of all

functions, f : Ω → R, such that

∥f∥p :=
(∫

Ω
|f(x)|p dµ

)1/p
< ∞.

For p = ∞, the set is defined as the set of all functions whose essential supremum is finite.

∥f∥∞ := inf{C ≥ 0 | |f(x)| ≤ C, for almost all x ∈ Ω}.

Functions that agree almost everywhere (i.e. everywhere in Ω except on a subset with 0

measure) are considered a single element of Lp(Ω).

Notation. For 1 ≤ p ≤ ∞, we denote by p′ the conjugate exponent. That is,

1

p
+

1

p′
= 1,

with the convention that 1
∞ := 0 in this context.

Proposition 2.1. (Hölder’s Inequality)

Let f ∈ Lp(Ω) and g ∈ Lp′(Ω), where 1 ≤ p ≤ ∞. Then fg ∈ L1, and∫
Ω
|fg| dµ ≤ ∥f∥p∥g∥p′ .

Proposition 2.2. (Young’s Convolution Inequality)

Let f ∈ Lp and g ∈ Lq, where 1 ≤ p, q ≤ r ≤ ∞, such that

1

p
+

1

q
=

1

r
+ 1.

Then

∥f ∗ g∥r ≤ ∥f∥p∥g∥q.

Here, (f ∗ g) denotes the convolution of f and g. That is,

(f ∗ g)(x) :=
∫
R2

f(x− y)g(y) dy =

∫
R2

f(y)g(x− y) dy.

2.2 The Fourier Transform

For a function, f , we define the Fourier transform of f as follows:

F [f ](ξ) := f̂(x) :=
1

2π

∫
R2

e−ix·ξf(x) dx.



The inverse Fourier transform is then defined as

F−1[f̂ ](x) :=
1

2π

∫
R2

eix·ξ f̂(ξ) dξ.

For the purpose of calculating inequalities, we will frequently omit the factor of 1/2π.

Proposition 2.3. (Plancherel Theorem)

Let f ∈ L1 ∩ L∞. Then the L2 norm of f is invariant under the Fourier transform. That is,

∥f∥2 = ∥f̂∥2.

Proposition 2.4. (Orthogonal Projections on the divergence and curl-free fields)

We define the projection mappings P,Q using the Fourier transform and the Kronecker delta,

defined as follows:

δi,j :=

 0, i ̸= j,

1, i = j.

The projection mapping P is a matrix with each component defined as follows for i, j ∈ {1, 2, 3}:

(P)i,j := δi,j + (−∆)−1∂i∂j .

We then define Q := 1− P. For f ∈ (Ḃs
p,q(R3))3, with s ∈ R, and p, q ∈ [1,∞], we may write

Pf := (1 + (−∆)−1∇div)f.

2.3 Besov Spaces

Definition 2. We use the Littlewood-Paley decomposition of unity to define homogeneous Besov

spaces. Let {ϕ̂k}k∈Z be a set of non-negative measurable functions such that

1.
∑
k∈Z

ϕ̂k(ξ) = 1, for all ξ ∈ R2\{0},

2. ϕ̂k(ξ) = ϕ̂0(2
−kξ),

3. supp ϕ̂k(ξ) ⊆ {ξ ∈ R2 | 2k−1 ≤ |ξ| ≤ 2k+1}.

For f ∈ S ′/P, we write

∆̇kf := F−1[ϕ̂kf̂ ],

The Besov norm is then defined as follows: for 1 ≤ p, q ≤ ∞, and s ∈ R, we define the

∥f∥Ḃs
p,q

:=
(∑
k∈Z

2sqk∥∆̇kf∥qp
)1/q

.



The set Ḃs
p,q is defined as the set of functions, f ∈ S ′/P, whose Besov norm is finite. Finally,

we also regularly use the following notation for so-called high and low-frequency norms:

∥f∥h
Ḃs

p,q
:=

(∑
k≥3

2sqk∥∆̇kf∥qp
)1/q

, ∥f∥l
Ḃs

p,q
:=

(∑
k≤2

2sqk∥∆̇kf∥qp
)1/q

.

3 Proof of Theorem

We begin our analysis of (a, v) which solves the system ∂ta+ |D|v = 0 in R>0 × R3,

∂tv −∆v − |D|a = 0 in R>0 × R3.

