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概 要
We prove that the rational function semifield of a tropical curve is finitely generated as

a semifield over the tropical semifield T := (R ∪ {−∞},max,+) by giving a specific finite
generating set.

1 Introduction

This manuscript is on tropical geometry. Tropical geometry is an algebraic geometry over

the tropical semifield T := (R ∪ {−∞},max,+), which is developing from the bigining of this

century. In tropical geometry, we study tropical varieties. Tropical varieties are polyhedral

complexes obtained from algebraic varieties by a limit operation called tropicalization. Tropical

curves, one-dimensional tropical varieties, correspond to algebraic curves. In this manuscript,

an (abstract) tropical curve means a metric graph, i.e., the underlying metric space of the pair

(G, l), where G is an unweighted, undirected, finite, connected, nonempty multigraph that may

have loops (in what follows, we call such a multigraph a graph simply), l : E(G) → R is a

length function, and E(G) stands for the set of edges of G. For a tropical curve Γ , a map

f : Γ → R∪ {−∞} is a rational function on Γ if f is a continuos piecewise affine function with

integer slopes, or a constant function of −∞. The set Rat(Γ ) of all rational functions on Γ

becomes a semifield over T with the pointwise maximum operation as its addition ⊕ and the

pointwise usual addition as its multiplication ⊙. We call Rat(Γ ) the rational function semifield

of Γ . The following theorem is our main theorem:

Theorem 1. Let Γ be a tropical curve. Then, the rational function semifield Rat(Γ ) is finitely

generated as a semifield over T .

This is a tropical analogue of the fact that the function field of an algebraic curve over C is

generated by two elements over C. To prove this theorem, the following lemma is our key:

Lemma 2 ([1, Lemma 2]). Let Γ be a tropical curve. Then, Rat(Γ ) is generated by all chip

firing moves and all constant functions as a group with ⊙ as its binary operation.

Here, a chip firing move CF(Γ1, l) is the rational function defined by the pair of a subgraph

Γ1 and a number l ∈ R>0 as follows: CF(Γ1, l)(x) := −min{dist(Γ1, x), l}, where a subgraph is a

closed subset with a finite number of connected components and dist(Γ1, x) denotes the distance



between Γ1 and x. By this lemma, it is enough to find a finite set of rational functions which

generates all chip firing moves as a semifield over T .

Note that this manuscript is based on [2]. In [2], a tropical curve may have edges of length

∞. Even a tropical curve has an edge of length ∞, the assertion of Theorem 1 holds.

2 Proof of Theorem 1

Let Γ be the tropical curve obtained from the pair (G, l) of a graph G and a length function

l. Then, the pair (G, l) is called a model for Γ . There are many possible models for Γ . We

frequently identify a vertex (resp. an edge) of G with the corresponding point (resp. the

corresponding closed subset) of Γ . The canonical model (G◦, l◦) for Γ is defined as follows: if Γ

is not homeomorphic to a circle, then let V (G◦) := {x ∈ Γ | val(x) ̸= 2}; otherwise, let V (G◦) be

consist of arbitrary one point of Γ , where val(x) denotes the minimum number of the connected

components of U \ {x} with any neighborhood U of x. Let G◦ be the graph which has V (G◦)

as its set of vertices and the set of all closures of connected components of Γ \ V (G◦) as its set

of edges, and l◦ the length function which maps each edge of G◦ to its length. Fix a direction

on edges of G◦. Let each e ∈ E(G◦) be identified with the interval [0, l◦(e)] with this direction.

For each edge e ∈ E(G◦), let xe =
l◦(e)
4 , ye =

l◦(e)
2 , and ze =

3l◦(e)
4 . We define rational functions

fe := CF

(
{ye},

l◦(e)

2

)
, ge := CF

(
{xe},

l◦(e)

4

)
, he := CF

(
{ze},

l◦(e)

4

)
.

Let d be the diameter of Γ , i.e., d = sup{dist(x, y) |x, y ∈ Γ} = max{dist(x, y) |x, y ∈ Γ}. Let

R be the semifield generated by fe, ge, he for any e ∈ E(G◦) and CF({v}, d)(= − dist(v, ·)) for
any v ∈ V (G◦) over T . We will show that this semifield R coincides with Rat(Γ ).

In Algorithm 1, ei \ S denotes the closure of ei \S, and if S consists of only one point x, then

we write lx instead of l{x}.

