On Efimov K-theory

Department of Mathematics, Graduate School of Science, Nagoya University He Li

Abstract

We give the definition of Efimov (or continuous) K-theory of dualizable presentable stable ∞ -categories and introduce some basic properties of Efimov K-theory.

1 Introduction

There is a long history about the algebraic K-theory. Grothendieck firstly defined the K₀-group and Quillen later defined the higher algebraic K-theory. After the development of the theory of ∞ -categories established by Joyal, Lurie and so on, Barwick defined the algebraic K-theory for Waldhansen ∞ -categories in [2] and Blumberg-Gepner-Tabuada defined the algebraic K-theory for small stable ∞ -categories in [1].

Recently, Efimov defined the continuous extension of this algebraic K-theory to the ∞ -category of dualizable presentable stable ∞ -categories, which we call it *Efimov* K-*theory*. See [6].

2 Introduction to ∞ -categories

We will give a basic introduction to the theory of ∞ -categories. For a much more thorough introduction, see [3].

Let $[n] = \{0 < 1 < \cdots < n\}$ and let Δ be the category of objects of the form [n] and the maps are given by the nondecreasing maps.

Definition 2.1. A simplicial set X is a functor $X : \Delta^{\text{op}} \to \text{Set}$.

Definition 2.2. A simplicial set X is called an ∞ -category, if it has the extension property for all inner horn inclusion $\Lambda_i^n \to \Delta^n$, for any n and any 0 < i < n.

Example 2.3. If all arrows in an ∞ -category X are equivalences, then we refer to X as an ∞ -groupoid, or space, or anima. The ∞ -category of all (small) anima is denoted by An.

There is a special kind of ∞ -categories, called stable ∞ -categories, which is fundamental. We refer to [4] for a thorough introduction.

Definition 2.4. We say an ∞ -category \mathcal{C} is *pointed*, if \mathcal{C} amdits zero objects. That is, the initial objects and final objects coincide. We say a pointed ∞ -category \mathcal{C} is *stable*, if \mathcal{C} admits finite limits and finite colimits, and finite limits coincide with finite colimits.

Definition 2.5. For a pointed ∞ -category \mathcal{C} , and $X \in \mathcal{C}$, we define $\Sigma(X) := \operatorname{fib}(0 \to X)$ and $\Omega(X) := \operatorname{cofib}(X \to 0)$. Hence we have two endofunctors $\Sigma : \mathcal{C} \to \mathcal{C}$ and $\Omega : \mathcal{C} \to \mathcal{C}$. One can show that if \mathcal{C} is a stable ∞ -category, then Σ and Ω are equivalences.

Example 2.6. The ∞ -category Sp of all spectra is a stable ∞ -category.

In order to give the definition of presentable ∞ -categories, we need to fix a Grothendieck universe.

Definition 2.7. We say an ∞ -category \mathcal{C} is κ -accessible if $\mathcal{C} \simeq \operatorname{Ind}_{\kappa}(\mathcal{C}_0)$ for some small ∞ -category \mathcal{C}_0 . And we say \mathcal{C} is accessible if \mathcal{C} is κ -accessible for some cardinal κ .

Definition 2.8. An ∞ -category \mathcal{C} is *presentable* if \mathcal{C} is accessible and admits small colimits.

Example 2.9. We say ∞ -category \mathcal{C} is κ -compactly generated if \mathcal{C} is presentable and κ -accessible. In particular, if $\kappa = \omega$, we will simply refer to κ -compactly generated as compactly generated.

We always consider the presentable stable ∞ -categories. We denote the ∞ -category of all presentable stable ∞ -categories by \Pr_{st}^{L} , where the functors between two presentable stable ∞ -categories are colimit-preserving functors.

Definition 2.10. We say a presentable stable ∞ -category \mathcal{C} is *dualizable*, if \mathcal{C} is a retract of compactly generated stable ∞ -category in $\mathcal{P}r_{st}^{L}$. That is, there exists a compactly generated stable ∞ -category \mathcal{D} , with colimit-preserving functors $U : \mathcal{C} \to \mathcal{D}$ and $V : \mathcal{D} \to \mathcal{C}$, s.t. $V \circ U \simeq id_{\mathcal{C}}$. We denote the ∞ -category of all dualizable presentable stable ∞ -categories with compact functors by $\mathcal{P}r_{st}^{dual}$. Here, A functor F is *compact*, if F admits a right adjoint G and G preserves filtered colimits.