Taking the Fourier transform over space, x, we can write the above system as

d

dt

[
â

v̂

]
= M|ξ|

[
â

v̂

]
, with M|ξ| :=

[
0 −|ξ|
|ξ| −|ξ|2

]
. (3.1)

Then, by Duhamel’s principle, we write the following formula for the solution to (3.1):[
â(t)

v̂(t)

]
= etM|ξ|

[
â0

v̂0

]
.

We obtain the following eigenvalues for M|ξ|, which differ between high and low frequencies:

λ±(ξ) :=


− |ξ|2

2

(
1± i

√
4

|ξ|2 − 1
)
, for |ξ| < 2,

− |ξ|2
2

(
1±

√
1− 4

|ξ|2

)
, for |ξ| > 2,

from which we obtain the matrices of eigenvectors

P =

[
v11 v21

v12 v22

]
=



1√
2


(
1− i

√
4

|ξ|2 − 1
)1/2 (

1 + i
√

4
|ξ|2 − 1

)1/2(
1 + i

√
4

|ξ|2 − 1
)1/2

−
(
1− i

√
4

|ξ|2 − 1
)1/2

 , for |ξ| < 2,

1√
2


(
1−

√
1− 4

|ξ|2

)1/2 (
1 +

√
1− 4

|ξ|2

)1/2(
1 +

√
1− 4

|ξ|2

)1/2
−
(
1−

√
1− 4

|ξ|2

)1/2

 , for |ξ| > 2.

Using these eigenvalues and eigenvectors, we can rewrite the fundamental solution:

etM|ξ| = P

[
etλ+ 0

0 etλ−

]
P−1.



Looking again at our solution, if we left-multiply both sides of (3.1) by P−1, we get

d

dt

[
m̂+

m̂−

]
=

[
λ+ 0

0 λ−

][
m̂+

m̂−

]
, where

[
m̂+

m̂−

]
:= P−1

[
â

v̂

]
.

We thus obtain [
m̂+(t)

m̂−(t)

]
=

[
etλ+ 0

0 etλ−

][
m̂+(0)

m̂−(0)

]
.

Before proceeding, we give some remarks on the relationship between a0, v0, and m̂+(0), m̂−(0).

We note the following relations for all p ∈ [1,∞]:∥∥∥∥F−1[ϕ̂jv11f ]

∥∥∥∥
p

∼ 2−j/2

∥∥∥∥F−1[ϕ̂jf ]

∥∥∥∥
p

, for all j ∈ Z,∥∥∥∥F−1[ϕ̂jv21f ]

∥∥∥∥
p

∼ 2−j/2

∥∥∥∥F−1[ϕ̂jf ]

∥∥∥∥
p

, for all j < 3,∥∥∥∥F−1[ϕ̂jv21f ]

∥∥∥∥
p

∼
∥∥∥∥F−1[ϕ̂jf ]

∥∥∥∥
p

, for all j ≥ 3.

The last inequality is due to the fact that(
1 +

√
1− (4/|ξ|2)

)1/2
∼ 1

for high frequencies. This causes a small loss of regularity for our purposes, as we are forced to

take advantage of the following chain of inequalities in order to obtain our estimates:

∥f∥Ḃs
p,q

≤ C∥Pf∥
Ḃ

s+1/2
p,q

≤ C∥f∥
Ḃs

p,q∩Ḃ
s+1/2
p,q

.

Proposition 3.1. (L1 − L∞ estimates for high and low frequencies)

For all sufficiently large t > 1,∥∥∥∥F−1
[
etλ+ ϕ̂j

]∥∥∥∥
∞

≤ Ce−t, for all j ≥ 3∥∥∥∥F−1
[
etλ− ϕ̂jm̂−(0)

]∥∥∥∥
∞

≤ 23jCe−t∥∆jm−(0)∥1, for all j ≥ 3∥∥∥∥F−1
[
etλ± ϕ̂j

]∥∥∥∥
∞

≤ Ct−2, for all j ≤ 2.

