Rational function semifields of tropical curves are finitely generated over the tropical semifield

東京都立大学大学院 理学研究科 数理科学専攻
宋珠愛（Chue SON）

Abstract

概 要 We prove that the rational function semifield of a tropical curve is finitely generated as a semifield over the tropical semifield $\boldsymbol{T}:=(\boldsymbol{R} \cup\{-\infty\}$ ，max,+$)$ by giving a specific finite generating set．

1 Introduction

This manuscript is on tropical geometry．Tropical geometry is an algebraic geometry over the tropical semifield $\boldsymbol{T}:=(\boldsymbol{R} \cup\{-\infty\}$ ，max，+ ），which is developing from the bigining of this century．In tropical geometry，we study tropical varieties．Tropical varieties are polyhedral complexes obtained from algebraic varieties by a limit operation called tropicalization．Tropical curves，one－dimensional tropical varieties，correspond to algebraic curves．In this manuscript， an（abstract）tropical curve means a metric graph，i．e．，the underlying metric space of the pair （ G, l ），where G is an unweighted，undirected，finite，connected，nonempty multigraph that may have loops（in what follows，we call such a multigraph a graph simply），$l: E(G) \rightarrow \boldsymbol{R}$ is a length function，and $E(G)$ stands for the set of edges of G ．For a tropical curve Γ ，a map $f: \Gamma \rightarrow \boldsymbol{R} \cup\{-\infty\}$ is a rational function on Γ if f is a continuos piecewise affine function with integer slopes，or a constant function of $-\infty$ ．The set $\operatorname{Rat}(\Gamma)$ of all rational functions on Γ becomes a semifield over \boldsymbol{T} with the pointwise maximum operation as its addition \oplus and the pointwise usual addition as its multiplication \odot ．We call $\operatorname{Rat}(\Gamma)$ the rational function semifield of Γ ．The following theorem is our main theorem：

Theorem 1．Let Γ be a tropical curve．Then，the rational function semifield $\operatorname{Rat}(\Gamma)$ is finitely generated as a semifield over \boldsymbol{T} ．

This is a tropical analogue of the fact that the function field of an algebraic curve over \boldsymbol{C} is generated by two elements over \boldsymbol{C} ．To prove this theorem，the following lemma is our key：

Lemma 2 （［1，Lemma 2］）．Let Γ be a tropical curve．Then， $\operatorname{Rat}(\Gamma)$ is generated by all chip firing moves and all constant functions as a group with \odot as its binary operation．

Here，a chip firing move $\mathrm{CF}\left(\Gamma_{1}, l\right)$ is the rational function defined by the pair of a subgraph Γ_{1} and a number $l \in \boldsymbol{R}_{>0}$ as follows： $\mathrm{CF}\left(\Gamma_{1}, l\right)(x):=-\min \left\{\operatorname{dist}\left(\Gamma_{1}, x\right), l\right\}$ ，where a subgraph is a closed subset with a finite number of connected components and dist $\left(\Gamma_{1}, x\right)$ denotes the distance
between Γ_{1} and x. By this lemma, it is enough to find a finite set of rational functions which generates all chip firing moves as a semifield over \boldsymbol{T}.

Note that this manuscript is based on [2]. In [2], a tropical curve may have edges of length ∞. Even a tropical curve has an edge of length ∞, the assertion of Theorem 1 holds.

2 Proof of Theorem 1

Let Γ be the tropical curve obtained from the pair (G, l) of a graph G and a length function l. Then, the pair (G, l) is called a model for Γ. There are many possible models for Γ. We frequently identify a vertex (resp. an edge) of G with the corresponding point (resp. the corresponding closed subset) of Γ. The canonical model (G_{\circ}, l_{\circ}) for Γ is defined as follows: if Γ is not homeomorphic to a circle, then let $V\left(G_{\circ}\right):=\{x \in \Gamma \mid \operatorname{val}(x) \neq 2\}$; otherwise, let $V\left(G_{\circ}\right)$ be consist of arbitrary one point of Γ, where $\operatorname{val}(x)$ denotes the minimum number of the connected components of $U \backslash\{x\}$ with any neighborhood U of x. Let G_{\circ} be the graph which has $V\left(G_{\circ}\right)$ as its set of vertices and the set of all closures of connected components of $\Gamma \backslash V\left(G_{\circ}\right)$ as its set of edges, and l_{\circ} the length function which maps each edge of G_{\circ} to its length. Fix a direction on edges of G_{\circ}. Let each $e \in E\left(G_{\circ}\right)$ be identified with the interval $\left[0, l_{\circ}(e)\right]$ with this direction. For each edge $e \in E\left(G_{\circ}\right)$, let $x_{e}=\frac{l_{0}(e)}{4}$, $y_{e}=\frac{l_{\circ}(e)}{2}$, and $z_{e}=\frac{3 l_{\circ}(e)}{4}$. We define rational functions