3 Algebraic K-theory

In this section, we recall the algebraic K-theory of a small stable ∞ -category. There are many equivalent definitions for algebraic K-theory. Here we adapt the definition given by the Q-construction. See [9] for example.

For an ∞ -category \mathcal{C} , we have the mapping anima functor $\operatorname{Map}_{\mathcal{C}} : \mathcal{C}^{\operatorname{op}} \times \mathcal{C} \to \operatorname{An}$. By Grothendieck construction (see [8] for example), the right fibration classifying $\operatorname{Map}_{\mathcal{C}} : \mathcal{C}^{\operatorname{op}} \times \mathcal{C} \to \operatorname{An}$ is given by the twisted arrow category $(s, t) : \operatorname{TwAr}(\mathcal{C}) \to \mathcal{D} \times \mathcal{D}^{\operatorname{op}}$.

Definition 3.1. For an ∞ -category \mathcal{C} with finite limits, we define $Q_n(\mathcal{C})$ to be the full subcategory of Fun(TwAr[n], \mathcal{C}) spanned by those diagrams which take every square of the form

$$\begin{array}{ccc} (i \leq \ell) & \longrightarrow & (j \leq \ell) \\ & \downarrow & & \downarrow \\ (i \leq k) & \longrightarrow & (j \leq k) \end{array}$$

to a cartesian square in \mathcal{C} .

Hence, we get a simplicial category $Q_{\bullet}(\mathcal{C}) : \Delta^{op} \to \operatorname{Cat}_{\infty}^{\operatorname{lex}}$. One can show that $Q_{\bullet}(\mathcal{C})$ is functorial in \mathcal{C} , hence we get the functor

$$Q_{\bullet}(-): Cat^{lex}_{\infty} \to Fun(\Delta^{op}, Cat^{lex}_{\infty}); \mathcal{C} \mapsto Q_{\bullet}(\mathcal{C}).$$

For the ∞ -category $Q_n(\mathcal{C})$, taking the maximal subgroupoid of $Q_n(\mathcal{C})$, we get an anima $Q_n(\mathcal{C})^{\simeq} \in An$. Hence $Q_{\bullet}(\mathcal{C})^{\simeq}$ is a simplicial anima. By taking the geometric realization of the simplicial anima $Q_{\bullet}(\mathcal{C})^{\simeq}$, we get the anima $|Q_{\bullet}(\mathcal{C})^{\simeq}|$. And we can make the following definition.

Definition 3.2. For a small stable ∞ -category \mathcal{C} , we define

$$\mathbf{K}(\mathcal{C}) := \Omega |\mathbf{Q}_{\bullet}(\mathcal{C})^{\simeq}|.$$

Hence, we have the functor

$$K : Cat_{\infty}^{ex} \to An.$$

Next, we introduce the universal property of algebraic K-theory. We first introduce the concept of grouplike additive functors.

Definition 3.3. Let \mathcal{C} be an ∞ -category with finite products. We define $\mathrm{CMon}(\mathcal{C})$ to be the full subcategory of Fun(Fin_{*}, \mathcal{C}) spanned by all functors $X : \mathrm{Fin}_* \to \mathcal{C}$, s.t.

$$X(\langle n \rangle) \simeq \prod_n X(\langle 1 \rangle),$$

for any n. Objects in $CMon(\mathcal{C})$ are called *commutative monoid objects* in \mathcal{C} .

In particular, we have the ∞ -category CMon(An) of commutative monoid objects in An. Note that we have the functor $\pi_0 : An \to Set$, which induces a functor

$$\pi_0 : \operatorname{CMon}(\operatorname{An}) \to \operatorname{CMon}(\operatorname{Set}) = \operatorname{CMon}.$$

Definition 3.4. $X \in \text{CMon}(\text{An})$ is *grouplike*, if $\pi_0(X)$ is a group. We denote the full subcategory of CMon(An) spanned by grouplike commutative monoid objects in An by CMon(An)^{gp}. And we say a functor $F : \text{Cat}_{\infty}^{\text{ex}} \to \text{An}$ is *grouplike*, if for any $\mathcal{C} \in \text{Cat}_{\infty}^{\text{ex}}$, $F(\mathcal{C})$ lies in CMon(An)^{gp}.

