Rational function semifields of tropical curves are finitely generated over the tropical semifield

東京都立大学大学院 理学研究科 数理科学専攻 宋珠愛 (Chue SON)

概 要

We prove that the rational function semifield of a tropical curve is finitely generated as a semifield over the tropical semifield $T := (R \cup \{-\infty\}, \max, +)$ by giving a specific finite generating set.

1 Introduction

This manuscript is on tropical geometry. Tropical geometry is an algebraic geometry over the tropical semifield $\mathbf{T} := (\mathbf{R} \cup \{-\infty\}, \max, +)$, which is developing from the bigining of this century. In tropical geometry, we study tropical varieties. Tropical varieties are polyhedral complexes obtained from algebraic varieties by a limit operation called *tropicalization*. Tropical curves, one-dimensional tropical varieties, correspond to algebraic curves. In this manuscript, an *(abstract) tropical curve* means a metric graph, i.e., the underlying metric space of the pair (G, l), where G is an unweighted, undirected, finite, connected, nonempty multigraph that may have loops (in what follows, we call such a multigraph a graph simply), $l : E(G) \to \mathbf{R}$ is a length function, and E(G) stands for the set of edges of G. For a tropical curve Γ , a map $f : \Gamma \to \mathbf{R} \cup \{-\infty\}$ is a rational function on Γ if f is a continuos piecewise affine function with integer slopes, or a constant function of $-\infty$. The set $\operatorname{Rat}(\Gamma)$ of all rational functions on Γ becomes a semifield over \mathbf{T} with the pointwise maximum operation as its addition \oplus and the pointwise usual addition as its multiplication \odot . We call $\operatorname{Rat}(\Gamma)$ the rational function semifield of Γ . The following theorem is our main theorem:

Theorem 1. Let Γ be a tropical curve. Then, the rational function semifield $\operatorname{Rat}(\Gamma)$ is finitely generated as a semifield over T.

This is a tropical analogue of the fact that the function field of an algebraic curve over C is generated by two elements over C. To prove this theorem, the following lemma is our key:

Lemma 2 ([1, Lemma 2]). Let Γ be a tropical curve. Then, $\operatorname{Rat}(\Gamma)$ is generated by all chip firing moves and all constant functions as a group with \odot as its binary operation.

Here, a *chip firing move* $CF(\Gamma_1, l)$ is the rational function defined by the pair of a subgraph Γ_1 and a number $l \in \mathbb{R}_{>0}$ as follows: $CF(\Gamma_1, l)(x) := -\min\{\operatorname{dist}(\Gamma_1, x), l\}$, where a *subgraph* is a closed subset with a finite number of connected components and $\operatorname{dist}(\Gamma_1, x)$ denotes the distance

between Γ_1 and x. By this lemma, it is enough to find a finite set of rational functions which generates all chip firing moves as a semifield over T.

Note that this manuscript is based on [2]. In [2], a tropical curve may have edges of length ∞ . Even a tropical curve has an edge of length ∞ , the assertion of Theorem 1 holds.

2 Proof of Theorem 1

Let Γ be the tropical curve obtained from the pair (G, l) of a graph G and a length function l. Then, the pair (G, l) is called a *model* for Γ . There are many possible models for Γ . We frequently identify a vertex (resp. an edge) of G with the corresponding point (resp. the corresponding closed subset) of Γ . The *canonical model* (G_{\circ}, l_{\circ}) for Γ is defined as follows: if Γ is not homeomorphic to a circle, then let $V(G_{\circ}) := \{x \in \Gamma \mid \operatorname{val}(x) \neq 2\}$; otherwise, let $V(G_{\circ})$ be consist of arbitrary one point of Γ , where $\operatorname{val}(x)$ denotes the minimum number of the connected components of $U \setminus \{x\}$ with any neighborhood U of x. Let G_{\circ} be the graph which has $V(G_{\circ})$ as its set of vertices and the set of all closures of connected components of $\Gamma \setminus V(G_{\circ})$ as its set of edges, and l_{\circ} the length function which maps each edge of G_{\circ} to its length. Fix a direction on edges of G_{\circ} . Let each $e \in E(G_{\circ})$ be identified with the interval $[0, l_{\circ}(e)]$ with this direction. For each edge $e \in E(G_{\circ})$, let $x_e = \frac{l_{\circ}(e)}{4}$, $y_e = \frac{l_{\circ}(e)}{2}$, and $z_e = \frac{3l_{\circ}(e)}{4}$. We define rational functions

