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Abstract

We give the definition of Efimov (or continuous) K-theory of dualizable presentable stable
∞-categories and introduce some basic properties of Efimov K-theory.

1 Introduction

There is a long history about the algebraic K-theory. Grothendieck firstly defined the K0-group
and Quillen later defined the higher algebraic K-theory. After the development of the theory of
∞-categories established by Joyal, Lurie and so on, Barwick defined the algebraic K-theory for
Waldhansen ∞-categories in [2] and Blumberg-Gepner-Tabuada defined the algebraic K-theory
for small stable ∞-categories in [1].
Recently, Efimov defined the continuous extension of this algebraic K-theory to the ∞-category
of dualizable presentable stable ∞-categories, which we call it Efimov K-theory. See [6].

2 Introduction to ∞-categories

We will give a basic introduction to the theory of ∞-categories. For a much more thorough
introduction, see [3].
Let [n] = {0 < 1 < · · · < n} and let ∆ be the category of objects of the form [n] and the maps
are given by the nondecreasing maps.

Definition 2.1. A simplicial set X is a functor X : ∆op → Set.

Definition 2.2. A simplicial set X is called an ∞-category, if it has the extension property for
all inner horn inclusion Λn

i → ∆n, for any n and any 0 < i < n.

Example 2.3. If all arrows in an ∞-category X are equivalences, then we refer to X as an
∞-groupoid, or space, or anima. The ∞-category of all (small ) anima is denoted by An.

There is a special kind of ∞-categories, called stable ∞-categories, which is fundamental.
We refer to [4] for a thorough introduction.

Definition 2.4. We say an∞-category C is pointed, if C amdits zero objects. That is, the initial
objects and final objects coincide. We say a pointed ∞-category C is stable, if C admits finite
limits and finite colimits, and finite limits coincide with finite colimits.

Definition 2.5. For a pointed ∞-category C, and X ∈ C, we define Σ(X) := fib(0 → X) and
Ω(X) := cofib(X → 0). Hence we have two endofunctors Σ : C → C and Ω : C → C. One can
show that if C is a stable ∞-category, then Σ and Ω are equivalences.

Example 2.6. The ∞-category Sp of all spectra is a stable ∞-category.
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In order to give the definition of presentable ∞-categories, we need to fix a Grothendieck
universe.

Definition 2.7. We say an ∞-category C is κ-accessible if C ≃ Indκ(C0) for some small ∞-
category C0. And we say C is accessible if C is κ-accessible for some cardinal κ.

Definition 2.8. An ∞-category C is presentable if C is accessible and admits small colimits.

Example 2.9. We say ∞-category C is κ-compactly generated if C is presentable and κ-
accessible. In particular, if κ = ω, we will simply refer to κ-compactly generated as compactly
generated.

We always consider the presentable stable ∞-categories. We denote the ∞-category of all
presentalbe stable ∞-categories by PrLst, where the functors between two presentalbe stable
∞-categories are colimit-preserving functors.

Definition 2.10. We say a presentable stable ∞-category C is dualizable, if C is a retract of
compactly generated stable ∞-category in PrLst. That is, there exists a compactly generated
stable ∞-category D, with colimit-preserving functors U : C→ D and V : D→ C, s.t. V ◦ U ≃
idC. We denote the ∞-category of all dualizable presentable stable ∞-categories with compact
functors by Prdualst . Here, A functor F is compact, if F admits a right adjoint G and G preserves
filtered colimits.

3 Algebraic K-theory

In this section, we recall the algebraic K-theory of a small stable ∞-category. There are many
equivalent definitions for algebraic K-theory. Here we adapt the definition given by the Q-
construction. See [9] for example.

For an ∞-category C, we have the mapping anima functor MapC : Cop × C → An. By
Grothendieck construction (see [8] for example), the right fibration classifying MapC : Cop×C→
An is given by the twisted arrow category (s, t) : TwAr(C)→ D×Dop.

Definition 3.1. For an ∞-category C with finite limits, we define Qn(C) to be the full subcat-
egory of Fun(TwAr[n],C) spanned by those diagrams which take every square of the form

(i ≤ ℓ) (j ≤ ℓ)

(i ≤ k) (j ≤ k)

to a cartesian square in C.

Hence, we get a simplicial category Q•(C) : ∆op → Catlex∞ . One can show that Q•(C) is
functorial in C, hence we get the functor

Q•(−) : Catlex∞ → Fun(∆op,Catlex∞ );C 7→ Q•(C).

For the ∞-category Qn(C), taking the maximal subgroupoid of Qn(C), we get an anima
Qn(C)

≃ ∈ An. Hence Q•(C)
≃ is a simplicial anima. By taking the geometric realization of the

simplicial anima Q•(C)
≃, we get the anima |Q•(C)

≃|. And we can make the following definition.

Definition 3.2. For a small stable ∞-category C, we define

K(C) := Ω|Q•(C)
≃|.



Hence, we have the functor
K : Catex∞ → An.