$$
f_{e}:=\operatorname{CF}\left(\left\{y_{e}\right\}, \frac{l_{\circ}(e)}{2}\right), g_{e}:=\operatorname{CF}\left(\left\{x_{e}\right\}, \frac{l_{\circ}(e)}{4}\right), h_{e}:=\operatorname{CF}\left(\left\{z_{e}\right\}, \frac{l_{\circ}(e)}{4}\right) .
$$

Let d be the diameter of Γ, i.e., $d=\sup \{\operatorname{dist}(x, y) \mid x, y \in \Gamma\}=\max \{\operatorname{dist}(x, y) \mid x, y \in \Gamma\}$. Let R be the semifield generated by f_{e}, g_{e}, h_{e} for any $e \in E\left(G_{\circ}\right)$ and $\operatorname{CF}(\{v\}, d)(=-\operatorname{dist}(v, \cdot))$ for any $v \in V\left(G_{\circ}\right)$ over \boldsymbol{T}. We will show that this semifield R coincides with $\operatorname{Rat}(\Gamma)$.

In Algorithm $1, \overline{e_{i} \backslash S}$ denotes the closure of $e_{i} \backslash S$, and if S consists of only one point x, then we write l_{x} instead of $l_{\{x\}}$.
Remark 3. Let Γ be a tropical curve and S_{1} a proper connceted subgraph of Γ. Let $l \leq l_{S_{1}}$ and $S_{2}:=\left\{x \in \Gamma \mid \operatorname{dist}\left(S_{1}, x\right) \leq l\right\}$. With $a:=\min \left\{k \in Z_{>0} \mid l / k \leq l_{S_{2}}\right\}, m:=\min \{k \in$ $\left.\boldsymbol{Z}_{>0} \mid l_{S_{2}} / k \leq l / a\right\}$ and any $l^{\prime}>0$, by the definition of chip firing moves, we have

$$
\begin{gathered}
\operatorname{CF}\left(S_{2}, \frac{l}{a}\right)=\operatorname{CF}\left(S_{1}, \frac{l}{a}\right) \odot \bigodot_{k=1}^{a} \bigodot_{\substack{x^{\prime} \in \Gamma \cdot \\
\operatorname{dist}\left(S_{1}, x^{\prime}\right)=\frac{k l}{a}}}\left\{\operatorname{CF}\left(\left\{x^{\prime}\right\}, \frac{l}{a}\right) \odot \frac{l}{a}\right\}, \\
\mathrm{CF}\left(\left\{x \in \Gamma \left\lvert\, \operatorname{dist}\left(S_{2}, x\right) \leq \frac{k l_{S_{2}}}{m}\right.\right\}, \frac{l_{S_{2}}}{m}\right)= \\
\operatorname{CF}\left(\left\{x \in \Gamma \left\lvert\, \operatorname{dist}\left(S_{2}, x\right) \leq \frac{(k-1) l_{S_{2}}}{m}\right.\right\}, \frac{l_{S_{2}}}{m}\right) \\
\odot \bigodot_{\substack{x^{\prime} \in \Gamma: \\
\operatorname{dist}\left(S_{2}, x^{\prime}\right)=\frac{k l S_{2}}{m}}}\left\{\operatorname{CF}\left(\left\{x^{\prime}\right\}, \frac{l_{S_{2}}}{m}\right) \odot \frac{l_{S_{2}}}{m}\right\}, \\
\mathrm{CF}\left(S_{2}, l_{S_{2}}\right)=\left\{\operatorname{CF}\left(S_{2}, \frac{l}{a}\right) \oplus\left(-\frac{l_{S_{2}}}{m}\right)\right\} \odot \bigodot_{k=1}^{m-1} \mathrm{CF}\left(\left\{x \in \Gamma \left\lvert\, \operatorname{dist}\left(S_{2}, x\right) \leq \frac{k l_{S_{2}}}{m}\right.\right\}, \frac{l_{S_{2}}}{m}\right),
\end{gathered}
$$