$$f_e := \operatorname{CF}\left(\{y_e\}, \frac{l_\circ(e)}{2}\right), g_e := \operatorname{CF}\left(\{x_e\}, \frac{l_\circ(e)}{4}\right), h_e := \operatorname{CF}\left(\{z_e\}, \frac{l_\circ(e)}{4}\right).$$

Let d be the diameter of Γ , i.e., $d = \sup\{\operatorname{dist}(x, y) | x, y \in \Gamma\} = \max\{\operatorname{dist}(x, y) | x, y \in \Gamma\}$. Let R be the semifield generated by f_e , g_e , h_e for any $e \in E(G_\circ)$ and $\operatorname{CF}(\{v\}, d)(= -\operatorname{dist}(v, \cdot))$ for any $v \in V(G_\circ)$ over **T**. We will show that this semifield R coincides with $\operatorname{Rat}(\Gamma)$.

In Algorithm 1, $\overline{e_i \setminus S}$ denotes the closure of $e_i \setminus S$, and if S consists of only one point x, then we write l_x instead of $l_{\{x\}}$.

Remark 3. Let Γ be a tropical curve and S_1 a proper connected subgraph of Γ . Let $l \leq l_{S_1}$ and $S_2 := \{x \in \Gamma \mid \operatorname{dist}(S_1, x) \leq l\}$. With $a := \min\{k \in \mathbb{Z}_{>0} \mid l/k \leq l_{S_2}\}, m := \min\{k \in \mathbb{Z}_{>0} \mid l_{S_2}/k \leq l/a\}$ and any l' > 0, by the definition of chip firing moves, we have

$$\operatorname{CF}\left(S_{2}, \frac{l}{a}\right) = \operatorname{CF}\left(S_{1}, \frac{l}{a}\right) \odot \bigotimes_{k=1}^{a} \bigotimes_{\substack{x' \in \Gamma:\\ \operatorname{dist}(S_{1}, x') = \frac{kl}{a}}} \left\{ \operatorname{CF}\left(\{x'\}, \frac{l}{a}\right) \odot \frac{l}{a} \right\},$$
$$F\left(\left\{x \in \Gamma \mid \operatorname{dist}(S_{2}, x) \le \frac{kl_{S_{2}}}{m}\right\}, \frac{l_{S_{2}}}{m}\right) = \operatorname{CF}\left(\left\{x \in \Gamma \mid \operatorname{dist}(S_{2}, x) \le \frac{(k-1)l_{S_{2}}}{m}\right\}\right)$$

$$\operatorname{CF}\left(\left\{x \in \Gamma \mid \operatorname{dist}(S_2, x) \le \frac{kl_{S_2}}{m}\right\}, \frac{l_{S_2}}{m}\right) = \operatorname{CF}\left(\left\{x \in \Gamma \mid \operatorname{dist}(S_2, x) \le \frac{(k-1)l_{S_2}}{m}\right\}, \frac{l_{S_2}}{m}\right)$$
$$\odot \bigcup_{\substack{x' \in \Gamma:\\\operatorname{dist}(S_2, x') = \frac{kl_{S_2}}{m}}} \left\{\operatorname{CF}\left(\left\{x'\right\}, \frac{l_{S_2}}{m}\right) \odot \frac{l_{S_2}}{m}\right\}, \frac{l_{S_2}}{m}\right\}$$

$$\operatorname{CF}(S_2, l_{S_2}) = \left\{ \operatorname{CF}\left(S_2, \frac{l}{a}\right) \oplus \left(-\frac{l_{S_2}}{m}\right) \right\} \odot \bigotimes_{k=1}^{m-1} \operatorname{CF}\left(\left\{x \in \Gamma \mid \operatorname{dist}(S_2, x) \le \frac{kl_{S_2}}{m}\right\}, \frac{l_{S_2}}{m}\right),$$

and

$$\operatorname{CF}(S_1, l+l') = \operatorname{CF}(S_1, l) \odot \operatorname{CF}(S_2, l')$$

