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1 Introduction

In this presentation, we are concerned with the Surface Quasi-Geostrophic Equation.
∂tθ + (−∆)α/2θ + (u · ∇)θ = 0, in (0,∞)× R2,

u = (−R2θ,R1θ), in (0,∞)× R2,

θ|t=0 = θ0, in R2,

(1.1)

where θ : (0,∞) × R2 → R is an unknown function, representing the potential temperature

of a fluid parcel at a point (t, x) in spacetime; and u represents the velocity of a fluid parcel.

Rj = ∂j(−∆)−1/2 = F−1[ iξj/|ξ| ]∗ is the j-th Riesz transform; and α ∈ [1, 2]. Discussions of the

physical meaning and derivation of the equation can be found in references [4,6,7,9,16,19], and

we briefly introduce the derivation in Section 2.

In this presentation, we prove Lp-norm estimates for solutions to the equation with sufficiently

regular initial data θ0. We then show that these estimates are optimal given certain conditions

on the shape of the initial data.

Let us recall several existing results related to the regularity of the solutions. In the subcritical

case, α ∈ (1, 2], unique global existence and regularity can be shown, for initial data

θ0 ∈ L1 ∩ Lp, p ∈
( 2

α− 1
,∞
]
,

by classical methods using the Banach fixed point theorem, similarly to [13, 21]. Global unique

existence and regularity for the subcritical case are also proven on the torus in [17].

For the critical case, α = 1, global well-posedness is an important problem due to criticality,

and was proven independently in [8] and [2] (see also [18]).

Finally, for the supercritical case, α ∈ [0, 1), the paper [12] proves global regularity for all

α ∈ [α0, 1), where α0 grows with respect to the size of the initial data. Global regularity for

large data in the supercritical case is an open problem. In this report, we discuss a sharp decay

estimate of the nonlinear part of the solution in the subcritical and critical cases.



We begin our study of (1.1) by defining the following function:

Pα/2(t, x) = F−1
[
e−t|ξ|α

]
(x), for t > 0, x ∈ R2, (1.2)

which is the fundamental solution to the fractional heat equation, the linear part of (1.1).

Definition. (Mild Solution) A function, θ, is a mild solution of (1.1) if

θ(t) = Pα/2(t) ∗ θ0 −
∫ t

0
Pα/2(t− s) ∗ (u(s) · ∇)θ(s) ds, for all t > 0, (1.3)

lim
t→0+

θ(t) = θ0, in Lp, for all p ∈ [1,∞), (1.4)

θ ∈ C([0,∞);Lp(R2)), for all p ∈ [1,∞), (1.5)

θ ∈ C((0,∞);W 2,p(R2)) ∩ C1((0,∞);Lp(R2)), for all p ∈ [1,∞]. (1.6)

We also define M , the ‘‘mass” of the solution, θ, as M :=
∫
R2 θ0(x) dx, and denote the linear

part of θ by U(t) := Pα/2(t) ∗ θ0. We briefly discuss the existence of global solutions.

Proposition 1.1. Let α ∈ [1, 2] and θ0 ∈ W 1,1 ∩W 1,∞. Then there exists a unique global mild

solution θ ∈ C([0,∞);W 1,p) ∩ C((0,∞);W 1,1 ∩W 1,∞) of (1.1), for all 1 ≤ p < ∞.

2 Preliminaries

We list some important definitions and results used for the proof in Section 3.

2.1 Preliminary Results

2.1.1 Lp Spaces

Definition. (Lp Space)

Let (Ω,M, µ) be a measure space. The set Lp(Ω), with 1 ≤ p < ∞, is defined as the set of all

functions, f : Ω → R, such that

∥f∥p :=
(∫

Ω
|f(x)|p dµ

)1/p
< ∞.

For p = ∞, the set is defined as the set of all functions whose essential supremum is finite.

That is,

∥f∥∞ := inf{C ≥ 0 | |f(x)| ≤ C, for almost all x ∈ Ω}.

Functions that agree almost everywhere are considered a single element of Lp(Ω).

Notation. For 1 ≤ p ≤ ∞, we denote by p′ the conjugate exponent. That is,

1

p
+

1

p′
= 1,

with the convention that 1
∞ := 0 in this context.



Proposition 2.1. (Hölder’s Inequality)

Let f ∈ Lp(Ω) and g ∈ Lp′(Ω), where 1 ≤ p ≤ ∞. Then fg ∈ L1, and∫
Ω
|fg| dµ ≤ ∥f∥p∥g∥p′ .