Proof. We start with the high-frequency case j ≥ 3. Note that in this case we have

supp ϕ̂j ⊆ {ξ ∈ R3|2 < |ξ|},

and thus we are dealing with the high-frequency definitions of our eigenvalues λ±. That is,∥∥∥∥F−1
[
etλ− ϕ̂jm̂−(0)

]∥∥∥∥
∞

=

∥∥∥∥∫
|ξ|>2

eix·ξe
− t

2
|ξ|2

(
1−

√
1− 4

|ξ|2

)
ϕ̂(2−jξ)m̂−(0, ξ) dξ

∥∥∥∥
L∞
x



=

∥∥∥∥F−1
[
e
− t

2
|ξ|2

(
1−

√
1− 4

|ξ|2

)
Φ̂jϕ̂jm̂−(0)

]∥∥∥∥
L∞
x

=

∥∥∥∥F−1
[
e
− t

2
|ξ|2

(
1−

√
1− 4

|ξ|2

)
Φ̂j

]
∗ F−1

[
ϕ̂jm̂−(0)

]∥∥∥∥
L∞
x

,

where Φ̂j = ϕ̂j−1 + ϕ̂j + ϕ̂j+1. We finally end by using Young’s convolution inequality∥∥∥∥F−1
[
e
− t

2
|ξ|2

(
1−

√
1− 4

|ξ|2

)
Φ̂j

]
∗ F−1

[
ϕ̂jm̂−(0)

]∥∥∥∥
L∞
x

≤
∥∥∥∥F−1

[
e
− t

2
|ξ|2

(
1−

√
1− 4

|ξ|2

)
Φ̂j

]∥∥∥∥
∞
∥∆̇jm−(0)∥1

≤
∫
ξ∈R3

e
−2t

(
1+

√
1− 4

|ξ|2

)−1

Φ̂j(ξ) dξ∥∆̇jm−(0)∥1

≤ 23j+6Ce−t∥∆̇jm−(0)∥1,

and ∥∥∥∥F−1
[
etλ+ ϕ̂j

]∥∥∥∥
∞

= sup
x∈R3

∣∣∣ ∫
2j−1<|ξ|<2j+1

eix·ξe
− t

2
|ξ|2

√
1− 4

|ξ|2 e−
t
2
|ξ|2 ϕ̂(2−jξ) dξ

∣∣∣
≤ C

∫
2j−1<|ξ|<2j+1

∣∣∣e− t
2
|ξ|2 ϕ̂(2−jξ)

∣∣∣dξ
≤ Ce−t

∫
R3

e−t|ξ|2/4 dξ

≤ Ce−t, for all j ≥ 3, t > 1. (3.2)

Next, for middling frequencies, −1 < j ≤ 2, the result follows similarly to the above. Finally,

we are left with the low frequencies j ≤ −1. We start by extracting the heat-like decay by a

change of variables.

sup
x∈R3

∣∣∣ ∫
|ξ|≤1

eix·ξe
±it|ξ|2

√
4

|ξ|2
−1

e−t|ξ|2 ϕ̂(2−jξ) dξ
∣∣∣

= t−3/2 sup
x∈R3

∣∣∣ ∫
|ξ|≤t1/2

ei(t
−1/2x)·ξe

±it1/2|ξ|2
√

4
|ξ|2

−t−1

e−|ξ|2 ϕ̂(2−jt−1/2ξ) dξ
∣∣∣.

Thus it remains to extract a further decay of t−1/2 from the L∞ norm above. We fix j ≤ −1,

and consider two cases with respect to time t.

First, let ϵ > 0, and let t0 ≥ C, for some constant C > 2, such that

2j ≥ t
−1/2
0 + ϵ.

In this case, we easily obtain

sup
x∈R3

∣∣∣ ∫
2j−1t1/2<|ξ|<2j+1t1/2

ei(t
−1/2x)·ξe

±it1/2|ξ|2
√

4
|ξ|2

−t−1

e−|ξ|2 ϕ̂(2−jt−1/2ξ) dξ
∣∣∣



≤
∫
2j−1t1/2<|ξ|<2j+1t1/2

e−|ξ|2 dξ

≤
∫
|ξ|>(ϵt1/2)/2

e−|ξ|2 dξ ≤ t−1/2.