Algorithm 1

Input: Γ : a tropical curve $E(G_{\circ}) = \{e_1, \ldots, e_n\}$: a labeling of edges of the canonical model for Γ S : a proper connected subgraph of Γ Output: l_S 1: $i \leftarrow 1$ 2: while $i \leq n$ do if $e_i \cap S = \emptyset$ then 3: $l_i \leftarrow (\text{the diameter of } \Gamma), i \leftarrow i+1$ 4: else $\{S \supset e_i\}$ 5: $l_i \leftarrow (\text{the diameter of } \Gamma), i \leftarrow i+1$ 6: else { $S \supset \partial e_i$ } 7: $l_i \leftarrow (\text{the length of } \overline{e_i \setminus S})/2, i \leftarrow i+1$ 8: else $\{S \subset e_i^\circ\}$ 9: $l_i \leftarrow \min\{\operatorname{dist}(S, x) \mid x \text{ is one of the endpoints of } e_i\}, i \leftarrow i+1$ 10:11: else $l_i \leftarrow (\text{the length of } \overline{e_i \setminus S}), i \leftarrow i+1$ 12:end if 13:14: end while 15: $l_S \leftarrow \min\{l_1, \ldots, l_n\}$ 16: return l_S

Lemma 4. Let e be an edge of G_{\circ} and v, w the endpoint(s) of e (possibly v = w). Let x be in $e \setminus \{v, w\}$. Then, $CF(\{x\}, l_x) \in R$.

Proof. If x is the midpoint of e, then $CF(\{x\}, l_x) = f_e \in R$. Suppose that x is not the midpoint of e. Assume that $0 < l_x \leq \frac{l_o(e)}{4}$ and $g_e(x) = -\frac{l_o(x)}{4}$. Then

$$CF(\{x\}, l_x) = \left\{ \left(\frac{l_{\circ}(e)}{2} - l_x\right) \odot f_e \oplus \left(l_x - \frac{l_{\circ}(e)}{2}\right) \odot f_e^{\odot(-1)} \right\}^{\odot(-1)}$$
$$\odot \left(-\frac{l_{\circ}(e)}{4}\right) \odot g_e^{\odot(-1)} \oplus (-l_x) \in R.$$

Similarly, if $0 < l_x \leq \frac{l_\circ(e)}{4}$ and $h_e(x) = -\frac{l_\circ(e)}{4}$, then $\operatorname{CF}(\{x\}, l_x) \in R$. When $\frac{l_\circ(e)}{4} < l_x \leq \frac{l_\circ(e)}{3}$ and $g_e(x) = -\frac{l_\circ(e)}{4}$, we have

$$CF(\{x\}, l_x) = \left\{ \left(\frac{l_{\circ}(e)}{2} - l_x\right) \odot f_e \oplus \left(l_x - \frac{l_{\circ}(e)}{2}\right) \odot f_e^{\odot(-1)} \right\}^{\odot(-1)}$$
$$\odot \left\{ \left(-\frac{l_{\circ}(e)}{4}\right) \odot g_e^{\odot(-1)} \right\}^{\odot 2} \oplus (-l_x) \in R.$$

Similarly, if $\frac{l_o(e)}{4} < l_x \le \frac{l_o(e)}{3}$ and $h_e(x) = -\frac{l_o(e)}{4}$, then $\operatorname{CF}(\{x\}, l_x) \in R$.