Proposition 2.2. (Young’s Convolution Inequality)

Let f ∈ Lp and g ∈ Lq, where 1 ≤ p, q ≤ r ≤ ∞, such that

1

p
+

1

q
=

1

r
+ 1.

Then

∥f ∗ g∥r ≤ ∥f∥p∥g∥q.

Here, (f ∗ g) denotes the convolution of f and g. That is,

(f ∗ g)(x) :=
∫
R2

f(x− y)g(y) dy =

∫
R2

f(y)g(x− y) dy.

Proposition 2.3. (Gagliardo-Nirenberg Inequality for Fractional Laplacian [15])

Define

Ḣs
p := {f ∈ S ′/P | ∥f∥Ḣs

p(Rn) := ∥(−∆)s/2f∥Lp(Rn) < ∞},

where P = P(Rn) is the set of all polynomials over Rn.

Let 0 ≤ σ < s < ∞, 1 < q, r ≤ ∞, 1 < p ≤ ∞ such that

n

p
− σ = θ

n

q
+ (1− θ)(

n

r
− s),

where θ ̸= 0 if s− σ ≥ n/r. Then, for all f ∈ Lq(Rn) ∩ Ḣs
r (Rn), we have f ∈ Ḣσ

p . Moreover, we

obtain the inequality

∥f∥Ḣσ
p
≤ C∥f∥θq∥f∥1−θ

Ḣs
r

for all f ∈ Lq(Rn) ∩ Ḣs
r (Rn). (2.1)

2.1.2 The Fourier Transform

For a function, f , we define the Fourier transform of f as follows:

F [f ](ξ) := f̂(x) :=
1

2π

∫
R2

e−ix·ξf(x) dx.

The inverse Fourier transform is then defined as

F−1[f̂ ](x) :=
1

2π

∫
R2

eix·ξ f̂(ξ) dξ.

For the purpose of calculating inequalities, we will frequently omit the factor of 1/2π.

Proposition 2.4. (Plancherel Theorem)



Let f ∈ L1 ∩ L∞. Then the L2 norm of f is invariant under the Fourier transform. That is,

∥f∥2 = ∥f̂∥2.

Proposition 2.5. (Hausdorff-Young Inequality)

Let f ∈ L1 ∩ L∞. Let 1 ≤ p ≤ 2 with 1/p+ 1/p′ = 1. Then

∥f̂∥p′ ≤ ∥f∥p.

2.1.3 Besov Spaces

Definition. We use the Littlewood-Paley decomposition of unity to define homogeneous Besov

spaces. Let {ϕk}k∈Z be a set of non-negative measurable functions such that

1.
∑
k∈Z

ϕ̂k(ξ) = 1, for all ξ ∈ R2\{0},

2. ϕ̂k(ξ) = ϕ̂0(2
−kξ),

3. supp ϕ̂k(ξ) ⊆ {ξ ∈ R2 | 2k−1 ≤ |ξ| ≤ 2k+1}.

The Besov norm is then defined as follows. For f ∈ S ′/P, 1 ≤ p, q ≤ ∞, and s ∈ R,

∥f∥Ḃs
p,q

:=

∥∥∥∥{2sk∥ϕ ∗ f∥p}k∈Z
∥∥∥∥
lq
.

Finally, the set Ḃs
p,q is defined as the set of functions, f ∈ S ′/P, whose Besov norm is finite.

We refer to [10] for the proofs to the following propositions.

Proposition 2.6. Let 1 ≤ p, q ≤ ∞, and s ∈ R. Then for f ∈ Ḃs+1
p,q ,

∥∇f∥Ḃs
p,q

≤ C∥f∥Ḃs+1
p,q

.

Proposition 2.7. Let 1 ≤ p ≤ ∞. Then for f ∈ Ḃ
2(1− 1

p
)

1,1 ,

∥f∥Ḃ0
p,1

≤ C∥f∥
Ḃ

2(1− 1
p )

1,1

.

3 Main Result

Theorem 3.1. Let α ∈ [1, 2], p ∈ [1,∞] and

bα,p(t) =

 t
2
α
(1− 1

p
)+ 3

α
−1

if α ∈ (1, 2],

t
2(1− 1

p
)+2

ln t if α = 1.
(3.1)



Let θ0 ∈ W 1,1 ∩ W 1,∞, and let θ be a mild solution. Also assume |x|2θ0 ∈ L1(R2). Then we

have the following convergence:

bα,p(t)

∥∥∥∥θ(t)−MPα/2(t) +∇Pα/2(t) ·
∫
R2

yθ0(y) dy −
2∑

i,j=1

∂xi∂xjPα/2(t)

∫
R2

yiyjθ0 dy (3.2)

+

∫ t

0
Pα/2(t− s) ∗ ∇ ·

(
(RU(s))U(s)

)
ds

∥∥∥∥
p

→ 0, as t → ∞.