Remark 3. Let Γ be a tropical curve and S1 a proper connceted subgraph of Γ . Let l ≤ lS1

and S2 := {x ∈ Γ | dist(S1, x) ≤ l}. With a := min{k ∈ Z>0 | l/k ≤ lS2}, m := min{k ∈
Z>0 | lS2/k ≤ l/a} and any l′ > 0, by the definition of chip firing moves, we have

CF

(
S2,

l

a

)
= CF

(
S1,

l

a

)
⊙

a⊙
k=1

⊙
x′∈Γ :

dist(S1,x′)= kl
a

{
CF

(
{x′}, l

a

)
⊙ l

a

}
,

CF

({
x ∈ Γ | dist(S2, x) ≤

klS2

m

}
,
lS2

m

)
= CF

({
x ∈ Γ | dist(S2, x) ≤

(k − 1)lS2

m

}
,
lS2

m

)
⊙

⊙
x′∈Γ :

dist(S2,x′)=
klS2
m

{
CF

(
{x′}, lS2

m

)
⊙ lS2

m

}
,

CF(S2, lS2) =

{
CF

(
S2,

l

a

)
⊕
(
− lS2

m

)}
⊙

m−1⊙
k=1

CF

({
x ∈ Γ | dist(S2, x) ≤

klS2

m

}
,
lS2

m

)
,

and

CF(S1, l + l′) = CF(S1, l)⊙ CF(S2, l
′).



Algorithm 1

Input: Γ : a tropical curve

E(G◦) = {e1, . . . , en} : a labeling of edges of the canonical model for Γ

S : a proper connected subgraph of Γ

Output: lS

1: i← 1

2: while i ≤ n do

3: if ei ∩ S = ∅ then

4: li ← (the diameter of Γ ), i← i+ 1

5: else {S ⊃ ei}
6: li ← (the diameter of Γ ), i← i+ 1

7: else {S ⊃ ∂ei}
8: li ← (the length of ei \ S)/2, i← i+ 1

9: else {S ⊂ e◦i }
10: li ← min{dist(S, x) |x is one of the endpoints of ei}, i← i+ 1

11: else

12: li ← (the length of ei \ S), i← i+ 1

13: end if

14: end while

15: lS ← min{l1, . . . , ln}
16: return lS

Lemma 4. Let e be an edge of G◦ and v, w the endpoint(s) of e (possibly v = w). Let x be in

e \ {v, w}. Then, CF({x}, lx) ∈ R.

Proof. If x is the midpoint of e, then CF({x}, lx) = fe ∈ R. Suppose that x is not the midpoint

of e. Assume that 0 < lx ≤ l◦(e)
4 and ge(x) = − l◦(x)

4 . Then

CF({x}, lx) =

{(
l◦(e)

2
− lx

)
⊙ fe ⊕

(
lx −

l◦(e)

2

)
⊙ f⊙(−1)

e

}⊙(−1)

⊙
(
− l◦(e)

4

)
⊙ g⊙(−1)

e ⊕ (−lx) ∈ R.

Similarly, if 0 < lx ≤ l◦(e)
4 and he(x) = − l◦(e)

4 , then CF({x}, lx) ∈ R.

When l◦(e)
4 < lx ≤ l◦(e)

3 and ge(x) = − l◦(e)
4 , we have

CF({x}, lx) =

{(
l◦(e)

2
− lx

)
⊙ fe ⊕

(
lx −

l◦(e)

2

)
⊙ f⊙(−1)

e

}⊙(−1)

⊙
{(
− l◦(e)

4

)
⊙ g⊙(−1)

e

}⊙2

⊕ (−lx) ∈ R.

Similarly, if l◦(e)
4 < lx ≤ l◦(e)

3 and he(x) = − l◦(e)
4 , then CF({x}, lx) ∈ R.



When l◦(e)
3 < lx < l◦(e)

2 and ge(x) = − l◦(e)
4 , we have

CF({x}, l◦(e)− 2lx) =

{(
l◦(e)

2
− lx

)
⊙ fe ⊕

(
lx −

l◦(e)

2

)
⊙ f⊙(−1)

e

}⊙(−1)

⊙
{(
− l◦(e)

4

)
⊙ g⊙(−1)

e

}⊙2

⊕ (2lx − l◦(e)) ∈ R.

Similarly, if l◦(e)
3 < lx < l◦(e)

2 and he(x) = − l◦(e)
4 , then CF({x}, l◦(e)− 2lx) ∈ R.

Let x be in the fifth case. Since

CF

({
x1 ∈ Γ | dist(x, x1) ≤

l◦(e)

2
− lx

}
,
l◦(e)

2
− lx

)
= CF

(
{x}, l◦(e)

2
− lx

)
⊙

⊙
x1∈e:

dist(x,x1)=
l◦(e)

2
−lx

{
CF

(
{x1},

l◦(e)

2
− lx

)
⊙
(
l◦(e)

2
− lx

)}
∈ R,

with inputs l = l◦(e)
2 − lx, S1 = {x1 ∈ Γ | dist(x, x1) ≤ l◦(e)/2 − lx} in Remark 3, we have

CF({x}, lx) ∈ R.