Definition 3.5. Consider the functor $F : \operatorname{Cat}_{\infty}^{\operatorname{ex}} \to \operatorname{An}$ with $F(0) \simeq *$. We say F is additive if F sends every split exact sequence $\operatorname{Cat}_{\infty}^{\operatorname{ex}}$ to a fiber sequence in An.

Theorem 3.6 (Blumberg-Gepner-Tabuada, [1]). $K : Cat_{\infty}^{ex} \to An$ is the initial grouplike additive functor under $(-)^{\simeq} : Cat_{\infty}^{ex} \to An$.

4 Efimov K-theory

For a dualizable presentable stable ∞ -category \mathcal{C} , the yoneda embedding $\mathcal{C} \hookrightarrow \operatorname{Ind}(\mathcal{C})$ factors through $\mathcal{C} \hookrightarrow \operatorname{Ind}(\mathcal{C}^{\kappa})$, which admits a left adjoint colim : $\operatorname{Ind}(\mathcal{C}^{\kappa}) \to \mathcal{C}$. We define the Calkin category of \mathcal{C} to be

$$\operatorname{Calk}_{\kappa}(\mathcal{C}) := \ker(\operatorname{Ind}(\mathcal{C}^{\kappa}) \to \mathcal{C}).$$

One can show that $\operatorname{Calk}_{\kappa}(\mathcal{C})$ is a compactly generated stable ∞ -category. That is, $\operatorname{Calk}_{\kappa}(\mathcal{C}) = \operatorname{Ind}(\operatorname{Calk}_{\kappa}(\mathcal{C})^{\omega})$. In particular, $\operatorname{Calk}_{\kappa}(\mathcal{C})^{\omega}$ is a small stable ∞ -category. Hence, we can make the following definition.

Definition 4.1 (Efimov K-theory). For a dualizable presentable stable ∞ -category \mathcal{C} , we define the *Efimov* K-*theory* or *continuous* K-*theory* to be

$$\mathrm{K}_{\mathrm{cont}}(\mathfrak{C}) := \Omega \mathrm{K}(\mathrm{Calk}_{\kappa}(\mathfrak{C})^{\omega}).$$

In fact, for any additive invariant and localizing invariant $E : \operatorname{Cat}_{\infty}^{\operatorname{perf}} \to \operatorname{Sp}$, we can define the continuous extension of E to $\operatorname{Pr}_{\operatorname{st}}^{\operatorname{dual}}$.

Example 4.2. If \mathcal{C} is a compactly generated stable ∞ -category, then $K_{\text{cont}}(\mathcal{C}) \simeq K(\mathcal{C}^{\omega})$.

Similar to the main result in [1], we have the following result.

Theorem 4.3 ([7]). The functor $(\mathcal{U}_{add})_{cont} : \mathfrak{Pr}_{st}^{dual} \to Mot_{add}$ is the universal additive invariant.

And we also have the following co-representability.

Theorem 4.4 (Co-representability, [7]). Let \mathcal{C} be a dualizable presentable stable ∞ -category, then we have

 $\mathrm{map}((\mathfrak{U}_{\mathrm{add}})_{\mathrm{cont}}(\mathrm{Sp}),(\mathfrak{U}_{\mathrm{add}})_{\mathrm{cont}}(\mathfrak{C}))\simeq \mathrm{K}_{\mathrm{cont}}(\mathfrak{C}).$

And we have similar results from algebraic K-theory.

Proposition 4.5 ([7]). The functors K_{cont} admits a lax symmetric monoidal structure and K_{cont} is initial in $Fun_{add}^{lax}(Pr_{st}^{dual}, Sp)$.