Furthermore, there exists θ0 such that the nonlinear component is optimally bounded by bα,p(t)

in the p = 2 case. That is∥∥∥∥∫ t

0
Pα/2(t− s) ∗ ∇ ·

(
(RU(s))U(s)

)
ds

∥∥∥∥
2

≃ 1

bα,2(t)
(3.3)

for all sufficiently large t.

In this report, we will only be providing a full proof of (3.3). A full treatment of (3.2) can be

found in [3]. The above result can be considered as an expansion of similar results, such as in

[13, 21]. Roughly speaking, we have approximated the linear term in θ by a Taylor expansion,

and constructed a linear approximation of the nonlinear term of θ.

Remark 3.2. If the initial data, θ0, is radially symmetric, the nonlinear approximation term

in (3.3) becomes 0 (see e.g. [14], page 46).

Proposition 3.3. Let θ0 ∈ W 1,1 ∩W 1,∞, and 1 ≤ p ≤ ∞.

(i) For all α ∈ [1, 2], there exists C > 0 such that for all t > 0

∥θ(t)∥p ≤ C(t+ 1)
− 2

α
(1− 1

p
)
. (3.4)

(ii) For α = 1, β > 0, there exists Cβ > 0 such that for all t ≥ 1

∥|∇|βθ(t)∥p ≤ Cβt
−2(1− 1

p
)−β

. (3.5)

For the proof of (i), see [1]. For the proof of (ii), see Proposition 4.3 in [20].

3.1 Estimating the Nonlinear Term from Above

Before we begin the proof, we note one more lemma, which we will apply in this report for

brevity. However, it is in fact possible to complete the entire proof without using the following

lemma. To see how, please refer to [3].

Lemma 3.4. ([11]) Let 0 < p, p1, p2 < ∞, with 1
p = 1

p1
+ 1

p2
. Let m = m(ξ−η, η) ∈ C2(R2\{0}),

such that |∂α
ξ−η,ηm(ξ − η, η)| ≤ C(|ξ − η|+ |η|)−|α|, for all multi-indices α, with |α| ≤ 2. Then∥∥∥∥F−1

[ ∫
R2

m(ξ − η, η)f̂(ξ − η)ĝ(η) dη
]∥∥∥∥

p

≤ C∥f∥p1∥g∥p2 .



Lemma 3.5. Let 1 ≤ p ≤ ∞, and α ∈ [1, 2]. Suppose that θ is a mild solution satisfying the

decay property in Proposition 3.3. Then there exists C > 0 such that for all t ≥ 1,∥∥∥∥∫ t

0
Pα/2(t− s) ∗ (u(s) · ∇)θ(s) ds

∥∥∥∥
p

≤ Cbα,p(t), (3.6)

where bα,p is defined by (3.1) (and the same inequality then obviously also holds for (3.3)).

Proof.

Step 1 . (p ≥ 2 case) We start on the second half of the time-interval. By Proposition 3.3, and

by the boundedness of the Riesz transform, we obtain for all α ∈ [1, 2]∥∥∥∥∫ t

t/2
Pα/2(t− s) ∗ ∇ · (u(s)θ(s)) ds

∥∥∥∥
p

≤ Ct
− 2

α
(1− 1

p
)− 3

α
+1

.

For the first half of the time-interval, we will take the Fourier transform inside the norm, and

manipulate the resulting multipliers from the derivative and Riesz transform.∥∥∥∥∫ t/2

0
Pα/2(t− s) ∗ ∇ · (u(s)θ(s)) ds

∥∥∥∥
p

=

∥∥∥∥∫ t/2

0

2∑
j=1

1

2
F−1

[
e−(t−s)|ξ|α

∫
R2

ξjη3−j
|ξ − η|2 − |η|2

|η||ξ − η|(|ξ − η|+ |η|)
θ̂(s, ξ − η)θ̂(s, η) dη

]
ds

∥∥∥∥
p

.

We start with the p = 2 case. The large multiplier inside the η integral is easily estimated from

above by 2/|ξ − η|. Next, we take the Littlewood-Paley decomposition of both θ functions:

θ̂(s, ξ − η) =
∑
k∈Z

θ̂k(s, ξ − η), θ̂(s, η) =
∑
l∈Z

θ̂l(s, η).