When x is in the sixth case, by the same argument, we have CF({x}, lx) ∈ R.

Note that lx coincides with min(dist(x, v), dist(x,w)) in the setting of Lemma 4.

By Remark 3 and Lemma 4, we prove the following three lemmas.

Lemma 5. For any x ∈ Γ and any positive real number l, CF({x}, l) is in R.

Proof. For any x ∈ Γ and l > 0, by the definition of chip firing moves, we have CF({x}, l) =
CF({x}, d) ⊕ (−l). Hence it is sufficient to check that CF({x}, d) ∈ R. If x ∈ V (G◦), then

CF({x}, d) ∈ R.

Suppose that there exists an edge e ∈ E(G◦) which does not have x as an endpoint. Consid-

ering Remark 3 with l = lx, S1 = {x}, by Lemma 4, we have

CF(S2, lS2) ∈ R

and

CF(S1, l + lS2) = CF(S1, l)⊙ CF(S2, lS2) ∈ R.

Since S2 contains a lot of whole edges of G◦ more than S1 and the set of edges of G◦ is finite,

by repeating inputs of l = lS2 , S1 = S2 in Remark 3, we have CF({x}, d) ∈ R.

Lemma 6. For any proper connected subgraph Γ1 and any positive real number l, CF(Γ1, l) is

in R.

Proof. By Lemma 5, if Γ1 consists of only one point, then we have the conclusion. Assume that

Γ1 does not consist of only one point.

Suppose that Γ1 contains no whole edges of G◦ and that there exists an edge e ∈ E(G◦)

containing Γ1. Let x1 and x2 be the endpoints of Γ1. Let x be the midpoint of Γ1. By Lemma

5, for any positive real number l, we have

CF(Γ1, l) =
[
{CF({x}, l + dist(x1, x))⊙ dist(x1, x)}⊙(−1) ⊕ 0

]⊙(−1)
∈ R.



Suppose Γ1 contains p edges. Let ∂Γ1 ∪ (V (G◦) ∩ Γ1) = {x1, . . . , xq}. We may assume that

x1, . . . , xq are distinct. Let Γ11, . . . , Γ1s be connected components of Γ1\{x1, . . . , xq}. For a suffi-

ciently small positive real number ε, let Γ ′
1i be the connected subgraph {x ∈ Γ1i | for any j, dist(x, xj) ≥

ε} of Γ . Then, we have

CF(Γ1, ε) =

{
q⊕

k=1

CF({xk}, ε)

}
⊙

s⊙
k=1

(
ε⊙ CF(Γ ′

1k, ε)
)
.

The last divisor is in the first case, and thus it is in R. By inputting l = ε, S1 = Γ1 and by

repeating inputs l = lS2 , S1 = S2 in Remark 3, we have CF(Γ1, d) ∈ R. From this, for any l > 0,

we have CF(Γ1, l) = CF(Γ1, d)⊕ (−l) ∈ R.

Lemma 7. For any proper subgraph Γ1 and any positive real number l, CF(Γ1, l) is in R.

Proof. Let Γ1 be a proper subgraph of Γ . Let s be the number of connected components of

Γ1. If s = 1, then the conclusion follows Lemma 6. Assume s ≥ 2. Let Γ ′
1, . . . , Γ

′
s be all the

distinct connected components of Γ1. For l′ > 0, let Γ ′
k(l

′) := {x ∈ Γ | dist(Γ ′
k, x) ≤ l′}. If l′

is sufficiently small, then the intersection of Γ ′
1(l

′), . . . , Γ ′
s(l

′) is empty. Let l′1 be the minimum

value of l′ such that this intersection is nonempty. By induction on s, CF (
∪s

k=1 Γ
′
k(l

′
1), d) ∈ R.

On the other hand,

CF(Γ1, l
′
1) =

s⊕
k=1

CF(Γ ′
k, l

′
1) ∈ R.

Hence

CF(Γ1, d) = CF(Γ1, l
′
1)⊙ CF

(
s∪

k=1

Γ ′
k(l

′
1), d

)
∈ R.

In conclusion, for any l > 0, we have

CF(Γ1, l) = CF(Γ1, d)⊕ (−l) ∈ R.

From Lemmas 2, 5, 6, 7, we have Theorem 1.

参考文献
[1] Christian Haase, Gregg Musiker and Josephine Yu, Linear Systems on Tropical Curves,

Mathematische Zeitschrift 270 (2012), 1111–1140.

[2] Song JuAe, Rational function semifields of tropical curves are finitely generated over the

tropical semifield, arXiv:2112.01357.