Theorem 4.6 ([7]). Let $\{\mathcal{C}_i\}_{i \in I}$ be a family of dualizable presentable stable ∞ -categories, then we have

$$\mathrm{K}_{\mathrm{cont}}(\prod_{i\in I} \mathfrak{C}_i) \simeq \prod_{i\in I} \mathrm{K}_{\mathrm{cont}}(\mathfrak{C}_i).$$

Definition 4.7 (Efimov). Let $\{\mathcal{C}_n\}$ be an inverse sequence of dualizable presentable stable ∞ -categories, s.t. the transition functors $f_{nm}, n \geq m$ are compact. Let g_{nm} the right adjoint functors of f_{nm} . We say that $\{\mathcal{C}_n\}$ is a *Mittag-Leffler inverse system*, if the following conditions hold:

- (1) For any $n \ge 0$, the inverse sequence $(f_{kn}g_{kn})_{k\ge n}$ is essentially constant in the category $\operatorname{Fun}(\mathcal{C}_n, \mathcal{C}_n)$.
- (2) For any $n, m \ge 0$, the functor

$$\varprojlim_{k \ge n,m} f_{km} g_{kn} : \mathfrak{C}_n \to \mathfrak{C}_m$$

is compact and has a left adjoint.

The following result of Efimov justifies the name of *continuous* K-*theory*, which means that it commutes with the Mittag-Leffler inverse limits.

Theorem 4.8 (Efimov, [10] Theorem 7). If $\{C_i\}$ is a Mittag-Leffler sequence of dualizable presentable stable ∞ -categories, then we have

$$\operatorname{K_{\operatorname{cont}}}(\varprojlim_{i}^{\operatorname{dual}} \mathcal{C}_{i}) \simeq \varprojlim_{i} \operatorname{K_{\operatorname{cont}}}(\mathcal{C}_{i}).$$

In particular, Efimov computed the continuous K-theory of nuclear A_I^{\wedge} -modules for a noetherian ring A with an ideal I. Note that the concept of nuclear modules is introduced by Clausen-Scholze in condensed mathematices. See [5].

Theorem 4.9 (Efimov, [10]). Let A be a Noetherian ring and $I \subset A$ is an ideal, then we have

$$\operatorname{K_{\operatorname{cont}}}(\operatorname{Nuc}(A_I^{\wedge})) \simeq \varprojlim_n \operatorname{K}(A/I^n).$$

The following result us given by Efimov is about Efimov K-theory of sheaves on locally compact Hausdorff spaces.

Theorem 4.10 (Efimov, [6] Theorem 15). Let C be a dualizable presentable stable ∞ -category, then we have

$$\mathrm{K}_{\mathrm{cont}}(\mathrm{Shv}(\mathbb{R}^n, \mathcal{C})) \simeq \Omega^n \mathrm{K}_{\mathrm{cont}}(\mathcal{C}).$$

References

- [1] Andrew J. Blumberg, David Gepner, Goncalo Tabuada: A universal characterization of higher algebraic K-theory, 2013, https://arxiv.org/abs/1001.2282
- [2] C. Barwick: On the algebraic K-theory of higher categories, 2015, https://arxiv.org/abs/ 1204.3607
- [3] Jacob Lurie: Higher topos theory, 2009, https://www.math.ias.edu/~lurie/papers/HTT. pdf
- [4] Jacob Lurie: Higher algebra, 2017, https://www.math.ias.edu/~lurie/papers/HA.pdf
- [5] Clausen, Scholze: Condensed mathematics and complex geometry, 2022, https://people. mpim-bonn.mpg.de/scholze/Complex.pdf
- [6] Hoyois: K-theory of dualizable categories, 2018, https://hoyois.app.uni-regensburg. de/papers/efimov.pdf
- [7] L. He: On Efimov K-theory, 2022, master thesis.
- [8] AaronMazel-Gee: On the Grothendieck construction for ∞-categories, https://www.sciencedirect.com/science/article/pii/S0022404919300416
- [9] Fabian Hebestreit, Andrea Lachmann, Wolfgang Steimle: The localisation theorem for the K-theory of stable ∞-categories, 2022, https://arxiv.org/abs/2205.06104
- [10] Efimov: K-theory of inverse limits, 2022, https://publications.mfo.de/bitstream/ handle/mfo/3971/OWR_2022_35.pdf?sequence=1&isAllowed=y