Thus, for each fixed j, there exists a constant t0 large enough such that for all t ≥ t0 our claim

holds. This, however, is not sufficient, as this constant increases as j → −∞. We thus must

consider the inverse case where, for j ≤ −1 and t ≥ C, for some constant C > 2, we have

2j+1 ≤ t−1/2.

Note that in this case, thanks to the presence of ϕ̂j in our integrand, we need only integrate

over |ξ| < 2j+1t1/2 ≤ 1. The rest of this proof is focused on this one remaining case.

First note that, by radial symmetry, we can assume without loss of generality that x =

(x1, 0, 0). Next, we decompose the frequency space into four parts.

R3 ={ξ ∈ R3 : |ξ2|, |ξ3| ≤ t−1/4} ∪ {ξ ∈ R3 : |ξ2| ≥ t−1/4, |ξ3| ≤ t−1/4}

∪ {ξ ∈ R3 : |ξ2| ≤ t−1/4, |ξ3| ≥ t−1/4} ∪ {ξ ∈ R3 : |ξ2|, |ξ3| ≥ t−1/4}

:= B1 ∪B2 ∪B3 ∪B4.

We estimate our integral over each of these four subsets, and as the calculations involved are

elementary, we skip the details for this report.

Proposition 3.2. Let j ∈ Z, p ∈ [2,∞], s ∈ R, q ∈ [1,∞], and t ≥ C > 2. Then∥∥∥∥F−1
[
etλ+m̂+(0)

]∥∥∥∥
Ḃs

p,q

≤ Ct
− 3

2
(1− 1

p
)− 1

2
(1− 2

p
)∥m+(0)∥lḂs

1,q
+ Ce−t∥m+(0)∥hḂs

1,q
,∥∥∥∥F−1

[
etλ−m̂−(0)

]∥∥∥∥
Ḃs

p,q

≤ Ct
− 3

2
(1− 1

p
)− 1

2
(1− 2

p
)∥m−(0)∥lḂs

1,q
+ Ce−2t∥m−(0)∥hḂs+3

1,q
.

The above proposition follows from interpolation between the L∞-norm, which we’ve bounded

by Proposition 3.1, and the L2-norm, which decays at the same rate as the heat kernel.

Proposition 3.3. (Lp − Lp estimates for high frequencies)∥∥∥∥F−1
[
etλ+ ϕ̂jm̂+(0)

]∥∥∥∥
p

≤ Ce−t∥∆̇jm+(0)∥p, for all j ≥ 3,∥∥∥∥F−1
[
etλ− ϕ̂jm̂−(0)

]∥∥∥∥
p

≤ Ce−t∥∆̇jm−(0)∥p, for all j ≥ 3.

Proof. Since the proofs are similar, we only show for m̂−(0). First, as noted in the previous

proposition, we have

e
− t

2
|ξ|2

(
1−

√
1− 4

|ξ|2

)
= e

−2t
(
1+

√
1− 4

|ξ|2

)−1



Next, note that

−t
(
1 +

√
1− 4/|ξ|2

)−1
= − t

2
− 2t

|ξ|2
(
1 +

√
1− 4/|ξ|2

)−2
.

Thus, we can rewrite∥∥∥∥F−1
[
etλ− ϕ̂jm̂−(0)

]∥∥∥∥
p

= e−t

∥∥∥∥F−1
[
e
− 4t

|ξ|2

(
1+

√
1− 4

|ξ|2

)−2

ϕ̂jm̂−(0)
]∥∥∥∥

p

≤ e−t

∥∥∥∥F−1
[
e
− 4t

|ξ|2

(
1+

√
1− 4

|ξ|2

)−2

Φ̂j

]∥∥∥∥
1

∥∆̇jm−(0)∥p. (3.3)

We note that, for all j ≥ 4,∥∥∥∥F−1
[
e
− 4t

|ξ|2

(
1+

√
1− 4

|ξ|2

)−2

Φ̂j

]∥∥∥∥
1

=

∥∥∥∥F−1
[
e
− 4t

22j |ξ|2

(
1+

√
1− 4

22j |ξ|2

)−2

Φ̂0

]∥∥∥∥
1

≤ C

∥∥∥∥F−1
[
e
− 4t

22j |ξ|2

(
1+

√
1− 4

22j |ξ|2

)−2

Φ̂0

]∥∥∥∥
W 2,2

≤ C.