and

$$
\mathrm{CF}\left(S_{1}, l+l^{\prime}\right)=\mathrm{CF}\left(S_{1}, l\right) \odot \mathrm{CF}\left(S_{2}, l^{\prime}\right) .
$$

```
Algorithm 1
Input: \(\Gamma\) : a tropical curve
    \(E\left(G_{\circ}\right)=\left\{e_{1}, \ldots, e_{n}\right\}\) : a labeling of edges of the canonical model for \(\Gamma\)
    \(S\) : a proper connected subgraph of \(\Gamma\)
Output: \(l_{S}\)
    \(i \leftarrow 1\)
    while \(i \leq n\) do
        if \(e_{i} \cap S=\varnothing\) then
            \(l_{i} \leftarrow(\) the diameter of \(\Gamma), i \leftarrow i+1\)
        else \(\left\{S \supset e_{i}\right\}\)
            \(l_{i} \leftarrow\) (the diameter of \(\left.\Gamma\right), i \leftarrow i+1\)
        else \(\left\{S \supset \partial e_{i}\right\}\)
            \(l_{i} \leftarrow\left(\right.\) the length of \(\left.\overline{e_{i} \backslash S}\right) / 2, i \leftarrow i+1\)
        else \(\left\{S \subset e_{i}^{\circ}\right\}\)
            \(l_{i} \leftarrow \min \left\{\operatorname{dist}(S, x) \mid x\right.\) is one of the endpoints of \(\left.e_{i}\right\}, i \leftarrow i+1\)
        else
            \(l_{i} \leftarrow\left(\right.\) the length of \(\left.\overline{e_{i} \backslash S}\right), i \leftarrow i+1\)
        end if
    end while
    \(l_{S} \leftarrow \min \left\{l_{1}, \ldots, l_{n}\right\}\)
    return \(l_{S}\)
```

Lemma 4. Let e be an edge of G_{\circ} and v, w the endpoint(s) of e (possibly $v=w$). Let x be in $e \backslash\{v, w\}$. Then, $\operatorname{CF}\left(\{x\}, l_{x}\right) \in R$.

Proof. If x is the midpoint of e, then $\operatorname{CF}\left(\{x\}, l_{x}\right)=f_{e} \in R$. Suppose that x is not the midpoint of e. Assume that $0<l_{x} \leq \frac{l_{0}(e)}{4}$ and $g_{e}(x)=-\frac{l_{0}(x)}{4}$. Then

$$
\begin{aligned}
\mathrm{CF}\left(\{x\}, l_{x}\right)= & \left\{\left(\frac{l_{\circ}(e)}{2}-l_{x}\right) \odot f_{e} \oplus\left(l_{x}-\frac{l_{\circ}(e)}{2}\right) \odot f_{e}^{\odot(-1)}\right\}^{\odot(-1)} \\
& \odot\left(-\frac{l_{\circ}(e)}{4}\right) \odot g_{e}^{\odot(-1)} \oplus\left(-l_{x}\right) \in R .
\end{aligned}
$$

Similarly, if $0<l_{x} \leq \frac{l_{0}(e)}{4}$ and $h_{e}(x)=-\frac{l_{o}(e)}{4}$, then $\mathrm{CF}\left(\{x\}, l_{x}\right) \in R$.
When $\frac{l_{0}(e)}{4}<l_{x} \leq \frac{l_{o}(e)}{3}$ and $g_{e}(x)=-\frac{l_{o}(e)}{4}$, we have

$$
\begin{aligned}
\mathrm{CF}\left(\{x\}, l_{x}\right)= & \left\{\left(\frac{l_{\circ}(e)}{2}-l_{x}\right) \odot f_{e} \oplus\left(l_{x}-\frac{l_{\circ}(e)}{2}\right) \odot f_{e}^{\odot(-1)}\right\}^{\odot(-1)} \\
& \odot\left\{\left(-\frac{l_{\circ}(e)}{4}\right) \odot g_{e}^{\odot(-1)}\right\}^{\odot 2} \oplus\left(-l_{x}\right) \in R .
\end{aligned}
$$

Similarly, if $\frac{l_{o}(e)}{4}<l_{x} \leq \frac{l_{o}(e)}{3}$ and $h_{e}(x)=-\frac{l_{o}(e)}{4}$, then $\mathrm{CF}\left(\{x\}, l_{x}\right) \in R$.