We also split the L2 norm by Hölder’s inequality.∥∥∥∥∫ t/2

0
Pα/2(t− s) ∗ ∇ ·

(
u(s)θ(s)

)
ds

∥∥∥∥
2

≤
∑
k,l∈Z

∫ t/2

0
∥|ξ|2e−(t−s)|ξ|α∥2

∥∥∥∥∫
R2

1

|ξ − η|

∣∣∣θ̂k(s, ξ − η)θ̂l(s, η)
∣∣∣dη∥∥∥∥

∞
ds

≤ Ct−
2
α
(1− 1

2
)− 2

α

∫ t/2

0

∑
k,l∈Z

1

2k
∥θ̂k(s)∥ 4

3
∥θ̂l(s)∥4 ds

≤ Ct−
2
α
(1− 1

2
)− 2

α

∫ t/2

0

∑
k,l∈Z

∥θk(s)∥ 4
3
∥θl(s)∥ 4

3
ds.

The above sum can be written as the product of Besov norms of the solution, θ. (3.6) for the

p = 2 case is then achieved by applying the following Besov norm estimate. ([3])

∥θ(t)∥Ḃ0
4
3 ,1

≤ Ct−1/2α, for all t ≥ 1, and all α ∈ [1, 2].



The result is then easily extended to all p > 2 by Young’s convolution inequality.

Step 2 . (1 ≤ p < 2 case) Our goal is the following claim. Let α ∈ [1, 2] and 1 ≤ p < 2. Then∥∥∥∥F−1
[ ∫ t/2

0
e−(t−s)|ξ|α

∫
R2

ξ21
η2(ξ1 − 2η1)

|η||ξ − η|(|ξ − η|+ |η|)
θ̂(s, ξ − η)θ̂(s, η) dη ds

]∥∥∥∥
p

≤ Cbα,p(t). (3.7)

We split the Fourier multiplier into two parts:

η2(ξ1 − 2η1)

|η||ξ − η|(|ξ − η|+ |η|)
=

η2(ξ1 − η1) + η1η2
|η||ξ − η|(|ξ − η|+ |η|)

=: M1(ξ − η, η) +M2(ξ − η, η).

The desired result is then achieved by applying Lemma 3.4 to each of these multipliers.

3.2 Optimal Decay of Non-Linear Term

We lastly discuss the optimality of our estimate for the Lp norm of the non-linear term in θ.

The decay rate for our estimate from above is optimal if we can bound the non-linear estimate

from below by the same power of t. That is, we need

∥∥∥∥∫ t

0
Pα/2(t− s) ∗ ∇ ·

(
(RU(s))U(s)

)
ds

∥∥∥∥
2

≥

Ct1−
4
α , for all α ∈ (1, 2],

Ct−3 ln t, for α = 1.
(3.8)

Since we are taking the L2-norm, taking the Fourier Transform inside the norm does not

change its value.∥∥∥∥∫ t

0
Pα/2(t− s) ∗ ∇ · ((RU(s))U(s)) ds

∥∥∥∥
2

=

∥∥∥∥∫ t

0

2∑
j=1

ξje
−(t−s)|ξ|α (−1)j

2

∫
R2

(
η3−j

|η|
+

ξ3−j − η3−j

|ξ − η|

)
e−s|ξ−η|αe−s|η|α

θ̂0(ξ − η)θ̂0(η) dη ds

∥∥∥∥
2

.

We rewrite the divergence operator and Riesz transform as two separate Fourier multipliers.

2∑
j=1

ξj
(−1)j

2

(
η3−j

|η|
+

ξ3−j − η3−j

|ξ − η|

)

=
2ξ1ξ2
|ξ − η|

(
η21 − η22

|η|(|η|+ |ξ − η|)

)
+

2η1η2
|ξ − η|

(
ξ22 − ξ21

|η|(|η|+ |ξ − η|)

)
+

2∑
j=1

|ξ|2ξjη3−j

|η||ξ − η|(|η|+ |ξ − η|)

=:m1(ξ − η, η) +m2(ξ − η, η)

The key difference between these two multipliers is that the numerator ofm1 features a second-

order derivative, whereas that of m2 has a third-order derivative. We show that, for some initial



data θ0, the first part with m1 has the optimal decay and the remainder with m2 is smaller.

Lemma 3.6. Let δ, ϵ > 0. Let θ0 ∈ W 1,1 ∩W 1,∞ as before, but with the following additional

conditions:

• θ̂0 ≥ 0, on R2,

• supp θ̂0 ⊆ {ξ ∈ R2 | |ξ2| < δ|ξ1|},

• θ̂0(ξ) ≥ C, for some C > 0, for all ξ ∈ supp θ̂ ∩ {ξ ∈ R2 | |ξ| ≤ 1}.