When $\frac{l_{\circ}(e)}{3} < l_x < \frac{l_{\circ}(e)}{2}$ and $g_e(x) = -\frac{l_{\circ}(e)}{4}$, we have

$$CF(\{x\}, l_{\circ}(e) - 2l_x) = \left\{ \left(\frac{l_{\circ}(e)}{2} - l_x\right) \odot f_e \oplus \left(l_x - \frac{l_{\circ}(e)}{2}\right) \odot f_e^{\odot(-1)} \right\}^{\odot(-1)}$$
$$\odot \left\{ \left(-\frac{l_{\circ}(e)}{4}\right) \odot g_e^{\odot(-1)} \right\}^{\odot 2} \oplus (2l_x - l_{\circ}(e)) \in R.$$

Similarly, if $\frac{l_{\circ}(e)}{3} < l_x < \frac{l_{\circ}(e)}{2}$ and $h_e(x) = -\frac{l_{\circ}(e)}{4}$, then $\operatorname{CF}(\{x\}, l_{\circ}(e) - 2l_x) \in \mathbb{R}$. Let x be in the fifth case. Since

$$\operatorname{CF}\left(\left\{x_{1} \in \Gamma \mid \operatorname{dist}(x, x_{1}) \leq \frac{l_{\circ}(e)}{2} - l_{x}\right\}, \frac{l_{\circ}(e)}{2} - l_{x}\right)$$

$$= \operatorname{CF}\left(\left\{x\}, \frac{l_{\circ}(e)}{2} - l_{x}\right) \odot \bigotimes_{\substack{x_{1} \in e:\\\operatorname{dist}(x, x_{1}) = \frac{l_{\circ}(e)}{2} - l_{x}}}\left\{\operatorname{CF}\left(\left\{x_{1}\}, \frac{l_{\circ}(e)}{2} - l_{x}\right) \odot \left(\frac{l_{\circ}(e)}{2} - l_{x}\right)\right\} \in R,$$

with inputs $l = \frac{l_{\circ}(e)}{2} - l_x$, $S_1 = \{x_1 \in \Gamma \mid \text{dist}(x, x_1) \leq l_{\circ}(e)/2 - l_x\}$ in Remark 3, we have $CF(\{x\}, l_x) \in R$.

When x is in the sixth case, by the same argument, we have $CF(\{x\}, l_x) \in R$.

Note that l_x coincides with min(dist(x, v), dist(x, w)) in the setting of Lemma 4. By Remark 3 and Lemma 4, we prove the following three lemmas.

Lemma 5. For any $x \in \Gamma$ and any positive real number l, $CF(\{x\}, l)$ is in R.

Proof. For any $x \in \Gamma$ and l > 0, by the definition of chip firing moves, we have $CF(\{x\}, l) = CF(\{x\}, d) \oplus (-l)$. Hence it is sufficient to check that $CF(\{x\}, d) \in R$. If $x \in V(G_{\circ})$, then $CF(\{x\}, d) \in R$.

Suppose that there exists an edge $e \in E(G_{\circ})$ which does not have x as an endpoint. Considering Remark 3 with $l = l_x, S_1 = \{x\}$, by Lemma 4, we have

$$CF(S_2, l_{S_2}) \in R$$

and

$$\operatorname{CF}(S_1, l+l_{S_2}) = \operatorname{CF}(S_1, l) \odot \operatorname{CF}(S_2, l_{S_2}) \in R$$

Since S_2 contains a lot of whole edges of G_{\circ} more than S_1 and the set of edges of G_{\circ} is finite, by repeating inputs of $l = l_{S_2}$, $S_1 = S_2$ in Remark 3, we have $CF(\{x\}, d) \in R$.

Lemma 6. For any proper connected subgraph Γ_1 and any positive real number l, $CF(\Gamma_1, l)$ is in R.

Proof. By Lemma 5, if Γ_1 consists of only one point, then we have the conclusion. Assume that Γ_1 does not consist of only one point.