When $\frac{l_{\circ}(e)}{3}<l_{x}<\frac{l_{\circ}(e)}{2}$ and $g_{e}(x)=-\frac{l_{\circ}(e)}{4}$, we have

$$
\begin{aligned}
\mathrm{CF}\left(\{x\}, l_{\circ}(e)-2 l_{x}\right)= & \left\{\left(\frac{l_{\circ}(e)}{2}-l_{x}\right) \odot f_{e} \oplus\left(l_{x}-\frac{l_{\circ}(e)}{2}\right) \odot f_{e}^{\odot(-1)}\right\}^{\odot(-1)} \\
& \odot\left\{\left(-\frac{l_{\circ}(e)}{4}\right) \odot g_{e}^{\odot(-1)}\right\}^{\odot 2} \oplus\left(2 l_{x}-l_{\circ}(e)\right) \in R .
\end{aligned}
$$

Similarly, if $\frac{l_{\circ}(e)}{3}<l_{x}<\frac{l_{\circ}(e)}{2}$ and $h_{e}(x)=-\frac{l_{\circ}(e)}{4}$, then $\mathrm{CF}\left(\{x\}, l_{\circ}(e)-2 l_{x}\right) \in R$.
Let x be in the fifth case. Since

$$
\begin{aligned}
& \mathrm{CF}\left(\left\{x_{1} \in \Gamma \left\lvert\, \operatorname{dist}\left(x, x_{1}\right) \leq \frac{l_{\circ}(e)}{2}-l_{x}\right.\right\}, \frac{l_{\circ}(e)}{2}-l_{x}\right) \\
= & \operatorname{CF}\left(\{x\}, \frac{l_{\circ}(e)}{2}-l_{x}\right) \odot \bigodot_{\substack{x_{1} \in e: \\
\operatorname{dist}\left(x, x_{1}\right)=\frac{l_{\circ}(e)}{2}-l_{x}}}\left\{\operatorname{CF}\left(\left\{x_{1}\right\}, \frac{l_{\circ}(e)}{2}-l_{x}\right) \odot\left(\frac{l_{\circ}(e)}{2}-l_{x}\right)\right\} \in R,
\end{aligned}
$$

with inputs $l=\frac{l_{\circ}(e)}{2}-l_{x}, S_{1}=\left\{x_{1} \in \Gamma \mid \operatorname{dist}\left(x, x_{1}\right) \leq l_{\circ}(e) / 2-l_{x}\right\}$ in Remark 3, we have $\mathrm{CF}\left(\{x\}, l_{x}\right) \in R$.

When x is in the sixth case, by the same argument, we have $\mathrm{CF}\left(\{x\}, l_{x}\right) \in R$.
Note that l_{x} coincides with $\min (\operatorname{dist}(x, v)$, $\operatorname{dist}(x, w))$ in the setting of Lemma 4.
By Remark 3 and Lemma 4, we prove the following three lemmas.
Lemma 5. For any $x \in \Gamma$ and any positive real number $l, \operatorname{CF}(\{x\}, l)$ is in R.
Proof. For any $x \in \Gamma$ and $l>0$, by the definition of chip firing moves, we have $\operatorname{CF}(\{x\}, l)=$ $\mathrm{CF}(\{x\}, d) \oplus(-l)$. Hence it is sufficient to check that $\mathrm{CF}(\{x\}, d) \in R$. If $x \in V\left(G_{\circ}\right)$, then $\mathrm{CF}(\{x\}, d) \in R$.

Suppose that there exists an edge $e \in E\left(G_{\circ}\right)$ which does not have x as an endpoint. Considering Remark 3 with $l=l_{x}, S_{1}=\{x\}$, by Lemma 4, we have

$$
\mathrm{CF}\left(S_{2}, l_{S_{2}}\right) \in R
$$

and

$$
\mathrm{CF}\left(S_{1}, l+l_{S_{2}}\right)=\mathrm{CF}\left(S_{1}, l\right) \odot \mathrm{CF}\left(S_{2}, l_{S_{2}}\right) \in R
$$

Since S_{2} contains a lot of whole edges of G_{\circ} more than S_{1} and the set of edges of G_{\circ} is finite, by repeating inputs of $l=l_{S_{2}}, S_{1}=S_{2}$ in Remark 3, we have $\operatorname{CF}(\{x\}, d) \in R$.

Lemma 6. For any proper connected subgraph Γ_{1} and any positive real number $l, \operatorname{CF}\left(\Gamma_{1}, l\right)$ is in R.

Proof. By Lemma 5, if Γ_{1} consists of only one point, then we have the conclusion. Assume that Γ_{1} does not consist of only one point.