The above sobolev norm is divergent for j = 3, and so we must instead use the following

inequality:∥∥∥∥F−1
[
e
− 4t

|ξ|2

(
1+

√
1− 4

|ξ|2

)−2

Φ̂3

]∥∥∥∥
1

≤
∥∥∥∥F−1

[
e
− 4t

|ξ|2

(
1+

√
1− 4

|ξ|2

)−2

Φ̂3

]∥∥∥∥
Ḃ

3/2
2,∞

≤
∥∥∥∥F−1

[
e
− 4t

|ξ|2

(
1+

√
1− 4

|ξ|2

)−2

Φ̂3

]∥∥∥∥
Ḃ1

2,∞

∥∥∥∥F−1
[
e
− 4t

|ξ|2

(
1+

√
1− 4

|ξ|2

)−2

Φ̂3

]∥∥∥∥
Ḃ2

2,∞

≤ Ce−t.

The final step is calculated similarly to (3.2) using the presence of fixed Φ̂3 inside the above

norms. Thus, returning to (3.3), we have∥∥∥∥F−1
[
etλ− ϕ̂jm̂−(0)

]∥∥∥∥
p

≤ Ce−t∥∆̇jm−(0)∥p.

We now discuss the optimality of the estimates in the previous section. In particular, we will

prove that the low-frequency bound obtained is optimal.

Proposition 3.4. (Optimality of Low-Frequency Linear Estimate)

Let t be sufficiently large. There exist j < 0 and C > 0 independent of t, j such that

∥F−1[etλ± ϕ̂j ]∥∞ ≥ Ct−2.

Proof.



First, we observe that for all t > 2, there exists j < 0 such that

[1/4, 7/8] ⊆ [2j−1t1/2, 2j+1t1/2].

We fix t > 2 and take such j < 0. Next note that

sup
x∈R3

∣∣∣ ∫
|ξ|≤1

eix·ξe
±it|ξ|2

√
4

|ξ|2
−1

e−t|ξ|2 ϕ̂(2−jξ) dξ
∣∣∣

≥ t−3/2
∣∣∣ ∫

|ξ|∼2jt1/2
e±2it1/2ξ1e

±it1/2|ξ|2
√

4
|ξ|2

−t−1

e−|ξ|2 ϕ̂(2−jt−1/2ξ) dξ
∣∣∣,

where in the above, we chose the specific value x = (±2t, 0, 0).

Next, we divide the whole space into four sections as in the previous section.

R3 ={ξ ∈ R3 : |ξ2|, |ξ3| ≤ t−1/4} ∪ {ξ ∈ R3 : |ξ2| ≥ t−1/4, |ξ3| ≤ t−1/4}

∪ {ξ ∈ R3 : |ξ2| ≤ t−1/4, |ξ3| ≥ t−1/4} ∪ {ξ ∈ R3 : |ξ2|, |ξ3| ≥ t−1/4}

:= B1 ∪B2 ∪B3 ∪B4.

Additionally, we divide B1 further into two parts.

B1 = B1,1 ∪B1,2,

B1,1 := {ξ ∈ B1 | ξ1 < −2j+1t1/2 + 1/8},

B1,2 := B1\B1,1.

In our proof we obtain a bound the integral over B1,1 from below by t−1/2 times a harmless

constant. We then may obtain bounds from above that decay at a faster rate for the integrals

over every other set B1,2, B2, B3, B4 by calculations similar to those of Proposition 3.1.

We lastly must find some suitable initial data (u0, a0) such that∥∥∥∥F−1

[
â(t)

v̂(t)

]∥∥∥∥
∞

≥ Ct−2.

We propose that for sufficiently small a0, the following initial velocity satisfies our main theorem:

u0 := e−|x|2 1⃗, with 1⃗ := [1, 1, 1]T .

参考文献
[1] H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differential equations,

Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343,

Springer, Heidelberg, 2011.

[2] D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible

flow, Indiana Univ. Math. J. 44 (1995), no. 2, 603–676.

[3] T. Kobayashi and Y. Shibata, Remark on the rate of decay of solutions to linearized compressible Navier-Stokes

equations, Pacific J. Math. 207 (2002), no. 1, 199–234.