Suppose that Γ_1 contains no whole edges of G_{\circ} and that there exists an edge $e \in E(G_{\circ})$ containing Γ_1 . Let x_1 and x_2 be the endpoints of Γ_1 . Let x be the midpoint of Γ_1 . By Lemma 5, for any positive real number l, we have

$$\operatorname{CF}(\Gamma_1, l) = \left[\{ \operatorname{CF}(\{x\}, l + \operatorname{dist}(x_1, x)) \odot \operatorname{dist}(x_1, x) \}^{\odot(-1)} \oplus 0 \right]^{\odot(-1)} \in R$$

Suppose Γ_1 contains p edges. Let $\partial \Gamma_1 \cup (V(G_\circ) \cap \Gamma_1) = \{x_1, \ldots, x_q\}$. We may assume that x_1, \ldots, x_q are distinct. Let $\Gamma_{11}, \ldots, \Gamma_{1s}$ be connected components of $\Gamma_1 \setminus \{x_1, \ldots, x_q\}$. For a sufficiently small positive real number ε , let Γ'_{1i} be the connected subgraph $\{x \in \Gamma_{1i} \mid \text{for any } j, \text{dist}(x, x_j) \geq \varepsilon\}$ of Γ . Then, we have

$$\operatorname{CF}(\Gamma_1,\varepsilon) = \left\{ \bigoplus_{k=1}^q \operatorname{CF}(\{x_k\},\varepsilon) \right\} \odot \bigotimes_{k=1}^s \left(\varepsilon \odot \operatorname{CF}(\Gamma'_{1k},\varepsilon) \right).$$

The last divisor is in the first case, and thus it is in R. By inputting $l = \varepsilon$, $S_1 = \Gamma_1$ and by repeating inputs $l = l_{S_2}$, $S_1 = S_2$ in Remark 3, we have $\operatorname{CF}(\Gamma_1, d) \in R$. From this, for any l > 0, we have $\operatorname{CF}(\Gamma_1, l) = \operatorname{CF}(\Gamma_1, d) \oplus (-l) \in R$.

Lemma 7. For any proper subgraph Γ_1 and any positive real number l, $CF(\Gamma_1, l)$ is in R.

Proof. Let Γ_1 be a proper subgraph of Γ . Let s be the number of connected components of Γ_1 . If s = 1, then the conclusion follows Lemma 6. Assume $s \ge 2$. Let $\Gamma'_1, \ldots, \Gamma'_s$ be all the distinct connected components of Γ_1 . For l' > 0, let $\Gamma'_k(l') := \{x \in \Gamma \mid \operatorname{dist}(\Gamma'_k, x) \le l'\}$. If l' is sufficiently small, then the intersection of $\Gamma'_1(l'), \ldots, \Gamma'_s(l')$ is empty. Let l'_1 be the minimum value of l' such that this intersection is nonempty. By induction on s, CF $(\bigcup_{k=1}^s \Gamma'_k(l'_1), d) \in R$. On the other hand,

$$\operatorname{CF}(\Gamma_1, l_1') = \bigoplus_{k=1}^s \operatorname{CF}(\Gamma_k', l_1') \in R$$

Hence

$$\operatorname{CF}(\Gamma_1, d) = \operatorname{CF}(\Gamma_1, l_1') \odot \operatorname{CF}\left(\bigcup_{k=1}^s \Gamma_k'(l_1'), d\right) \in R.$$

In conclusion, for any l > 0, we have

$$\operatorname{CF}(\Gamma_1, l) = \operatorname{CF}(\Gamma_1, d) \oplus (-l) \in R.$$

From Lemmas 2, 5, 6, 7, we have Theorem 1.

参考文献

- Christian Haase, Gregg Musiker and Josephine Yu, Linear Systems on Tropical Curves, Mathematische Zeitschrift 270 (2012), 1111–1140.
- [2] Song JuAe, Rational function semifields of tropical curves are finitely generated over the tropical semifield, arXiv:2112.01357.