Suppose that Γ_{1} contains no whole edges of G_{\circ} and that there exists an edge $e \in E\left(G_{\circ}\right)$ containing Γ_{1}. Let x_{1} and x_{2} be the endpoints of Γ_{1}. Let x be the midpoint of Γ_{1}. By Lemma 5 , for any positive real number l, we have

$$
\mathrm{CF}\left(\Gamma_{1}, l\right)=\left[\left\{\mathrm{CF}\left(\{x\}, l+\operatorname{dist}\left(x_{1}, x\right)\right) \odot \operatorname{dist}\left(x_{1}, x\right)\right\}^{\odot(-1)} \oplus 0\right]^{\odot(-1)} \in R
$$

Suppose Γ_{1} contains p edges．Let $\partial \Gamma_{1} \cup\left(V\left(G_{\circ}\right) \cap \Gamma_{1}\right)=\left\{x_{1}, \ldots, x_{q}\right\}$ ．We may assume that x_{1}, \ldots, x_{q} are distinct．Let $\Gamma_{11}, \ldots, \Gamma_{1 s}$ be connected components of $\Gamma_{1} \backslash\left\{x_{1}, \ldots, x_{q}\right\}$ ．For a suffi－ ciently small positive real number ε ，let $\Gamma_{1 i}^{\prime}$ be the connected subgraph $\left\{x \in \Gamma_{1 i} \mid\right.$ for any $j, \operatorname{dist}\left(x, x_{j}\right) \geq$ $\varepsilon\}$ of Γ ．Then，we have

$$
\mathrm{CF}\left(\Gamma_{1}, \varepsilon\right)=\left\{\bigoplus_{k=1}^{q} \mathrm{CF}\left(\left\{x_{k}\right\}, \varepsilon\right)\right\} \odot \bigodot_{k=1}^{s}\left(\varepsilon \odot \mathrm{CF}\left(\Gamma_{1 k}^{\prime}, \varepsilon\right)\right) .
$$

The last divisor is in the first case，and thus it is in R ．By inputting $l=\varepsilon, S_{1}=\Gamma_{1}$ and by repeating inputs $l=l_{S_{2}}, S_{1}=S_{2}$ in Remark 3，we have $\operatorname{CF}\left(\Gamma_{1}, d\right) \in R$ ．From this，for any $l>0$ ， we have $\mathrm{CF}\left(\Gamma_{1}, l\right)=\mathrm{CF}\left(\Gamma_{1}, d\right) \oplus(-l) \in R$ ．

Lemma 7．For any proper subgraph Γ_{1} and any positive real number $l, \mathrm{CF}\left(\Gamma_{1}, l\right)$ is in R ．
Proof．Let Γ_{1} be a proper subgraph of Γ ．Let s be the number of connected components of Γ_{1} ．If $s=1$ ，then the conclusion follows Lemma 6．Assume $s \geq 2$ ．Let $\Gamma_{1}^{\prime}, \ldots, \Gamma_{s}^{\prime}$ be all the distinct connected components of Γ_{1} ．For $l^{\prime}>0$ ，let $\Gamma_{k}^{\prime}\left(l^{\prime}\right):=\left\{x \in \Gamma \mid \operatorname{dist}\left(\Gamma_{k}^{\prime}, x\right) \leq l^{\prime}\right\}$ ．If l^{\prime} is sufficiently small，then the intersection of $\Gamma_{1}^{\prime}\left(l^{\prime}\right), \ldots, \Gamma_{s}^{\prime}\left(l^{\prime}\right)$ is empty．Let l_{1}^{\prime} be the minimum value of l^{\prime} such that this intersection is nonempty．By induction on $s, \mathrm{CF}\left(\bigcup_{k=1}^{s} \Gamma_{k}^{\prime}\left(l_{1}^{\prime}\right), d\right) \in R$ ． On the other hand，

$$
\mathrm{CF}\left(\Gamma_{1}, l_{1}^{\prime}\right)=\bigoplus_{k=1}^{s} \mathrm{CF}\left(\Gamma_{k}^{\prime}, l_{1}^{\prime}\right) \in R .
$$

Hence

$$
\mathrm{CF}\left(\Gamma_{1}, d\right)=\mathrm{CF}\left(\Gamma_{1}, l_{1}^{\prime}\right) \odot \mathrm{CF}\left(\bigcup_{k=1}^{s} \Gamma_{k}^{\prime}\left(l_{1}^{\prime}\right), d\right) \in R .
$$

In conclusion，for any $l>0$ ，we have

$$
\mathrm{CF}\left(\Gamma_{1}, l\right)=\mathrm{CF}\left(\Gamma_{1}, d\right) \oplus(-l) \in R .
$$

From Lemmas 2，5，6，7，we have Theorem 1.

参考文献

［1］Christian Haase，Gregg Musiker and Josephine Yu，Linear Systems on Tropical Curves， Mathematische Zeitschrift 270 （2012），1111－1140．
［2］Song JuAe，Rational function semifields of tropical curves are finitely generated over the tropical semifield，arXiv：2112．01357．