Next, we introduce the universal property of algebraic K-theory. We first introduce the
concept of grouplike additive functors.

Definition 3.3. Let C be an ∞-category with finite products. We define CMon(C) to be the
full subcategory of Fun(Fin∗,C) spanned by all functors X : Fin∗ → C, s.t.

X(⟨n⟩) ≃
∏
n

X(⟨1⟩),

for any n. Objects in CMon(C) are called commutative monoid objects in C.

In particular, we have the ∞-category CMon(An) of commutative monoid objects in An.
Note that we have the functor π0 : An→ Set, which induces a functor

π0 : CMon(An)→ CMon(Set) = CMon.

Definition 3.4. X ∈ CMon(An) is grouplike, if π0(X) is a group. We denote the full subcategory
of CMon(An) spanned by grouplike commutative monoid objects in An by CMon(An)gp. And
we say a functor F : Catex∞ → An is grouplike, if for any C ∈ Catex∞, F (C) lies in CMon(An)gp.

Definition 3.5. Consider the functor F : Catex∞ → An with F (0) ≃ ∗. We say F is additive if
F sends every split exact sequence Catex∞ to a fiber sequence in An.

Theorem 3.6 (Blumberg-Gepner-Tabuada, [1]). K : Catex∞ → An is the initial grouplike additive
functor under (−)≃ : Catex∞ → An.

4 Efimov K-theory

For a dualizable presentable stable ∞-category C, the yoneda embedding C ↪→ Ind(C) factors
through C ↪→ Ind(Cκ), which admits a left adjoint colim : Ind(Cκ) → C. We define the Calkin
category of C to be

Calkκ(C) := ker(Ind(Cκ)→ C).

One can show that Calkκ(C) is a compactly generated stable ∞-category. That is, Calkκ(C) =
Ind(Calkκ(C)

ω). In particular, Calkκ(C)
ω is a small stable ∞-category. Hence, we can make the

following definition.

Definition 4.1 (Efimov K-theory). For a dualizable presentable stable∞-category C, we define
the Efimov K-theory or continuous K-theory to be

Kcont(C) := ΩK(Calkκ(C)
ω).

In fact, for any additive invariant and localizing invariant E : Catperf∞ → Sp, we can defnie
the continuous extension of E to Prdualst .

Example 4.2. If C is a compactly generated stable ∞-category, then Kcont(C) ≃ K(Cω).

Similar to the main result in [1], we have the following result.

Theorem 4.3 ([7]). The functor (Uadd)cont : Pr
dual
st → Motadd is the universal additive invariant.

And we also have the following co-representability.



Theorem 4.4 (Co-representability, [7]). Let C be a dualizable presentable stable ∞-category,
then we have

map((Uadd)cont(Sp), (Uadd)cont(C)) ≃ Kcont(C).

And we have similar results from algebraic K-theory.

Proposition 4.5 ([7]). The functors Kcont admits a lax symmetric monoidal structure and Kcont

is initial in Funlaxadd(Pr
dual
st ,Sp).

Theorem 4.6 ([7]). Let {Ci}i∈I be a family of dualizable presentable stable ∞-categories, then
we have

Kcont(
∏
i∈I

Ci) ≃
∏
i∈I

Kcont(Ci).

Definition 4.7 (Efimov). Let {Cn} be an inverse sequence of dualizable presentable stable
∞-categories, s.t. the transition functors fnm, n ≥ m are compact. Let gnm the right adjoint
functors of fnm. We say that {Cn} is a Mittag-Leffler inverse system, if the following conditions
hold:

(1) For any n ≥ 0, the inverse sequence (fkngkn)k≥nis essentially constant in the category
Fun(Cn,Cn).

(2) For any n,m ≥ 0, the functor

lim←−
k≥n,m

fkmgkn : Cn → Cm

is compact and has a left adjoint.

The following result of Efimov justifies the name of continuous K-theory, which means that
it commutes with the Mittag-Leffler inverse limits.

Theorem 4.8 (Efimov, [10] Theorem 7). If {Ci} is a Mittag-Leffler sequence of dualizable
presentable stable ∞-categories, then we have

Kcont(lim←−
i

dualCi) ≃ lim←−
i

Kcont(Ci).

In particular, Efimov computed the continuous K-theory of nuclear A∧
I -modules for a noethe-

rian ring A with an ideal I. Note that the concept of nuclear modules is introduced by Clausen-
Scholze in condensed mathematices. See [5].

Theorem 4.9 (Efimov, [10]). Let A be a Noetherian ring and I ⊂ A is an ideal, then we have

Kcont(Nuc(A∧
I )) ≃ lim←−

n

K(A/In).

The following result us given by Efimov is about Efimov K-theory of sheaves on locally
compact Hausdorff spaces.

Theorem 4.10 (Efimov, [6] Theorem 15). Let C be a dualizable presentable stable ∞-category,
then we have

Kcont(Shv(Rn,C)) ≃ ΩnKcont(C).
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