Then, for sufficiently small δ and ϵ, we have∥∥∥∥∫ t

0
e−(t−s)|ξ|α

∫
R2

m1(ξ − η, η) e−s|ξ−η|αe−s|η|α dη ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

≥

Ct1−
4
α ϵ3, for α ∈ (1, 2],

Ct−3ϵ3 ln(t), for α = 1,
(3.9)

∥∥∥∥∫ t

0
e−(t−s)|ξ|α

∫
R2

m2(ξ − η, η) e−s|ξ−η|αe−s|η|α dη ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

≤ Cϵ7/2t1−
4
α , for all α ∈ [1, 2]. (3.10)

Proof. We consider (3.10) and (3.9) separately. Beginning with (3.10), we consider just the

j = 1 part, as the estimates of both terms are identical. Since θ̂0 is bounded, we need only

consider the integral ∫
R2

η2
|η||ξ − η|(|η|+ |ξ − η|)

e−s|ξ−η|αe−s|η|α dη.

Splitting the above into two parts, one where |η| is close to |ξ| and one where they are far apart,

we can bound the above integral by

C + C|ξ|−1//2s−1/2α

Therefore, we obtain∥∥∥∥∫ t

0
|ξ|3e−(t−s)|ξ|α

∫
R2

η2
|η||ξ − η|(|η|+ |ξ − η|)

e−s|ξ−η|αe−s|η|α dη ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

≤
∥∥∥∥∫ t

0
|ξ|3e−(t−s)|ξ|α(C + C|ξ|−1/2s−1/2α) ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

≤
∥∥∥∥|ξ|3 ∫ t

0
C ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

+

∥∥∥∥|ξ|5/2 ∫ t

0
Cs−1/2α ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

≤ C(ϵ4 + ϵ7/2)t1−
4
α .

We note that all three of these terms are smaller than ϵ7/2t1−
4
α for ϵ < 1 and t > 1, and thus

we have (3.10).



We next will show (3.9), for sufficiently small ϵ, and for sufficiently large t. We begin by

labelling the two terms in our integral.∥∥∥∥∫ t

0
e−(t−s)|ξ|α

∫
R2

(
2ξ1ξ2
|ξ − η|

(
η21 − η22

|η|(|η|+ |ξ − η|)

)
+

2η1η2
|ξ − η|

(
ξ22 − ξ21

|η|(|η|+ |ξ − η|)

))

Û(s, ξ − η)Û(s, η) dη ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

=: ∥(L) + (R)∥L2(|ξ|≤ϵt−1/α).

Our plan is to make (L) the larger term. This is accomplished by the conditions on θ0 that we

have imposed. Taking the norm of (L) on its own,∥∥∥∥∫ t

0
e−(t−s)|ξ|α

∫
R2

2ξ1ξ2
|ξ − η|

(
η21 − η22

|η|(|η|+ |ξ − η|)

)
e−s|ξ−η|α θ̂0(ξ − η)e−s|η|α θ̂0(η) dη ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

≥ C

∥∥∥∥ξ1ξ2 ∫ t

0
e−(t−s)|ξ|α

∫
R2

η21e
−s|ξ−η|α θ̂0(ξ − η)e−s|η|α θ̂0(η)

|η||ξ − η|(|η|+ |ξ − η|)
dη ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

≥ C

∥∥∥∥ξ1ξ2 ∫ t

1
e−ϵ

∫
2|ξ|<|η|<1

η21e
−cs|η|α

|η|3
dη ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

≥
∥∥∥∥ξ1ξ2 ∫ t

1
e−ϵ

∫ 1

2|ξ|
e−csρα dρds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

=

∥∥∥∥ξ1ξ2 ∫ t

1
e−ϵ

∫ s1/α

2|ξ|s1/α
e−cρ dρs−1/α ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

≥
∥∥∥∥ξ1ξ2 ∫ t

1
e−ϵCs−1/α ds

∥∥∥∥
L2(|ξ|≤ϵt−1/α)

≥

Ct1−
4
α ϵ3, for α ∈ (1, 2],

Ct−3ϵ3 ln(t), for α = 1.

Finally, by our setting of supp θ̂0, we obtain

∥(R)∥L2(|ξ|≤ϵt−1) ≤ Ct−3ϵ4 ln (t),

by estimations of integrals similar to before. Thus we obtain (3.9).
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